Academic literature on the topic 'Vital signs monitoring using radar'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vital signs monitoring using radar.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vital signs monitoring using radar"

1

Kebe, Mamady, Rida Gadhafi, Baker Mohammad, Mihai Sanduleanu, Hani Saleh, and Mahmoud Al-Qutayri. "Human Vital Signs Detection Methods and Potential Using Radars: A Review." Sensors 20, no. 5 (2020): 1454. http://dx.doi.org/10.3390/s20051454.

Full text
Abstract:
Continuous monitoring of vital signs, such as respiration and heartbeat, plays a crucial role in early detection and even prediction of conditions that may affect the wellbeing of the patient. Sensing vital signs can be categorized into: contact-based techniques and contactless based techniques. Conventional clinical methods of detecting these vital signs require the use of contact sensors, which may not be practical for long duration monitoring and less convenient for repeatable measurements. On the other hand, wireless vital signs detection using radars has the distinct advantage of not requiring the attachment of electrodes to the subject’s body and hence not constraining the movement of the person and eliminating the possibility of skin irritation. In addition, it removes the need for wires and limitation of access to patients, especially for children and the elderly. This paper presents a thorough review on the traditional methods of monitoring cardio-pulmonary rates as well as the potential of replacing these systems with radar-based techniques. The paper also highlights the challenges that radar-based vital signs monitoring methods need to overcome to gain acceptance in the healthcare field. A proof-of-concept of a radar-based vital sign detection system is presented together with promising measurement results.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Xinyue, Xiuzhu Yang, Yi Ding, Yili Wang, Jialin Zhou, and Lin Zhang. "Contactless Simultaneous Breathing and Heart Rate Detections in Physical Activity Using IR-UWB Radars." Sensors 21, no. 16 (2021): 5503. http://dx.doi.org/10.3390/s21165503.

Full text
Abstract:
Vital signs monitoring in physical activity (PA) is of great significance in daily healthcare. Impulse Radio Ultra-WideBand (IR-UWB) radar provides a contactless vital signs detection approach with advantages in range resolution and penetration. Several researches have verified the feasibility of IR-UWB radar monitoring when the target keeps still. However, various body movements are induced by PA, which lead to severe signal distortion and interfere vital signs extraction. To address this challenge, a novel joint chest–abdomen cardiopulmonary signal estimation approach is proposed to detect breath and heartbeat simultaneously using IR-UWB radars. The movements of target chest and abdomen are detected by two IR-UWB radars, respectively. Considering the signal overlapping of vital signs and body motion artifacts, Empirical Wavelet Transform (EWT) is applied on received radar signals to remove clutter and mitigate movement interference. Moreover, improved EWT with frequency segmentation refinement is applied on each radar to decompose vital signals of target chest and abdomen to vital sign-related sub-signals, respectively. After that, based on the thoracoabdominal movement correlation, cross-correlation functions are calculated among chest and abdomen sub-signals to estimate breath and heartbeat. The experiments are conducted under three kinds of PA situations and two general body movements, the results of which indicate the effectiveness and superiority of the proposed approach.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Zhi, Tian Jin, Yongpeng Dai, and Yongkun Song. "Through-Wall Multi-Subject Localization and Vital Signs Monitoring Using UWB MIMO Imaging Radar." Remote Sensing 13, no. 15 (2021): 2905. http://dx.doi.org/10.3390/rs13152905.

Full text
Abstract:
Radar-based non-contact vital signs monitoring has great value in through-wall detection applications. This paper presents the theoretical and experimental study of through-wall respiration and heartbeat pattern extraction from multiple subjects. To detect the vital signs of multiple subjects, we employ a low-frequency ultra-wideband (UWB) multiple-input multiple-output (MIMO) imaging radar and derive the relationship between radar images and vibrations caused by human cardiopulmonary movements. The derivation indicates that MIMO radar imaging with the stepped-frequency continuous-wave (SFCW) improves the signal-to-noise ratio (SNR) critically by the factor of radar channel number times frequency number compared with continuous-wave (CW) Doppler radars. We also apply the three-dimensional (3-D) higher-order cumulant (HOC) to locate multiple subjects and extract the phase sequence of the radar images as the vital signs signal. To monitor the cardiopulmonary activities, we further exploit the VMD algorithm with a proposed grouping criterion to adaptively separate the respiration and heartbeat patterns. A series of experiments have validated the localization and detection of multiple subjects behind a wall. The VMD algorithm is suitable for separating the weaker heartbeat pattern from the stronger respiration pattern by the grouping criterion. Moreover, the continuous monitoring of heart rate (HR) by the MIMO radar in real scenarios shows a strong consistency with the reference electrocardiogram (ECG).
APA, Harvard, Vancouver, ISO, and other styles
4

Yoo, Young-Keun, and Hyun-Chool Shin. "Movement Compensated Driver’s Respiratory Rate Extraction." Applied Sciences 12, no. 5 (2022): 2695. http://dx.doi.org/10.3390/app12052695.

Full text
Abstract:
In non-contact vital sign monitoring using radar, radar signal distorted by the surrounding unspecified factors is unsuitable for monitoring vital signs. In order to monitor vital signs accurately, it is essential to compensate for distortion of radar signals caused by surrounding environmental factors. In this paper, we propose a driver vital signal compensation method in driving situations, including the driver’s movements using a frequency-modulated continuous-wave (FMCW) radar. Driver’s movement is quantified from the radar signal and used to set a distortion signal compensation index to compensate for the signal distortion induced in the driving situation that the driver’s movement occurs. The experimental results show that the respiration rate estimated from the radar signal compensated through the proposed method is similar to the actual respiration rate than from the signal before calibration. These results confirm the possibility of using the proposed method in a non-statistic situation and effectiveness in estimating respiration rate reflecting human movement in monitoring vital signs using FMCW radar.
APA, Harvard, Vancouver, ISO, and other styles
5

Lazaro, Antonio, David Girbau, and Ramon Villarino. "ANALYSIS OF VITAL SIGNS MONITORING USING AN IR-UWB RADAR." Progress In Electromagnetics Research 100 (2010): 265–84. http://dx.doi.org/10.2528/pier09120302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Turppa, Emmi, Juha M. Kortelainen, Oleg Antropov, and Tero Kiuru. "Vital Sign Monitoring Using FMCW Radar in Various Sleeping Scenarios." Sensors 20, no. 22 (2020): 6505. http://dx.doi.org/10.3390/s20226505.

Full text
Abstract:
Remote monitoring of vital signs for studying sleep is a user-friendly alternative to monitoring with sensors attached to the skin. For instance, remote monitoring can allow unconstrained movement during sleep, whereas detectors requiring a physical contact may detach and interrupt the measurement and affect sleep itself. This study evaluates the performance of a cost-effective frequency modulated continuous wave (FMCW) radar in remote monitoring of heart rate and respiration in scenarios resembling a set of normal and abnormal physiological conditions during sleep. We evaluate the vital signs of ten subjects in different lying positions during various tasks. Specifically, we aim for a broad range of both heart and respiration rates to replicate various real-life scenarios and to test the robustness of the selected vital sign extraction methods consisting of fast Fourier transform based cepstral and autocorrelation analyses. As compared to the reference signals obtained using Embla titanium, a certified medical device, we achieved an overall relative mean absolute error of 3.6% (86% correlation) and 9.1% (91% correlation) for the heart rate and respiration rate, respectively. Our results promote radar-based clinical monitoring by showing that the proposed radar technology and signal processing methods accurately capture even such alarming vital signs as minimal respiration. Furthermore, we show that common parameters for heart rate variability can also be accurately extracted from the radar signal, enabling further sleep analyses.
APA, Harvard, Vancouver, ISO, and other styles
7

Khan, Faheem, Asim Ghaffar, Naeem Khan, and Sung Ho Cho. "An Overview of Signal Processing Techniques for Remote Health Monitoring Using Impulse Radio UWB Transceiver." Sensors 20, no. 9 (2020): 2479. http://dx.doi.org/10.3390/s20092479.

Full text
Abstract:
Non-invasive remote health monitoring plays a vital role in epidemiological situations such as SARS outbreak (2003), MERS (2015) and the recently ongoing outbreak of COVID-19 because it is extremely risky to get close to the patient due to the spread of contagious infections. Non-invasive monitoring is also extremely necessary in situations where it is difficult to use complicated wired connections, such as ECG monitoring for infants, burn victims or during rescue missions when people are buried during building collapses/earthquakes. Due to the unique characteristics such as higher penetration capabilities, extremely precise ranging, low power requirement, low cost, simple hardware and robustness to multipath interferences, Impulse Radio Ultra Wideband (IR-UWB) technology is appropriate for non-invasive medical applications. IR-UWB sensors detect the macro as well as micro movement inside the human body due to its fine range resolution. The two vital signs, i.e., respiration rate and heart rate, can be measured by IR-UWB radar by measuring the change in the magnitude of signal due to displacement caused by human lungs, heart during respiration and heart beating. This paper reviews recent advances in IR- UWB radar sensor design for healthcare, such as vital signs measurements of a stationary human, vitals of a non-stationary human, vital signs of people in a vehicle, through the wall vitals measurement, neonate’s health monitoring, fall detection, sleep monitoring and medical imaging. Although we have covered many topics related to health monitoring using IR-UWB, this paper is mainly focused on signal processing techniques for measurement of vital signs, i.e., respiration and heart rate monitoring.
APA, Harvard, Vancouver, ISO, and other styles
8

Lim, Sungmook, Gwang Soo Jang, Wonyoung Song, Baek-hyun Kim, and Dong Hyun Kim. "Non-Contact VITAL Signs Monitoring of a Patient Lying on Surgical Bed Using Beamforming FMCW Radar." Sensors 22, no. 21 (2022): 8167. http://dx.doi.org/10.3390/s22218167.

Full text
Abstract:
Respiration and heartrates are important information for surgery. When the vital signs of the patient lying prone are monitored using radar installed on the back of the surgical bed, the surgeon’s movements reduce the accuracy of these monitored vital signs. This study proposes a method for enhancing the monitored vital sign accuracies of a patient lying on a surgical bed using a 60 GHz frequency modulated continuous wave (FMCW) radar system with beamforming. The vital sign accuracies were enhanced by applying a fast Fourier transform (FFT) for range and beamforming which suppress the noise generated at different ranges and angles from the patient’s position. The experiment was performed for a patient lying on a surgical bed with or without surgeon. Comparing a continuous-wave (CW) Doppler radar, the FMCW radar with beamforming improved almost 22 dB of signal-to-interference and noise ratio (SINR) for vital signals. More than 90% accuracy of monitoring respiration and heartrates was achieved even though the surgeon was located next to the patient as an interferer. It was analyzed using a proposed vital signal model included in the radar IF equation.
APA, Harvard, Vancouver, ISO, and other styles
9

Kathuria, Nitin, and Boon-Chong Seet. "24 GHz Flexible Antenna for Doppler Radar-Based Human Vital Signs Monitoring." Sensors 21, no. 11 (2021): 3737. http://dx.doi.org/10.3390/s21113737.

Full text
Abstract:
Noncontact monitoring of human vital signs has been an emerging research topic in recent years. A key approach to this monitoring is the use of the Doppler radar concept which enables real-time vital signs detection, resulting in a new class of radar system known as bio-radar. The antennas are a key component of any bio-radar module and their designs should meet the common requirements of bio-radar applications such as high radiation directivity and mechanical flexibility. This paper presents the design of a four-element antenna array on a flexible liquid crystal polymer (LCP) substrate of 100 μm thickness and εr of 3.35. The designed antenna array can be used with a 24 GHz bio-radar for vital signs monitoring in a non-contact manner. It features a relatively compact size of 36.5 × 53 mm2 and measured gain of 5.81 dBi. The two vital signs: breathing rate (BR) and heart rate (HR) of two human subjects are detected with relatively good accuracy using the fabricated antenna array and radio frequency (RF) output power of −3 dBm from a distance of approximately 60 cm. The effect of bending on the antenna performance is also analyzed.
APA, Harvard, Vancouver, ISO, and other styles
10

Schellenberger, Sven, Kilin Shi, Fabian Michler, Fabian Lurz, Robert Weigel, and Alexander Koelpin. "Continuous In-Bed Monitoring of Vital Signs Using a Multi Radar Setup for Freely Moving Patients." Sensors 20, no. 20 (2020): 5827. http://dx.doi.org/10.3390/s20205827.

Full text
Abstract:
In hospitals, continuous monitoring of vital parameters can provide valuable information about the course of a patient’s illness and allows early warning of emergencies. To enable such monitoring without restricting the patient’s freedom of movement and comfort, a radar system is attached under the mattress which consists of four individual radar modules to cover the entire width of the bed. Using radar, heartbeat and respiration can be measured without contact and through clothing. By processing the raw radar data, the presence of a patient can be determined and movements are categorized into the classes “bed exit”, “bed entry”, and “on bed movement”. Using this information, the vital parameters can be assessed in sections where the patient lies calmly in bed. In the first step, the presence and movement classification is demonstrated using recorded training and test data. Next, the radar was modified to perform vital sign measurements synchronized to a gold standard device. The evaluation of the individual radar modules shows that, regardless of the lying position of the test person, at least one of the radar modules delivers accurate results for continuous monitoring.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography