Academic literature on the topic 'Vlassov equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vlassov equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vlassov equation"

1

BARTHELMÉ, RÉGINE, PATRICK CIARLET, and ERIC SONNENDRÜCKER. "GENERALIZED FORMULATIONS OF MAXWELL'S EQUATIONS FOR NUMERICAL VLASOV–MAXWELL SIMULATIONS." Mathematical Models and Methods in Applied Sciences 17, no. 05 (2007): 657–80. http://dx.doi.org/10.1142/s0218202507002066.

Full text
Abstract:
When solving numerically approximations of the Vlasov–Maxwell equations, the source terms in Maxwell's equations coming from the numerical solution of the Vlasov equation do not generally satisfy the continuity equation which is required for Maxwell's equations to be well-posed. Hence it is necessary to introduce generalized Maxwell's equations which remain well-posed when there are errors in the sources. Different such formulations have been introduced previously. The aim of this paper is to perform their mathematical analysis and verify the existence and uniqueness of the solution.
APA, Harvard, Vancouver, ISO, and other styles
2

Mezerdi, Mohamed Amine. "On the construction of the solution of mean field stochastic differential equations driven by G-Brownian motion via small delays." STUDIES IN ENGINEERING AND EXACT SCIENCES 5, no. 2 (2024): e8388. http://dx.doi.org/10.54021/seesv5n2-266.

Full text
Abstract:
This work explores the strong convergence of the Carathéodory approximation scheme, for nonlinear mean-field stochastic differential equations called also McKean-Vlasov stochastic differential equations (MVSDEs), under the framework of G-Brownian motion. Note that the coefficients dependent on the state variable and its marginal distribution . This numerical scheme is defined by a series of stochastic processes described through the sequence of delayed McKean-Vlasov stochastic differential equations driven by G-Brownian motion. The benefit of the Carathéodory iteration scheme is its capability
APA, Harvard, Vancouver, ISO, and other styles
3

Vedenyapin, Victor, Nikolay Fimin, and Valery Chechetkin. "The system of Vlasov–Maxwell–Einstein-type equations and its nonrelativistic and weak relativistic limits." International Journal of Modern Physics D 29, no. 01 (2020): 2050006. http://dx.doi.org/10.1142/s0218271820500066.

Full text
Abstract:
We considered derivation of Vlasov–Einstein–Maxwell system of equations from the first principles, i.e. using classical Maxwell–Einstein–Hilbert action principle. We know many papers in which the theories indicated as Einstein–Vlasov, Vlasov–Maxwell–Einstein, Einstein–Maxwell–Boltzmann are discussed, and we discuss difficulties of usually used equations. We use another way of derivation and obtain an alternative version based on the generalized Fock–Weinberg form of equation of motion.
APA, Harvard, Vancouver, ISO, and other styles
4

Vedenyapin, Victor Valentinovich, and Dmitry Aleksandrovich Kogtenev. "On Derivation and Properties of Vlasov-type equations." Keldysh Institute Preprints, no. 20 (2023): 1–18. http://dx.doi.org/10.20948/prepr-2023-20.

Full text
Abstract:
Derivation of the gravity and electrodynamics equations in the Vlasov-Maxwell-Einstein form is considered. Properties of Vlasov-Poisson equation and its application to construction of periodic solutions – Bernstein-Greene-Kruskal waves – are proposed.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Weifeng, Lei Yan, Junhao Hu, and Zhongkai Guo. "An Averaging Principle for Mckean–Vlasov-Type Caputo Fractional Stochastic Differential Equations." Journal of Mathematics 2021 (July 16, 2021): 1–11. http://dx.doi.org/10.1155/2021/8742330.

Full text
Abstract:
In this paper, we want to establish an averaging principle for Mckean–Vlasov-type Caputo fractional stochastic differential equations with Brownian motion. Compared with the classic averaging condition for stochastic differential equation, we propose a new averaging condition and obtain the averaging convergence results for Mckean–Vlasov-type Caputo fractional stochastic differential equations.
APA, Harvard, Vancouver, ISO, and other styles
6

JIN, SHI, XIAOMEI LIAO, and XU YANG. "THE VLASOV–POISSON EQUATIONS AS THE SEMICLASSICAL LIMIT OF THE SCHRÖDINGER–POISSON EQUATIONS: A NUMERICAL STUDY." Journal of Hyperbolic Differential Equations 05, no. 03 (2008): 569–87. http://dx.doi.org/10.1142/s021989160800160x.

Full text
Abstract:
In this paper, we numerically study the semiclassical limit of the Schrödinger–Poisson equations as a selection principle for the weak solution of the Vlasov–Poisson in one space dimension. Our numerical results show that this limit gives the weak solution that agrees with the zero diffusion limit of the Fokker–Planck equation. We also numerically justify the multivalued solution given by a moment system of the Vlasov–Poisson equations as the semiclassical limit of the Schrödinger–Poisson equations.
APA, Harvard, Vancouver, ISO, and other styles
7

SALORT, DELPHINE. "TRANSPORT EQUATIONS WITH UNBOUNDED FORCE FIELDS AND APPLICATION TO THE VLASOV–POISSON EQUATION." Mathematical Models and Methods in Applied Sciences 19, no. 02 (2009): 199–228. http://dx.doi.org/10.1142/s0218202509003401.

Full text
Abstract:
The aim of this paper is to give new dispersive tools for certain kinetic equations. As an application, we study the three-dimensional Vlasov–Poisson equation for initial data having strictly less than six moments in [Formula: see text] where the nonlinear term E is a priori unbounded. We prove via new dispersive effects that in fact the force field E is smooth in space at the cost of a localization in a ball and an averaging in time. We deduce new conditions to bound the density ρ in L∞ and to have existence and uniqueness of global weak solutions of the Vlasov–Poisson equation with bounded d
APA, Harvard, Vancouver, ISO, and other styles
8

EL-HANBALY, A. M., and A. ELGARAYHI. "Exact solutions of the collisional Vlasov equation." Journal of Plasma Physics 59, no. 1 (1998): 169–77. http://dx.doi.org/10.1017/s0022377897006132.

Full text
Abstract:
The symmetry group of the Vlasov–Fokker–Planck equation (VFPE) is constructed. The effects of the Poisson equation on this group is studied, and different types of similarity solutions of the whole system of equations (VFPE+Poisson equation) are obtained.
APA, Harvard, Vancouver, ISO, and other styles
9

Larsson, Jonas. "An action principle for the Vlasov equation and associated Lie perturbation equations. Part 1. The Vlasov—Poisson system." Journal of Plasma Physics 48, no. 1 (1992): 13–35. http://dx.doi.org/10.1017/s0022377800016342.

Full text
Abstract:
A new action principle determining the dynamics of the Vlasov–Poisson system is presented (the Vlasov–Maxwell system will be considered in Part 2). The particle distribution function is explicitly a field to be varied in the action principle, in which only fundamentally Eulerian variables and fields appear. The Euler–Lagrange equations contain not only the Vlasov–Poisson system but also equations associated with a Lie perturbation calculation on the Vlasov equation. These equations greatly simplify the extensive algebra in the small-amplitude expansion. As an example, a general, manifestly Man
APA, Harvard, Vancouver, ISO, and other styles
10

TARASOV, VASILY E. "LIOUVILLE AND BOGOLIUBOV EQUATIONS WITH FRACTIONAL DERIVATIVES." Modern Physics Letters B 21, no. 05 (2007): 237–48. http://dx.doi.org/10.1142/s0217984907012700.

Full text
Abstract:
The Liouville equation, first Bogoliubov hierarchy and Vlasov equations with derivatives of non-integer order are derived. Liouville equation with fractional derivatives is obtained from the conservation of probability in a fractional volume element. This equation is used to obtain Bogoliubov hierarchy and fractional kinetic equations with fractional derivatives. Statistical mechanics of fractional generalization of the Hamiltonian systems is discussed. Fractional kinetic equation for the system of charged particles are considered.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Vlassov equation"

1

Chaub, Thomas. "Semiclassical limit and singular Vlasov Equations." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASM004.

Full text
Abstract:
Cette thèse vise principalement à établir la convergence d'équations dérivées de modèles physiques, dans différents régimes, vers une certaine classe d'équations de Vlasov, avec une régularité Sobolev finie et localement en temps. Deux types de limites sont explorés dans ce travail. La première concerne la convergence d'une équation de la physique des plasmas, l'équation de Vlasov-Poisson, dans un régime quasineutre, (c'est-à-dire où le plasma est considéré localement neutre). L'équation limite obtenue est un système de Vlasov singulier, o le champ de force présente la régularité d'une dérivée
APA, Harvard, Vancouver, ISO, and other styles
2

Vecil, Francesco. "A contribution to the simulation of Vlasov-based models." Doctoral thesis, Universitat Autònoma de Barcelona, 2007. http://hdl.handle.net/10803/3100.

Full text
Abstract:
Esta tesis está dedicada al desarrollo, aplicación y test de métodos para la simulación numérica de problemas procedentes de la física y de la ingeniería electrónica. La principal herramienta aplicada a lo largo de todo el trabajo es la ecuación de Vlasov (transporte) en la forma de la Boltzmann Transport Equation (BTE) para la descripción del transporte de partículas cargadas en plasmas y dispositivos electrónicos: las cargas se mueven bajo el efecto de un campo de fuerza y sufren scattering debido a otras cargas o fonones (pseudo-partículas que describen de manera efectiva las vibraciones de
APA, Harvard, Vancouver, ISO, and other styles
3

Steiner, Christophe. "Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAD033/document.

Full text
Abstract:
Cette thèse propose et analyse des méthodes numériques pour la résolution de l'équation de Vlasov. Cette équation modélise l'évolution d'une espèce de particules chargées sous l'effet d'un champ électromagnétique. La première partie est consacrée à une analyse mathématique de schémas semi-Lagrangiens résolvant l'équation de transport linéaire qui constituent la brique de base des méthodes de splitting directionnel.Des méthodes de résolution de l'équation de Vlasov couplée à l'équation de Poisson, dans le cas où uniquement le champ électrique est considéré, sont optimisées dans la seconde parti
APA, Harvard, Vancouver, ISO, and other styles
4

Gan, Hin Hark. "Nuclear dynamics in the mean field Vlasov equation." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=65536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bostan, Mihai. "Etude numérique des solutions périodiques du système de Vlasov-Maxwell." Phd thesis, Ecole des Ponts ParisTech, 1999. http://tel.archives-ouvertes.fr/tel-00005611.

Full text
Abstract:
La modélisation de dispositifs tels que les tubes à décharge ou les diodes à vide soumises à un potentiel harmonique repose sur les équations de Vlasov-Maxwell ou de Vlasov-Poisson en régime périodique. Des résultats dans le cas périodique semblent inexistants. D'autre part, ces régimes sont très difficilement atteints lors de simulations numériques. Le but de ce travail a été d'étudier théoriquement et numériquement les régimes périodiques en transport de particules chargées soumises au champ électro-magnétique. Dans un premiers temps nous présenterons les équations de Maxwell sous forme cons
APA, Harvard, Vancouver, ISO, and other styles
6

Eliasson, Bengt. "Numerical Vlasov–Maxwell Modelling of Space Plasma." Doctoral thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2929.

Full text
Abstract:
The Vlasov equation describes the evolution of the distribution function of particles in phase space (x,v), where the particles interact with long-range forces, but where shortrange "collisional" forces are neglected. A space plasma consists of low-mass electrically charged particles, and therefore the most important long-range forces acting in the plasma are the Lorentz forces created by electromagnetic fields. What makes the numerical solution of the Vlasov equation a challenging task is that the fully three-dimensional problem leads to a partial differential equation in the six-dimensional
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Mei. "Some problems on conservation laws and Vlasov-Poisson-Boltzmann equation /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b23749465f.pdf.

Full text
Abstract:
Thesis (Ph.D.)--City University of Hong Kong, 2009.<br>"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [90]-94)
APA, Harvard, Vancouver, ISO, and other styles
8

McMurray, Eamon Finnian Valentine. "Regularity of McKean-Vlasov stochastic differential equations and applications." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/28918.

Full text
Abstract:
In this thesis, we study time-inhomogeneous and McKean-Vlasov type stochastic differential equations (SDEs), along with related partial differential equations (PDEs). We are particularly interested in regularity estimates and their applications to numerical methods. In the first part of the thesis, we build on the work of Kusuoka \& Stroock to develop sharp estimates on the derivatives of solutions to time-inhomogeneous parabolic PDEs. The basis of these estimates is an integration by parts formula for derivatives of the solution under the UFG condition, which is weaker than the uniform Hoerma
APA, Harvard, Vancouver, ISO, and other styles
9

Lei, Peng. "The Cauchy problem for the Diffusive-Vlasov-Enskog equations." Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-05042006-164524/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sonnendrücker, Eric. "Analyse mathematique et numerique des equations de vlasov-darwin." Cachan, Ecole normale supérieure, 1995. http://www.theses.fr/1995DENS0014.

Full text
Abstract:
La premiere partie de ce travail est consacree a une analyse asymptotique des equations de maxwell, d'ou l'on tire le modele de darwin comme approximation d'ordre 2 par rapport au petit parametre v/c. Nous presentons ensuite un code numerique de resolution des equations de vlasov-darwin par une methode couplee, particulaire pour les equations de vlasov et elements finis pour les equations de darwin. La derniere partie est consacree a l'analyse de la stabilite asymptotique de ce couplage
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Vlassov equation"

1

Vedenyapin, Victor. Kinetic Boltzmann, Vlasov and related equations. Elsevier Science, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

McKenney, Alan Michael. The drift-kinetic model in the long-thin approximation. Courant Institute of Mathematical Sciences, New York University, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

McKenney, Alan Michael. The drift-kinetic model in the long-thin approximation. Courant Institute of Mathematical Sciences, New York University, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Colombo, Maria. Flows of Non-smooth Vector Fields and Degenerate Elliptic Equations: With Applications to the Vlasov-Poisson and Semigeostrophic Systems. Scuola Normale Superiore, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deruelle, Nathalie, and Jean-Philippe Uzan. Kinetic theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0010.

Full text
Abstract:
This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equ
APA, Harvard, Vancouver, ISO, and other styles
6

Bertrand, Pierre, Daniele Del Sarto, and Alain Ghizzo. Vlasov Equation 1: History and General Properties. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bertrand, Pierre, Daniele Del Sarto, and Alain Ghizzo. Vlasov Equation 1: History and General Properties. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bertrand, Pierre, Daniele Del Sarto, and Alain Ghizzo. Vlasov Equation 1: History and General Properties. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bertrand, Pierre, Daniele Del Sarto, and Alain Ghizzo. Vlasov Equation 1: History and General Properties. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kinetic Boltzmann, Vlasov and Related Equations. Elsevier, 2011. http://dx.doi.org/10.1016/c2011-0-00134-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Vlassov equation"

1

Spohn, Herbert. "The Vlasov Equation." In Large Scale Dynamics of Interacting Particles. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84371-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schram, P. P. J. M. "Klimontovich Equation, B.B.G.K.Y.-Hierarchy and Vlasov-Maxwell Equations." In Kinetic Theory of Gases and Plasmas. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3612-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reich, Sebastian. "Particle-Based Algorithm for Stochastic Optimal Control." In Mathematics of Planet Earth. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70660-8_11.

Full text
Abstract:
AbstractThe solution to a stochastic optimal control problem can be determined by computing the value function from a discretization of the associated Hamilton–Jacobi–Bellman equation. Alternatively, the problem can be reformulated in terms of a pair of forward-backward SDEs, which makes Monte–Carlo techniques applicable. More recently, the problem has also been viewed from the perspective of forward and reverse time SDEs and their associated Fokker–Planck equations. This approach is closely related to techniques used in diffusion-based generative models. Forward and reverse time formulations
APA, Harvard, Vancouver, ISO, and other styles
4

Wiedemann, Helmut. "Vlasov and Fokker–Planck Equations*." In Graduate Texts in Physics. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18317-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Babovsky, H., and H. Neunzert. "The Vlasov Equation: Some Mathematical Aspects." In Kinetic Theory and Gas Dynamics. Springer Vienna, 1988. http://dx.doi.org/10.1007/978-3-7091-2762-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Filbet, F., and E. Sonnendrücker. "Numerical methods for the Vlasov equation." In Numerical Mathematics and Advanced Applications. Springer Milan, 2003. http://dx.doi.org/10.1007/978-88-470-2089-4_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cercignani, Carlo, and Gilberto Medeiros Kremer. "The Vlasov Equation and Related Systems." In The Relativistic Boltzmann Equation: Theory and Applications. Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8165-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cavallaro, Guido. "The Vlasov Equation with Infinite Mass." In Recent Advances in Kinetic Equations and Applications. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82946-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Califano, Francesco, and Silvio Sergio Cerri. "Eulerian Approach to Solve the Vlasov Equation and Hybrid-Vlasov Simulations." In Space and Astrophysical Plasma Simulation. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11870-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Colombo, Maria. "The Vlasov-Poisson system." In Flows of Non-smooth Vector Fields and Degenerate Elliptic Equations. Scuola Normale Superiore, 2017. http://dx.doi.org/10.1007/978-88-7642-607-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Vlassov equation"

1

Cappelli, Luca, Giuseppe Murante, and Stefano Borgani. "Numerical limits in the integration of Vlasov-Poisson equation for Cold Dark Matter." In 2025 33rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP). IEEE, 2025. https://doi.org/10.1109/pdp66500.2025.00067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pestrikov, D. V. "Vlasov equation and Landau damping." In HIGH QUALITY BEAMS: Joint US-CERN-JAPAN-RUSSIA Accelerator School. AIP, 2001. http://dx.doi.org/10.1063/1.1420421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Perepelkin, Eugene E., Boris I. Sadovnikov, Natalia G. Inozemtseva, and Denis A. Suchkov. "Investigation of the new modified Vlasov equation." In PROCEEDINGS OF THE 23RD INTERNATIONAL SCIENTIFIC CONFERENCE OF YOUNG SCIENTISTS AND SPECIALISTS (AYSS-2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liao, Dao-Xun, Xiao-Cheng Huang, Yong-Zhong Lu, and Wei-Jun Jin. "Dynamic Modeling and its Solving Method of Elastic Foundation for Dynamic Machine." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8123.

Full text
Abstract:
Abstract Engineering practices indicate that the soil as foundation has great effect on base vibration. In this paper, Vlasov model is applied to base-foundation (soil) system of dynamic machine. According to the elasticity theory and soil dynamics, the kinetic energy and potential of foundation can be derived. Based on the Hamilton’s variational principle, we are able to establish multivariable fonctionelle equation and Euler’s equations of foundation. Consequently, we can obtain the partial differential equation of free vibration for the foundation on condition that the damping of the system
APA, Harvard, Vancouver, ISO, and other styles
5

Struchtrup, Henning, and Aldo Frezzotti. "Grad’s 13 moments approximation for Enskog-Vlasov equation." In 31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD31. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5119620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Benhadid, Yacine. "ENO Schemes for the Two-Dimensional Vlasov Equation." In 2009 International Conference on Signal Processing Systems. IEEE, 2009. http://dx.doi.org/10.1109/icsps.2009.217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khulbe, M., M. R. Tripathy, and H. Parthasarathy. "Parameter Estimation of a Plasmonic Channel Using Vlasov Equation." In 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). IEEE, 2018. http://dx.doi.org/10.23919/piers.2018.8598017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ameri, Abtin, Erika Ye, Paola Cappellaro, Hari Krovi, and Nuno F. Loureiro. "Quantum Algorithm for the Linear Vlasov Equation with Collisions." In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2023. http://dx.doi.org/10.1109/qce57702.2023.10185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Yingzhe, Yang He, Yajuan Sun, Jitse Niesen, Hong Qin, and Jian Liu. "Solving Vlasov-Maxwell equations by using Hamiltonian splitting." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shadwick, B. A., and M. Carrie. "A time-implicit algorithm for solving the Vlasov-Poisson equation." In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6634925.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Vlassov equation"

1

Heifets, Samuel A. Vlasov equation with Coherent Synchrotron Radiation. Office of Scientific and Technical Information (OSTI), 2001. http://dx.doi.org/10.2172/798923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brizard, A. Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates. Office of Scientific and Technical Information (OSTI), 1988. http://dx.doi.org/10.2172/6793579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Forest, E. Treatment of the long range coherent beam-beam with the Vlasov equation. Office of Scientific and Technical Information (OSTI), 1985. http://dx.doi.org/10.2172/6733100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chiang, T. S., G. Kallianpur, and P. Sundar. Propagation of Chaos and the McKean-Vlasov Equation in Duals of Nuclear Spaces. Defense Technical Information Center, 1990. http://dx.doi.org/10.21236/ada224431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chiang, T. S., G. Kallianpur, and P. Sundar. Propagation of Chaos and the McKean-Vlasov Equation in Duals of Nuclear Spaces. Defense Technical Information Center, 1990. http://dx.doi.org/10.21236/ada225595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morrison, P. J., and D. Pfirsch. Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10147775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morrison, P. J., and D. Pfirsch. Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/5064541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

W.W. Lee and R.A. Kolesnikov. On Higher-order Corrections to Gyrokinetic Vlasov-Poisson Equations in the Long Wavelength Limit. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/950698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Davidson, R. C., W. W. Lee, and P. Stoltz. Statistically-averaged rate equations for intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/304184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ronald C. Davidson, W. Wei-li Lee, Hong Qin, and Edward Startsev. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation. Office of Scientific and Technical Information (OSTI), 2001. http://dx.doi.org/10.2172/792583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!