Academic literature on the topic 'Visual object recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Visual object recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Visual object recognition"
Logothetis, N. K., and D. L. Sheinberg. "Visual Object Recognition." Annual Review of Neuroscience 19, no. 1 (March 1996): 577–621. http://dx.doi.org/10.1146/annurev.ne.19.030196.003045.
Full textGrauman, Kristen, and Bastian Leibe. "Visual Object Recognition." Synthesis Lectures on Artificial Intelligence and Machine Learning 5, no. 2 (April 19, 2011): 1–181. http://dx.doi.org/10.2200/s00332ed1v01y201103aim011.
Full textGrill-Spector, Kalanit, and Nancy Kanwisher. "Visual Recognition." Psychological Science 16, no. 2 (February 2005): 152–60. http://dx.doi.org/10.1111/j.0956-7976.2005.00796.x.
Full textVasylenko, Mykola, and Maksym Haida. "Visual Object Recognition System." Electronics and Control Systems 3, no. 73 (November 24, 2022): 9–19. http://dx.doi.org/10.18372/1990-5548.73.17007.
Full textJiao, Chenlei, Binbin Lian, Zhe Wang, Yimin Song, and Tao Sun. "Visual–tactile object recognition of a soft gripper based on faster Region-based Convolutional Neural Network and machining learning algorithm." International Journal of Advanced Robotic Systems 17, no. 5 (September 1, 2020): 172988142094872. http://dx.doi.org/10.1177/1729881420948727.
Full textTannenbaum, Allen, Anthony Yezzi, and Alex Goldstein. "Visual Tracking and Object Recognition." IFAC Proceedings Volumes 34, no. 6 (July 2001): 1539–42. http://dx.doi.org/10.1016/s1474-6670(17)35408-3.
Full textGuo, Fei, Yuan Yang, and Yong Gao. "Optimization of Visual Information Presentation for Visual Prosthesis." International Journal of Biomedical Imaging 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/3198342.
Full textRennig, Johannes, Sonja Cornelsen, Helmut Wilhelm, Marc Himmelbach, and Hans-Otto Karnath. "Preserved Expert Object Recognition in a Case of Visual Hemiagnosia." Journal of Cognitive Neuroscience 30, no. 2 (February 2018): 131–43. http://dx.doi.org/10.1162/jocn_a_01193.
Full textWoods, Andrew T., Allison Moore, and Fiona N. Newell. "Canonical Views in Haptic Object Perception." Perception 37, no. 12 (January 1, 2008): 1867–78. http://dx.doi.org/10.1068/p6038.
Full textZelinsky, Gregory J., and Gregory L. Murphy. "Synchronizing Visual and Language Processing: An Effect of Object Name Length on Eye Movements." Psychological Science 11, no. 2 (March 2000): 125–31. http://dx.doi.org/10.1111/1467-9280.00227.
Full textDissertations / Theses on the topic "Visual object recognition"
Figueroa, Flores Carola. "Visual Saliency for Object Recognition, and Object Recognition for Visual Saliency." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671964.
Full textEl reconocimiento de objetos para los seres humanos es un proceso instantáneo, preciso y extremadamente adaptable. Además, tenemos la capacidad innata de aprender nuevas categorias de objetos a partir de unos pocos ejemplos. El cerebro humano reduce la complejidad de los datos entrantes filtrando parte de la información y procesando las cosas que captan nuestra atención. Esto, combinado con nuestra predisposición biológica a responder a determinadas formas o colores, nos permite reconocer en una simple mirada las regiones más importantes o destacadas de una imagen. Este mecanismo se puede observar analizando en qué partes de las imágenes los sujetos ponen su atención; por ejemplo donde fijan sus ojos cuando se les muestra una imagen. La forma más precisa de registrar este comportamiento es rastrear los movimientos de los ojos mientras se muestran imágenes. La estimación computacional del ‘saliency’, tiene como objetivo diseñar algoritmos que, dada una imagen de entrada, estimen mapas de ‘saliency’. Estos mapas se pueden utilizar en una variada gama de aplicaciones, incluida la detección de objetos, la compresión de imágenes y videos y el seguimiento visual. La mayoría de la investigación en este campo se ha centrado en estimar automáticamente estos mapas de ‘saliency’, dada una imagen de entrada. En cambio, en esta tesis, nos propusimos incorporar la estimación de ‘saliency’ en un procedimiento de reconocimiento de objeto, puesto que, queremos investigar si los mapas de ‘saliency’ pueden mejorar los resultados de la tarea de reconocimiento de objetos. En esta tesis, identificamos varios problemas relacionados con la estimación del ‘saliency’ visual. Primero, pudimos determinar en qué medida se puede aprovechar la estimación del ‘saliency’ para mejorar el entrenamiento de un modelo de reconocimiento de objetos cuando se cuenta con escasos datos de entrenamiento. Para resolver este problema, diseñamos una red de clasificación de imágenes que incorpora información de ‘saliency’ como entrada. Esta red procesa el mapa de ‘saliency’ a través de una rama de red dedicada y utiliza las características resultantes para modular las características visuales estándar ascendentes de la entrada de la imagen original. Nos referiremos a esta técnica como clasificación de imágenes moduladas por prominencia (SMIC en inglés). En numerosos experimentos realizando sobre en conjuntos de datos de referencia estándar para el reconocimiento de objetos ‘fine-grained’, mostramos que nuestra arquitectura propuesta puede mejorar significativamente el rendimiento, especialmente en conjuntos de datos con datos con escasos datos de entrenamiento. Luego, abordamos el principal inconveniente del problema anterior: es decir, SMIC requiere explícitamente un algoritmo de ‘saliency’, el cual debe entrenarse en un conjunto de datos de ‘saliency’. Para resolver esto, implementamos un mecanismo de alucinación que nos permite incorporar la rama de estimación de ‘saliency’ en una arquitectura de red neuronal entrenada de extremo a extremo que solo necesita la imagen RGB como entrada. Un efecto secundario de esta arquitectura es la estimación de mapas de ‘saliency’. En varios experimentos, demostramos que esta arquitectura puede obtener resultados similares en el reconocimiento de objetos como SMIC pero sin el requisito de mapas de ‘saliency’ para entrenar el sistema. Finalmente, evaluamos la precisión de los mapas de ‘saliency’ que ocurren como efecto secundario del reconocimiento de objetos. Para ello, utilizamos un de conjuntos de datos de referencia para la evaluación de la prominencia basada en experimentos de seguimiento ocular. Sorprendentemente, los mapas de ‘saliency’ estimados son muy similares a los mapas que se calculan a partir de experimentos de seguimiento ocular humano. Nuestros resultados muestran que estos mapas de ‘saliency’ pueden obtener resultados competitivos en mapas de ‘saliency’ de referencia.
For humans, the recognition of objects is an almost instantaneous, precise and extremely adaptable process. Furthermore, we have the innate capability to learn new object classes from only few examples. The human brain lowers the complexity of the incoming data by filtering out part of the information and only processing those things that capture our attention. This, mixed with our biological predisposition to respond to certain shapes or colors, allows us to recognize in a simple glance the most important or salient regions from an image. This mechanism can be observed by analyzing on which parts of images subjects place attention; where they fix their eyes when an image is shown to them. The most accurate way to record this behavior is to track eye movements while displaying images. Computational saliency estimation aims to identify to what extent regions or objects stand out with respect to their surroundings to human observers. Saliency maps can be used in a wide range of applications including object detection, image and video compression, and visual tracking. The majority of research in the field has focused on automatically estimating saliency maps given an input image. Instead, in this thesis, we set out to incorporate saliency maps in an object recognition pipeline: we want to investigate whether saliency maps can improve object recognition results. In this thesis, we identify several problems related to visual saliency estimation. First, to what extent the estimation of saliency can be exploited to improve the training of an object recognition model when scarce training data is available. To solve this problem, we design an image classification network that incorporates saliency information as input. This network processes the saliency map through a dedicated network branch and uses the resulting characteristics to modulate the standard bottom-up visual characteristics of the original image input. We will refer to this technique as saliency-modulated image classification (SMIC). In extensive experiments on standard benchmark datasets for fine-grained object recognition, we show that our proposed architecture can significantly improve performance, especially on dataset with scarce training data. Next, we address the main drawback of the above pipeline: SMIC requires an explicit saliency algorithm that must be trained on a saliency dataset. To solve this, we implement a hallucination mechanism that allows us to incorporate the saliency estimation branch in an end-to-end trained neural network architecture that only needs the RGB image as an input. A side-effect of this architecture is the estimation of saliency maps. In experiments, we show that this architecture can obtain similar results on object recognition as SMIC but without the requirement of ground truth saliency maps to train the system. Finally, we evaluated the accuracy of the saliency maps that occur as a side-effect of object recognition. For this purpose, we use a set of benchmark datasets for saliency evaluation based on eye-tracking experiments. Surprisingly, the estimated saliency maps are very similar to the maps that are computed from human eye-tracking experiments. Our results show that these saliency maps can obtain competitive results on benchmark saliency maps. On one synthetic saliency dataset this method even obtains the state-of-the-art without the need of ever having seen an actual saliency image for training.
Universitat Autònoma de Barcelona. Programa de Doctorat en Informàtica
Fergus, Robert. "Visual object category recognition." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425029.
Full textWallenberg, Marcus. "Embodied Visual Object Recognition." Doctoral thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-132762.
Full textEmbodied Visual Object Recognition
FaceTrack
Breuel, Thomas M. "Geometric Aspects of Visual Object Recognition." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/7342.
Full textMeger, David Paul. "Visual object recognition for mobile platforms." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44682.
Full textMahmood, Hamid. "Visual Attention-based Object Detection and Recognition." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94024.
Full textVillalba, Michael Joseph. "Fast visual recognition of large object sets." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/42211.
Full textLindqvist, Zebh. "Design Principles for Visual Object Recognition Systems." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80769.
Full textTeynor, Alexandra. "Visual object class recognition using local descriptions." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-62371.
Full textPemula, Latha. "Low-shot Visual Recognition." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/73321.
Full textMaster of Science
Books on the topic "Visual object recognition"
Grauman, Kristen, and Bastian Leibe. Visual Object Recognition. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01553-3.
Full textBastian, Leibe, ed. Visual object recognition. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool, 2011.
Find full textUllman, Shimon. High-level vision: Object recognition and visual cognition. Cambridge, Mass: MIT Press, 1996.
Find full textUllman, Shimon. High-level vision: Object recognition and visual cognition. Cambridge, Mass: MIT Press, 2000.
Find full textPoth, Christian H. Episodic visual cognition: Implications for object and short-term recognition. Bielefeld: Universitätsbibliothek Bielefeld, 2017.
Find full textFarah, Martha J. Visual agnosia: Disorders of object recognition and what they tell us about normal vision. Cambridge, Mass: MIT Press, 1990.
Find full textVisual agnosia: Disorders of object recognition and what they tell us about normal vision. Cambridge, Mass: MIT Press, 1990.
Find full textVisual agnosia: Disorders of object recognition and what they tell us about normal vision. Cambridge, Mass: MIT Press, 1999.
Find full textFarah, Martha J. Visual agnosia: Disorders of object recognition and what they tell us about normal vision. Cambridge, Mass: MIT Press, 1995.
Find full textInformation routing, correspondence finding, and object recognition in the brain. Berlin: Springer-Verlag, 2010.
Find full textBook chapters on the topic "Visual object recognition"
Humphreys, Glyn W., and Vicki Bruce. "Visual Object Recognition." In Visual Cognition, 51–101. London: Psychology Press, 2021. http://dx.doi.org/10.4324/9781315785141-3.
Full textGong, Shengrong, Chunping Liu, Yi Ji, Baojiang Zhong, Yonggang Li, and Husheng Dong. "Visual Object Recognition." In Advanced Image and Video Processing Using MATLAB, 351–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77223-3_10.
Full textTomita, Fumiaki, and Saburo Tsuji. "Object Recognition." In Computer Analysis of Visual Textures, 115–35. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-1553-7_8.
Full textGrauman, Kristen, and Bastian Leibe. "Generic Object Detection: Finding and Scoring Candidates." In Visual Object Recognition, 79–86. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01553-3_9.
Full textGrauman, Kristen, and Bastian Leibe. "Example Systems: Generic Object Recognition." In Visual Object Recognition, 103–18. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01553-3_11.
Full textGrauman, Kristen, and Bastian Leibe. "Introduction." In Visual Object Recognition, 1–5. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01553-3_1.
Full textGrauman, Kristen, and Bastian Leibe. "Overview: Recognition of Generic Object Categories." In Visual Object Recognition, 61. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01553-3_7.
Full textGrauman, Kristen, and Bastian Leibe. "Overview: Recognition of Specific Objects." In Visual Object Recognition, 7–10. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01553-3_2.
Full textGrauman, Kristen, and Bastian Leibe. "Example Systems: Specific-Object Recognition." In Visual Object Recognition, 55–61. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01553-3_6.
Full textGrauman, Kristen, and Bastian Leibe. "Learning Generic Object Category Models." In Visual Object Recognition, 87–102. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01553-3_10.
Full textConference papers on the topic "Visual object recognition"
Zhu, Zhuotun, Lingxi Xie, and Alan Yuille. "Object Recognition with and without Objects." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/505.
Full textPelli, Denis G. "Visual Sensitivity and Object Recognition." In Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.fth4i.2.
Full textWalmsley, Nicholas P., and K. M. Curtis. "Robust object recognition using symmetry." In Visual Communications and Image Processing '94, edited by Aggelos K. Katsaggelos. SPIE, 1994. http://dx.doi.org/10.1117/12.186001.
Full textMamic, George J., and Mohammed Bennamoun. "Review of 3D object representation techniques for automatic object recognition." In Visual Communications and Image Processing 2000, edited by King N. Ngan, Thomas Sikora, and Ming-Ting Sun. SPIE, 2000. http://dx.doi.org/10.1117/12.386708.
Full textZhang, Mengmi, Claire Tseng, and Gabriel Kreiman. "Putting Visual Object Recognition in Context." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.01300.
Full textChao Zhu, Charles-Edmond Bichot, and Liming Chen. "Visual object recognition using DAISY descriptor." In 2011 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2011. http://dx.doi.org/10.1109/icme.2011.6011957.
Full textMarszalek, Marcin, and Cordelia Schmid. "Semantic Hierarchies for Visual Object Recognition." In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383272.
Full textYao, Peng, Yongtian Wang, Can Chen, Dongdong Weng, and Yue Liu. "Dangerous object recognition for visual surveillance." In 2012 International Conference on Audio, Language and Image Processing (ICALIP). IEEE, 2012. http://dx.doi.org/10.1109/icalip.2012.6376587.
Full textTian, X., H. Deng, K. Yamazaki, M. Fujishima, and M. Mori. "On-Machine Visual Modeling System With Object Recognition." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81661.
Full textGhali, Ahmed, Andrew S. Cunningham, and Tony P. Pridmore. "Object and event recognition for stroke rehabilitation." In Visual Communications and Image Processing 2003, edited by Touradj Ebrahimi and Thomas Sikora. SPIE, 2003. http://dx.doi.org/10.1117/12.503470.
Full textReports on the topic "Visual object recognition"
Breuel, Thomas M. Geometric Aspects of Visual Object Recognition. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada259454.
Full textEdelman, Shimon, Heinrich H. Buelthoff, and Erik Sklar. Task and Object Learning in Visual Recognition. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada259961.
Full textFarah, Martha J. The Functional Architecture of Visual Object Recognition. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada238617.
Full textJacobs, David W. The Use of Grouping in Visual Object Recognition. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada201691.
Full textSerre, Thomas, Lior Wolf, and Tomaso Poggio. Object Recognition with Features Inspired by Visual Cortex. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada454604.
Full textTarr, Michael J. Presentations of Shape in Object Recognition and Long-Term Visual Memory. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada281336.
Full textFarah, Martha J. The Functional Architecture Of Visual Object Recognition: Cognitive And Neuropsychological Approaches. Fort Belvoir, VA: Defense Technical Information Center, December 1992. http://dx.doi.org/10.21236/ada259859.
Full textTarr, Michael J. Representations of Shape in Object Recognition and Long-Term Visual Memory. Fort Belvoir, VA: Defense Technical Information Center, June 1996. http://dx.doi.org/10.21236/ada310172.
Full textTarr, Michael J. Representations of Shape in Object Recognition and Long-Term Visual Memory. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada264342.
Full textGonzales, Antonio Ignacio, Paul C. Reeves, John J. Jones, and Benjamin D. Farkas. ROCIT : a visual object recognition algorithm based on a rank-order coding scheme. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/919190.
Full text