Dissertations / Theses on the topic 'Voie de signalisation Wntβ-caténine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'Voie de signalisation Wntβ-caténine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Aulehla, Alexander. "A propos de gradients et d'oscillations : le rôle de la voie de signalisation Wnt dans la formation des somites au cours du développement embryonnaire." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00811623.
Full textBedel, Aurélie. "Signalisation mitogène des agents pro-athérogènes, implication de la voie béta-caténine." Toulouse 3, 2010. http://www.theses.fr/2010TOU30149.
Full textCardiovascular diseases are an important healthcare problem. Atherosclerosis is the main etiology. During atherogenesis, vascular smooth muscle cell (VSMC) proliferation, and fibrous cape build-up are essential. In this study, we show for the first time E-cadherin/beta-catenin/Tcf4 pathway implication in human VSMC proliferation elicited by oxidized LDL. We highlight several mechanisms for ß-catenin activation by oxidized LDL: E-cadherin shedding, and dissociation of beta-catenin/E-cadherin complex and decrease of its proteasomal degradation. Metalloproteinases, sphingolipids pathway and tyrosine kinases, known to be activated by oxidized LDL, are implicated in this activation. These results on cell cultures are strengthening by immunohistochemistry staining with anti-active ß-catenin antibody on human carotid endarterectomies. These results establish an important role for ß-catenin activation in atherogenesis. In addition, we focus on mitogenic property of uPA, implicated in atherogenesis. We report that neutral sphingomyelinase-2 activation by uPA is mediated in a multi-protein complex with uPAR, MT1-MMP, MMP-2 and avß3 integrin. This complex formation seems to be necessary for ERK1/2 activation and cell proliferation induced by uPA. These data help us to better understand some aspects of atherosclerosis physiopathology
Eubelen, Marie. "Mécanisme moléculaire de la voie Wnt/β-caténine Gpr124/Reck-dépendante." Doctoral thesis, Universite Libre de Bruxelles, 2019. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/280768.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Tissier-Rible, Frédérique. "Oncogenèse corticosurrénalienne : Approche par la voie de signalisation Wnt/ß-caténine et par l'expression de cycline E." Paris 5, 2006. http://www.theses.fr/2006PA05D055.
Full textDanieau, Geoffroy. "Implication de la voie de signalisation Wnt/β-caténine dans le développement tumoral primaire et métastatique des ostéosarcomes." Thesis, Nantes, 2019. http://www.theses.fr/2019NANT1025.
Full textOsteosarcoma is the most common primary malignant bone tumor in children with 150 new cases per year in France. Patient survival has not been improved for the last decades, reaching 70% to 5 years for patients with localized disease, but only 25% for patients with metastatic disease (20% of cases), no effective treatment could develop for these patients with metastases at diagnosis. Therefore, it is necessary to develop new therapeutic strategies. In this context, a deregulation of the Wnt/β-catenin signaling pathway has been reported in many cases of osteosarcomas, but its involvement in the development of these tumors remains controversial. Thus, we evaluated the anti-tumor potential of ICG-001, a small molecule specifically targeting the interaction between the CREB Binding Protein (CBP) and the β- catenin, inhibiting the dependent transcription of this complex, in three human osteosarcoma cell lines, KHOS, MG63 and SJSA1. ICG-001 reduces cell proliferation but, surprisingly, promotes cell migration in vitro and the development of pulmonary metastases in a mouse xenograft model induced by para-tibial injection of KHOS cells. This pro-migratory effect could result in part from a transcriptional switch from a complex consisting of β-catenin and CBP to a complex including β-catenin and another cofactor, p300. Thus, this study adds a level of complexity to the role of the Wnt/β- catenin pathway in the metastatic development of osteosarcoma
Hendaoui, Ismaïl. "Régulation de la voie de signalisation Wnt/β-caténine par le microenvironnement : rôle du domaine Frizzled du collagène XVIII (FZC18)." Rennes 1, 2010. http://www.theses.fr/2010REN1B139.
Full textColorectal cancer and hepatocellular carcinoma are among the most common cancers in the world. Currently available treatments for advanced froms of these cancers are only palliative and have a relatively low efficacy. Biotherapy targeting the molecular mechanisms involved in growth or differentiation of tumor cells provide treatments with high specificity and low toxicity, prolonging remissions with a better quality of life. A major issue in the use of biomolecules is teir ability to enter in the tumor cells, which can be adressed by using biomolecules that target cell surface receptors. We focused on collagen XVIII, which is a major basement membrane component. One of the variants of this collagene has a FZC18 domain, which contains a CRD motif (Cysteine-rich Domain) homologous to the CRD of the extracellular Wnt-binding domain of the Frizzled receptors and the SFRPs (Secreted Frizzled-related Proteins). Both of them are major actors of the Wnt/β-catenin signaling pathway
Bouaziz, Wafa. "Rôle de la voie Wnt/β- caténine dans le remodelage du cartilage articulaire et au cours de l'arthrose." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC129.
Full textOsteoarthritis (OA) is the most common joint disease, affecting millions of individuals wordwide. OA , a disease characterized by progressive cartilage destruction, involves the whole joint including the subchondral bone, cartilage and the synovium. Wnt signaling is a major regulator of bone and cartilage remodeling. Here we show that the activation of Wnt signaling in bone and cartilage, triggers cartilage destruction. We have characterized different approaches to inhibit Wnt signaling and prevent cartilage loss. The inhibition of Wnt signaling in bone by DKK1 prevents cartilage loss and osteophyte formation. In the other hand, the over-activation of Wnt signaling, through sclerostin deficiency, enhanced cartilage destruction through the regulation of canonical and non-canonical Wnt pathway. Furthermore, we showed that HIF 1 a is a canonical Wnt inhibitor that binds to β-catenin and inhibits its interaction with TCF4. This prevents the binding of TCF4 to the regulatory region of MMP13 gene. In DMM mice, conditional knock-out of HIF la in chondrocytes exacerbated cartilage lesions and MMP13 expression which is dependent of TCF/β-catenin interaction. Our results shed light on one of the main controversies in the role of Wnt signaling in OA and provide new Wnt inhibitory strategies to prevent cartilage destruction. Ever, Dkkl overexpression in the bone induced a decrease in VEGF expression, thereby decreasing cartilage catabolism. These data highlight the links between bone and cartilage in OA, and show that targeting bone can impact cartliage lesions
Lefèvre, Lucile. "Rôles de la voie de signalisation Wnt/β-caténine et d’un nouveau gène cible, AFF3, dans les carcinomes de la corticosurrénale." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T010.
Full textAdrenocortical carcinoma (ACC) is a rare and highly aggressive endocrine neoplasm, with limited therapeutic option. Currently, surgical resection is considered the only effective treatment. It is therefore essential to understand the molecular mechanisms involved in ACC development in order to improve their clinical management. Activation of the Wnt/b-catenin signaling pathway is frequent (40%) in ACC and is associated with poor prognosis. The aim of my thesis was to study the involvement of the Wnt/b-catenin signaling pathway in adrenocortical tumorigenesis. The human cell line H295R, derived from an ACC, carries the S45P β-catenin mutation which leads to constitutive β-catenin/TCF transcriptional activity. In the ACC cell line H295R we show that β-catenin silencing resulted in a decreased transcriptional activity of the Wnt/b-catenin signaling, cell cycle alterations, a decreased cell proliferation and an increased apoptosis. Moreover we show that β-catenin silencing abolish xenograft development of H295R adrenocortical cells. Aberrant activation of the Wnt/b-catenin signaling promotes tumorigenesis of several organs by enhancing expression of genes involved in proliferation, cell survival or cell adhesion. To better understand the role of the Wnt/b-catenin signaling in adrenocortical tumorigenesis, we wanted to identify target genes of this pathway in ACC. Combined transcriptomic analysis on two independent cohorts of ACC and on H295R adrenocortical cells with or without β-catenin silencing allow us to identify alterations of gene expression due to aberrant Wnt/βcatenin pathway activation. Among these genes, we show that AFF3 is essential to mediate the effect of the activation of the Wnt/β-catenin signaling pathway in adrenocortical cancer. Indeed, AFF3 is a direct target gene of the Wnt/b-catenin and its silencing in H295R adrenocortical cells induces a decreased cell proliferation and an increased apoptosis similar to that induced by b-catenin silencing. AFF3 is a nuclear protein located in nuclear speckles, which serve as a reservoir of factors participating in mRNA splicing. Moreover, AFF3 interacts with P-TEFb (CDK9/CyclinT1/2) in the Super elongation complex (SEC) required for transcriptional elongation of mRNA by RNA polymerase II. In H295R adrenocortical cells, we show that strong overproduction of AFF3 altered the structural organization of nuclear speckles and the localization of CDK9 and Cycline T1. In conclusion, this study has identified a new transcriptional target of the Wnt/β-catenin signaling pathway, AFF3, which encodes an important mediator of this pathway in adrenocortical tumorigenesis. AFF3 might especially act by affecting the structural organization of speckles and interacting with the P-TEFb, which are respectively involved in mRNA splicing and transcription. These results provide a better understanding of the biological process involved in ACC development and suggest that P-TEFb and SEC could be new therapeutic targets for the treatment of ACC
Haxaire, Coline. "Rôle de la voie Wnt/β-Caténine ostéoblastique dans l'augmentation de la résorption osseuse induite par la surexpression de Runx2." Paris 7, 2012. http://www.theses.fr/2012PA077267.
Full textRunx2 is a transcription factor essentiel for osteoblast differentiation and necessary for bone development. Moreover, transgenic mice overexpressing Runx2 specifically in osteoblast exhibit an early and severe osteoporosis associated with spontaneous fractures. Osteoporosis in mice overexpressing Runx2 is the result of an increased resorption coupled to a blocking of osteoblast differentiation. Our study was designed to determine whether the Wnt/p-Catenin, that is very important in the development of bone tissue, was involved in the mechanism inducing osteoporosis in mice overexpressing Runx2. In particular, we sought to highlight the involvement of Runx2 in the regulation of the Wnt and the impact of this pathway on the bone phenotype in mice overexpressing Runx2 and in their control. We have shown that the activity of p-Catenin is regulated in a dosé-dependent manner by expression of Runx2 in vitro and in vivo, and that stimulation of the Wnt pathway can restore the activity of p-Catenin and partially the differentiation of osteoblasts overexpressing Runx2. We also showed in vivo that stimulation of the Wnt pathway induces a restoration of trabecular bone phenotype. This restoration is due to inhibition of bone resorption with an increase in the synthesis of osteoprotegerin by osteoblasts. In conclusion, while a restoration of osteoblast differentiation was expected, we showed that stimulation of the Wnt signaling inhibits in vivo and in vitro osteoclast differentiation and thus bone resorption induced by overexpression of Runx2. Our work shows that the Wnt pathway is an indirect regulator of bone resorption induced by Runx2 in our model
Figeac, Florence. "Implication de la voie de signalisation Wnt-/β-caténine dans la régulation de la croissance et la régénération des cellules β pancréatiques." Paris 7, 2010. http://www.theses.fr/2010PA077006.
Full textThe loss of functionnal beta cells is the root cause for the development of diabetes. The regulation of beta cells mass is critically reliant on a combination of extra- and intracellular signals that act to maintain normal beta cell mass under basal conditions and to promote adaptative growth of these cells when the need for insulin increases. In this work, we investigated the role of the canonical Wnt pathway 1) in the process of normal beta cell growth in Wistar neonates, and 2) in the process of beta cell regeneration in induced and spontaneous models of neonatal diabetes (nO-STZ and GK respectively), 3) in beta cell regeneration after 90% pancreatectomy in adult rat. Our findings demonstrate that the effectors of the Wnt signalling pathway (TCF7L2 and beta-catenin) regulate the normal beta cell growth in Wistar neonates. Moreover, the activation of the Wnt pathway by the inhibition of GSKSbeta participate to the stimulation of pancreatic beta cell regeneration in vivo in diabetic nO-STZ neonates. Finally, we showed that the inhibition of GSKSbeta stimulates beta cell regeneration in adult rat after pancreatectomy. Our results open new perspectives for the development of pharmacological maneuvers aimed at the in vivo induction of beta cell growth and could be pertinent to potential clinical applications in regenerative therapy of diabetes
El, Hage Perla. "Etude du rôle du gène suppresseur de tumeur WWOX et de ses partenaires dans la voie de signalisation Wnt/β-caténine et dans la carcinogenèse mammaire." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00795900.
Full textTeuliere, Jérôme. "Perturbation de la voie de signalisation Wnt/beta-caténine par l'expression ciblée in vivo de beta- et gamma-caténines stabilisées : analyse des phénotypes mammaires et cutanés." Paris 7, 2004. http://www.theses.fr/2004PA077175.
Full textWagner, Roselyne. "Rôle des protéines E-CADHÉRINE et β-CATÉNINE dans le développement embryonnaire des mélanocytes et la pathogénie du Vitiligo." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA11T049/document.
Full textSkin pigmentation results from the synthesis and the distribution of melanin by melanocytes. Melanocytes are neural crest derived cells that produce and transfer melanin to their surrounding keratinocytes. One melanocyte makes contacts with approximately 40 keratinocytes, forming the so-called epidermal melanin unit. Adhesion between melanocytes and keratinocytes is mediated by the adhesive protein E-CADHERIN, which is responsible for the formation of adherens junctions. These junctions are anchored to the cytoskeleton via β-CATENIN. The main function of adhesive proteins is to form cell-cell junctions and to maintain epidermal architecture. β-CATENIN is a central component of the WNT signalling pathway, which is implied in the development of the melanocyte lineage. During this PhD we were interested in the potential roles of E-CADHERIN and β-CATENIN proteins first in melanocyte homeostasis and second in melanocyte development in the mouse limb.In the first part of this PhD project, we studied the role of these proteins in an acquired leuco-derma: the Vitiligo disease. In this disease, depigmented areas appears in the skin due to melano¬cyte loss. One hypothesis for this loss is a defect in adhesive proteins of melanocytes, leading to melanocyte detachment and loss. We examined pigmented skin biopsies of patients with or without Vitiligo and observed that membranous staining of E-CADHERIN and β-CATENIN is absent from, or discontinuously distributed across melanocyte membranes of Vitiligo patients long before clinical lesions appeared. The abnormal distribution of E-CADHERIN correlated with lower melanocyte numbers in the basal epidermal layer and higher melanocyte numbers in the suprabasal layer. Using reconstructed human epidermis and mouse models with defective E-CADHERIN expression in melanocytes, we showed that E-CADHERIN is required for melanocyte adhesiveness to the basal layer under oxidative and mechanical stress. These observations establish a link between pre-clinical, cell-autonomous defects in Vitiligo melanocytes and known environmental stressors accelerating disease onset. Our results implicate a primary predisposing skin defect affecting melanocyte adhesiveness, which under stress conditions, leads to the disappearance of melanocytes and clinical Vitiligo (Wagner et al., 2015).In the second part of this PhD project, we examined the role of these two proteins E-CADHERIN and β-CATENIN in the development of melanoblasts from the ventrally migrating pathway in contrast to the laterally migrating pathway previously described. We observed that ventrally migrating melanoblasts arose from precursors specified at E14 in melanoblasts or Schwann cells. Using a β-CATENIN gain of function mouse model, Tyr::Cre ; bcatΔex3 we observed that β-CATENIN signalling activation induced melanoblast specification at the expense of Schwann cells. We also demonstrated that E-CADHERIN loss in melanocytes (Tyr::Cre ; EcadF/F) decreased dorso-laterally migrating melanoblast expansion in the limb. Taken together, these results point to a critical role for E-CADHERIN and β-CATENIN in maintaining melanocyte homeostasis under stress conditions and regulating melanocyte development
Gavard, Julie. "Réponses cellulaires et voies de signalisation induites par l'activation du récepteur d'adhérence : n-cadhérine." Paris 6, 2004. http://www.theses.fr/2004PA066128.
Full textAllard, Séverine. "AMH et régression des canaux de Müller : mécanismes et voies de signalisation." Paris 6, 2002. http://www.theses.fr/2002PA066004.
Full textLe, Mestre Julie. "Rôle des voies de signalisation AMPc/PKA et Wnt/bêta-caténine dans la formation des systèmes de régulation aberrants au sein de la corticosurrénale." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR055/document.
Full textIn most cases, cortisol hypersecretion (Cushing’s syndrome; CS) results from ACTH-producing pituitary adenoma (Cushing’s disease). Occasionally, CS is the consequence of a unilateral adrenal adenoma or a bilateral macronodular adrenal hyperplasia (BMAH) producing cortisol. In these conditions, hypercortisolism is referred to as “ACTH-independent” owing to suppressed plasma ACTH levels. The molecular mechanisms underlying the maintenance of cortisol hypersecretion by adrenocortical adenomas and BMAHs in the absence of circulating ACTH has long remained unknown. However, major advances have been made during the past recent years in the comprehension of the pathophysiology of primary adrenal CS. Two main types of molecular defects have been shown to favor cortisol hypersecretion by adrenocortical neoplasms: somatic mutations responsible for activation of intracellular signaling pathways and abnormally expressed (or illegitimate) membrane receptors by tumor cells. In the human adrenal gland, serotonin (5-HT), released by subcapsular mast cells stimulates corticosteroid secretion through activation of its type 4 receptor (5-HT4R). The 5-HT4R is principally expressed in zona glomerulosa cells but weakly expressed in zona fasciculata cells explaining why 5-HT strongly stimulates aldosterone production. Interestingly, in primary pigmented nodular adrenocortical disease (PPNAD) cells, activation of the cAMP/PKA pathway by PRKAR1A mutations triggers upregulation of the 5-HT synthesizing enzyme tryptophan hydroxylase (TPH) type 2 together with the 5-HT4, 5-HT6 and 5-HT7 receptors, positively coupled to cAMP/PKA signaling pathway. 5-HT strongly stimulates cortisol production and inhibition of TPH reduced corticosteroidogenesis in cultured PPNAD cells. In human, cortisol secretion is normally stimulated by ACTH also through activation of the cAMP/PKA signaling pathway. Patients suffering from Cushing’s disease, paraneoplastic Cushing’s syndrome (paraCS), 21-hydroxylase deficiency or BMAH display high plasma or intraadrenal ACTH levels. In these patients, we show that chronic stimulation of cAMP/PKA pathway by ACTH induces TPH type 1 and 5-HT4/6/7 receptors overexpression in steroidogenic cells. In primary cultured adrenocortical cells originating from a patient with paraCS, 5-HT and 5-HT4/7 receptors agonists were able to activate cortisol secretion. On the other hand, the role of Wnt/-catenin signaling pathway in the emergence of illegitimate receptors is still debated. We therefore evaluated 5-HT4, 5-HT6, 5-HT7, LH/hCG and GIP receptors expression in an adrenocortical tumor with APC germline mutation and two experimental models of constitutive activation of β-catenin in adrenocortical cells, namely genetically modified mice and human transfected adrenocortical cells. Our results indicate that Wnt/-catenin pathway activation promotes significant overexpression of LH/hCG receptor in the 3 models investigated. Globally, our data show that activation of intracellular signaling pathways such as the cAMP/PKA pathway by ACTH or Wnt/-catenin by genetic mutations favors the emergence of abnormal regulatory systems in the adrenal cortex. Our results also demonstrate that intraadrenal 5-HT is involved in corticosteroids hypersecretion related to different diseases including Cushing’s disease, paraneoplastic Cushing’s syndrome, 21-hydroxylase deficiency and BMAH. TPH inhibitors may thus represent a new therapeutic approach of corticosteroid excess in patients suffering from these disorders
Moreau, Nathan. "Rôle de l'altération de la perméabilité vasculaire endoneurale dans la genèse des douleurs neuropathiques périphériques post-traumatiques : Implications des voies de signalisation TLR4, Sonic Hedgehog et Wnt/ß-caténine." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066039/document.
Full textFollowing peripheral nerve injury, multiple cellular and molecular alterations occur within the nerve’s parenchyma, participating in physiological healing of the nerve, but can also lead to the development of dysfunctional nerve healing, translating as chronic neuropathic pain. The regulation of endoneurial microvascular permeability within the injured nerve plays a pivotal rôle in physiological and pathological nerve healing, notably via the local infiltration of pro-regenerative immunocytes. The main goal of this work was to study the specific role of local blood-nerve barrier disruption in the development of painful post-traumatic peripheral neuropathy. In sciatic nerve and/or infra-orbital nerve chronic constriction injury models, we showed that early disruption of the blood-nerve barrier is a key event in the development of neuropathy, allowing local infiltration of algogenic substances and immunocytes within the nerve’s parenchyma, responsible for local neuroinflammation, peripheral sensitization and peripheral neuropathic pain development. Among the homeostatic regulatory mecanisms of this barrier, the alteration of Sonic Hedgehog, Wnt/β-catenin and TLR4 signaling pathways in endoneurial endothelial cells, mediates the disruption of the blood-nerve barrier by downregulating key tight-junction proteins. Furthermore, the differential implication of these signaling pathways in models of neuritis and neuropathy shed light on the phenotypical transition between neuritis and neuropathy : As neuritis is associated with reversible endoneurial vascular permeability, neuropathy could be considered a disease of irreversible chronic vascular permeability
Harati, Rania. "Blood-Brain Barrier during cerebral maturation : impact of neuro-inflammation on the regulation of drug-efflux/influx transporters." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00829110.
Full textDurand, Julien. "Caractérisation de l’implication de β-caténine dans les tumeurs surrénaliennes." Thèse, 2010. http://hdl.handle.net/1866/4766.
Full textAdrenal lesions occur in the general population at a prevalence of about 2-3%. Several mutations have been identified in adrenocortical tumours. β-catenin mutations were recently found to be the most frequent genetic alteration in both sporadic adrenocortical adenomas and carcinomas (20-30%). β-catenin is the central player in canonical Wnt signaling which plays a key role in organ/ gland development, maintenance of homeostasis and tumourigenesis. Activation of Wnt signaling by altered regulation of β-catenin levels evokes -catenin accumulation in the nucleus, and interaction with the TCF/LEF-1 proteins that activates the transcription of target genes. These target genes are believed to be highly cell and context specific and are linked to developmental and cell cycling functions. β-catenin target genes in adrenocortical tumours are unknown. Using microarray technology, we found 490 transcripts that are deregulated in adrenocortical adenomas harbouring β-catenin activating mutations in comparison to non mutated adenomas and normal adrenal glands. These genes differ highly in function and many are poorly characterized genes. Differential expression of ISM1, RALBP1, PDE2A, CDH12, ENC1, PHYHIP and CITED2 in adenomas with activating β-catenin mutations was confirmed by real-time PCR. Treatment of human adrenocortical carcinoma cells, H295R (CTNNB1 Ser45Prol), with β-catenin/TCF inhibitors (PKF115-584 and PNU74654) further confirmed the implication of β-catenin on the transcriptional regulation of ISM1, RALBP1, PDE2A, ENC1 and CITED2. In conclusion, we have found new potential β-catenin target genes that may be involved in adrenocortical tumourigenesis.
Vaillancourt-Jean, Eric. "Identification de nouveaux substrats de la voie Ras-MAP Kinase." Thèse, 2017. http://hdl.handle.net/1866/21182.
Full text