To see the other types of publications on this topic, follow the link: Voie des MAP kinases.

Journal articles on the topic 'Voie des MAP kinases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Voie des MAP kinases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Dereure, O. "La voie des MAP-kinases dans les génodermatoses : de nouveaux développements." Annales de Dermatologie et de Vénéréologie 133, no. 12 (2006): 1031. http://dx.doi.org/10.1016/s0151-9638(06)71096-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mourah, S. "Étude la voie MAP kinases dans la pathogénie de l’histiocytose Langheransienne pulmonaire de l’adulte." Revue des Maladies Respiratoires 31 (January 2014): A203. http://dx.doi.org/10.1016/j.rmr.2013.10.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fierrard, H., and M. L. Raffin-Sanson. "Un nouveau mécanisme d'activation de la voie des MAP kinases dans le cancer papillaire thyroïdien." EMC - Endocrinologie - Nutrition 2, no. 1 (2005): 1–2. http://dx.doi.org/10.1016/s1155-1941(05)44140-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fierrard, H., and M. L. Raffin-Sanson. "Un nouveau mécanisme d'activation de la voie des MAP kinases dans le cancer papillaire thyroïdien." EMC - Endocrinologie 2, no. 4 (2005): 265–67. http://dx.doi.org/10.1016/j.emcend.2005.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dereure, O. "Implication de la voie des MAP-kinases dans les nævus sébacés et le syndrome de Schimmelpenning." Annales de Dermatologie et de Vénéréologie 140, no. 4 (2013): 326–27. http://dx.doi.org/10.1016/j.annder.2013.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dereure, O. "Anomalies de la voie des MAP Kinases dans le mélanome : B-RAF n’est pas seul en cause." Annales de Dermatologie et de Vénéréologie 139, no. 10 (2012): 691–92. http://dx.doi.org/10.1016/j.annder.2012.04.157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bouskine, A., M. Nebout, B. Mograbi, et al. "CO17 - Contrôle estrogénique de la prolifération des cellules séminomateuses humaines par une voie non génomique impliquant les map-kinases." Annales d'Endocrinologie 65, no. 4 (2004): 261–62. http://dx.doi.org/10.1016/s0003-4266(04)95698-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dereure, O. "Mutation du promoteur de Tert dans le mélanome : la voie des MAP-kinases n’est décidément pas seule en cause." Annales de Dermatologie et de Vénéréologie 140, no. 6-7 (2013): 487–88. http://dx.doi.org/10.1016/j.annder.2013.04.071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Razanamahery, J., H. Greigert, M. Papo, et al. "Impact des mutations de la voie MAP-Kinases sur la distribution des sous populations monocytaires et des lésions aortiques dans les histiocytoses." La Revue de Médecine Interne 46 (June 2025): A72—A73. https://doi.org/10.1016/j.revmed.2025.03.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Frouin, E., B. Guillot, M. Larrieux, et al. "Étude moléculaire de lésions épithéliales cutanées induites par vemurafenib chez des patients atteints de mélanome métastatique : une activation de la voie des MAP-Kinases." Annales de Dermatologie et de Vénéréologie 140, no. 12 (2013): S395. http://dx.doi.org/10.1016/j.annder.2013.09.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hanauer, A., E. Trivier, D. De Cesare, et al. "Le syndrome de Coffin-Lowry : une anomalie de la transduction du signal (voie Ras/MAP kinase)." médecine/sciences 13, no. 1 (1997): 107. http://dx.doi.org/10.4267/10608/317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Oberlé, Marion, Anna Greliak, Clotilde Descarpentries, et al. "Réponse clinique et radiologique de mélanomes BRAF p.Thr599dup mutés, sous inhibiteurs de la voie MAP kinase." Annales de Dermatologie et de Vénéréologie - FMC 1, no. 8 (2021): A72—A73. http://dx.doi.org/10.1016/j.fander.2021.09.469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Le Quement, C., J. Y. Gillon, V. Lagente, and E. Boichot. "088 L’élastase du macrophage (MMP-12) induit une production d’IL-8/CXCL8 par des cellules épithéliales alvéolaires, via la voie des MAP (Mitogen-Activated Protein) Kinases." Revue des Maladies Respiratoires 23, no. 5 (2006): 558. http://dx.doi.org/10.1016/s0761-8425(06)71916-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Amouyal, C., E. Capel, E. Pussard, et al. "CA-146: Hypoglycémies induites par des auto-anticorps anti récepteur de l'insuline stimulant les voies de signalisation AKT/PKB et MAP kinases." Diabetes & Metabolism 42 (March 2016): A75. http://dx.doi.org/10.1016/s1262-3636(16)30278-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chen, Zhu, Tara Beers Gibson, Fred Robinson, et al. "MAP Kinases." Chemical Reviews 101, no. 8 (2001): 2449–76. http://dx.doi.org/10.1021/cr000241p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wilsbacher, Julie L., Elizabeth J. Goldsmith, and Melanie H. Cobb. "Phosphorylation of MAP kinases by MAP/ERK kinases involves multiple regions of MAP kinases." Journal of Biological Chemistry 274, no. 34 (1999): 24440. http://dx.doi.org/10.1016/s0021-9258(19)55580-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wilsbacher, Julie L., Elizabeth J. Goldsmith, and Melanie H. Cobb. "Phosphorylation of MAP Kinases by MAP/ERK Involves Multiple Regions of MAP Kinases." Journal of Biological Chemistry 274, no. 24 (1999): 16988–94. http://dx.doi.org/10.1074/jbc.274.24.16988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Buxade, Maria. "The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases)." Frontiers in Bioscience Volume, no. 13 (2008): 5359. http://dx.doi.org/10.2741/3086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

LEE, S., T. ZHOU, and E. GOLDSMITH. "Crystallization of MAP kinases." Methods 40, no. 3 (2006): 224–33. http://dx.doi.org/10.1016/j.ymeth.2006.05.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Murray, Andrew W. "MAP Kinases in Meiosis." Cell 92, no. 2 (1998): 157–59. http://dx.doi.org/10.1016/s0092-8674(00)80910-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nebreda, Angel R. "Inactivation of MAP kinases." Trends in Biochemical Sciences 19, no. 1 (1994): 1–2. http://dx.doi.org/10.1016/0968-0004(94)90163-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pryciak, Peter M. "MAP Kinases Bite Back." Developmental Cell 1, no. 4 (2001): 449–51. http://dx.doi.org/10.1016/s1534-5807(01)00066-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dong, Chen, Roger J. Davis, and Richard A. Flavell. "MAP KINASES IN THEIMMUNERESPONSE." Annual Review of Immunology 20, no. 1 (2002): 55–72. http://dx.doi.org/10.1146/annurev.immunol.20.091301.131133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chen, Zhu, Tara Beers Gibson, Fred Robinson, et al. "ChemInform Abstract: MAP Kinases." ChemInform 32, no. 40 (2010): no. http://dx.doi.org/10.1002/chin.200140296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Thibault, T., C. Auvens, T. Rogier, et al. "Analyse de classification des uvéites secondaires aux inhibiteurs de check-points et aux inhibiteurs de la voie MAP-kinase (inhibiteurs de BRAF et MEK) à partir des cas issus de la base nationale de pharmacovigilance." La Revue de Médecine Interne 43 (December 2022): A371—A372. http://dx.doi.org/10.1016/j.revmed.2022.10.079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tan, Xin, Da-Yuan Chen, Zhe Yang, et al. "Phosphorylation of p90rsk during meiotic maturation and parthenogenetic activation of rat oocytes: correlation with MAP kinases." Zygote 9, no. 3 (2001): 269–76. http://dx.doi.org/10.1017/s0967199401001290.

Full text
Abstract:
This paper reports on the activation of p90rsk during meiotic maturation and the inactivation of p90rsk after electrical parthenogenetic activation of rat oocytes. In addition, the correlation between p90rsk and MAP kinases after different treatments was studied. We assessed p90rsk activity by examining its electrophoretic mobility shift on SDS-PAGE and evaluated ERK1+2 activity by both mobility shift and a specific antibody against phospho-MAP kinase. The phosphorylation of p90rsk during rat oocyte maturation was a sequential process that may be divided into two stages: the first stage was pa
APA, Harvard, Vancouver, ISO, and other styles
27

Yamboliev, Ilia A., Jason C. Hedges, Jack L. M. Mutnick, Leonard P. Adam, and William T. Gerthoffer. "Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway." American Journal of Physiology-Heart and Circulatory Physiology 278, no. 6 (2000): H1899—H1907. http://dx.doi.org/10.1152/ajpheart.2000.278.6.h1899.

Full text
Abstract:
Mitogen-activated protein (MAP) kinases signal to proteins that could modify smooth muscle contraction. Caldesmon is a substrate for extracellular signal-related kinases (ERK) and p38 MAP kinases in vitro and has been suggested to modulate actin-myosin interaction and contraction. Heat shock protein 27 (HSP27) is downstream of p38 MAP kinases presumably participating in the sustained phase of muscle contraction. We tested the role of caldesmon and HSP27 phosphorylation in the contractile response of vascular smooth muscle by using inhibitors of both MAP kinase pathways. In intact smooth muscle
APA, Harvard, Vancouver, ISO, and other styles
28

Kondoh, Kunio, and Eisuke Nishida. "Regulation of MAP kinases by MAP kinase phosphatases." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1773, no. 8 (2007): 1227–37. http://dx.doi.org/10.1016/j.bbamcr.2006.12.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ueno, Yoshihisa, Riichiro Yoshida, Mitsuko Kishi-Kaboshi, et al. "MAP kinases phosphorylate rice WRKY45." Plant Signaling & Behavior 8, no. 6 (2013): e24510. http://dx.doi.org/10.4161/psb.24510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rodríguez-Berriguete, Gonzalo, Benito Fraile, Pilar Martínez-Onsurbe, Gabriel Olmedilla, Ricardo Paniagua, and Mar Royuela. "MAP Kinases and Prostate Cancer." Journal of Signal Transduction 2012 (October 20, 2012): 1–9. http://dx.doi.org/10.1155/2012/169170.

Full text
Abstract:
The three major mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK are signal transducers involved in a broad range of cell functions including survival, apoptosis, and cell differentiation. Whereas JNK and p38 have been generally linked to cell death and tumor suppression, ERK plays a prominent role in cell survival and tumor promotion, in response to a broad range of stimuli such as cytokines, growth factors, ultraviolet radiation, hypoxia, or pharmacological compounds. However, there is a growing body of evidence supporting that JNK and p38 also contribute to the development of a n
APA, Harvard, Vancouver, ISO, and other styles
31

Huang, C. "MAP kinases and cell migration." Journal of Cell Science 117, no. 20 (2004): 4619–28. http://dx.doi.org/10.1242/jcs.01481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Stanton, Lee-Anne, T. Michael Underhill, and Frank Beier. "MAP kinases in chondrocyte differentiation." Developmental Biology 263, no. 2 (2003): 165–75. http://dx.doi.org/10.1016/s0012-1606(03)00321-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Somssich, Imre E. "MAP kinases and plant defence." Trends in Plant Science 2, no. 11 (1997): 406–8. http://dx.doi.org/10.1016/s1360-1385(97)01121-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Suganuma, T., and J. L. Workman. "MAP kinases and histone modification." Journal of Molecular Cell Biology 4, no. 5 (2012): 348–50. http://dx.doi.org/10.1093/jmcb/mjs043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cobb, Melanie H., and Elizabeth J. Goldsmith. "How MAP Kinases Are Regulated." Journal of Biological Chemistry 270, no. 25 (1995): 14843–46. http://dx.doi.org/10.1074/jbc.270.25.14843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Xu, Jin-Rong. "MAP Kinases in Fungal Pathogens." Fungal Genetics and Biology 31, no. 3 (2000): 137–52. http://dx.doi.org/10.1006/fgbi.2000.1237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Davis, Roger J. "Transcriptional regulation by MAP kinases." Molecular Reproduction and Development 42, no. 4 (1995): 459–67. http://dx.doi.org/10.1002/mrd.1080420414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yamboliev, Ilia A., Kevin M. Wiesmann, Cherie A. Singer, Jason C. Hedges, and William T. Gerthoffer. "Phosphatidylinositol 3-kinases regulate ERK and p38 MAP kinases in canine colonic smooth muscle." American Journal of Physiology-Cell Physiology 279, no. 2 (2000): C352—C360. http://dx.doi.org/10.1152/ajpcell.2000.279.2.c352.

Full text
Abstract:
In canine colon, M2/M3 muscarinic receptors are coupled to extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. We tested the hypothesis that this coupling is mediated by enzymes of the phosphatidylinositol (PI) 3-kinase family. RT-PCR and Western blotting demonstrated expression of two isoforms, PI 3-kinase-α and PI 3-kinase-γ. Muscarinic stimulation of intact muscle strips (10 μM ACh) activated PI 3-kinase-γ, ERK and p38 MAP kinases, and MAP kinase-activated protein kinase-2, whereas PI 3-kinase-α activation was not detected. Wortmannin (25 μM) abolish
APA, Harvard, Vancouver, ISO, and other styles
39

Cook, Amy K., Michael Carty, Cherie A. Singer, Ilia A. Yamboliev, and William T. Gerthoffer. "Coupling of M2 muscarinic receptors to ERK MAP kinases and caldesmon phosphorylation in colonic smooth muscle." American Journal of Physiology-Gastrointestinal and Liver Physiology 278, no. 3 (2000): G429—G437. http://dx.doi.org/10.1152/ajpgi.2000.278.3.g429.

Full text
Abstract:
Coupling of M2 and M3 muscarinic receptors to activation of mitogen-activated protein (MAP) kinases and phosphorylation of caldesmon was studied in canine colonic smooth muscle strips in which M3 receptors were selectively inactivated by N, N-dimethyl-4-piperidinyl diphenylacetate (4-DAMP) mustard (40 nM). ACh elicited activation of extracellular signal-regulated kinase (ERK) 1, ERK2, and p38 MAP kinases in control muscles and increased phosphorylation of caldesmon (Ser789), a putative downstream target of MAP kinases. Alkylation of M3 receptors with 4-DAMP had only a modest inhibitory effect
APA, Harvard, Vancouver, ISO, and other styles
40

CHIARIELLO, Mario, Eliana GOMEZ, and J. Silvio GUTKIND. "Regulation of cyclin-dependent kinase (Cdk) 2 Thr-160 phosphorylation and activity by mitogen-activated protein kinase in late G1 phase." Biochemical Journal 349, no. 3 (2000): 869–76. http://dx.doi.org/10.1042/bj3490869.

Full text
Abstract:
Mitogen-activated protein (MAP) kinases, p42MAPK and p44MAPK, are central components of growth-promoting signalling pathways. However, how stimulation of MAP kinases culminates in cell-cycle progression is still poorly understood. Here we show that mitogenic stimulation of NIH 3T3 cells causes a sustained activation of MAP kinases, which lasts until cells begin progressing through the G1/S boundary. Furthermore, we observed that disruption of the MAP-kinase pathway with a selective MEK (MAP kinase/extracellular-signal-regulated protein kinase kinase) inhibitor, PD98059, prevents the activation
APA, Harvard, Vancouver, ISO, and other styles
41

Gerthoffer, W. T., I. A. Yamboliev, J. Pohl, R. Haynes, S. Dang, and J. McHugh. "Activation of MAP kinases in airway smooth muscle." American Journal of Physiology-Lung Cellular and Molecular Physiology 272, no. 2 (1997): L244—L252. http://dx.doi.org/10.1152/ajplung.1997.272.2.l244.

Full text
Abstract:
To test the hypothesis that mitogen-activated protein (MAP) kinases are activated by contractile agonists in intact nonproliferating airway smooth muscle, kinase activities were compared in resting and stimulated canine tracheal smooth muscle. Kinase activities in sodium dodecyl sulfate extracts were assayed by a gel renaturation method. Myelin basic protein kinase activities corresponding to ERK1 and ERK2 immunoreactive proteins were activated twofold above the basal level within 5 min by 1 microM carbachol. MAP kinase activity assayed in crude homogenates using a synthetic peptide substrate
APA, Harvard, Vancouver, ISO, and other styles
42

Chen, R. H., C. Sarnecki, and J. Blenis. "Nuclear localization and regulation of erk- and rsk-encoded protein kinases." Molecular and Cellular Biology 12, no. 3 (1992): 915–27. http://dx.doi.org/10.1128/mcb.12.3.915-927.1992.

Full text
Abstract:
We demonstrate that members of the erk-encoded family of mitogen-activated protein (MAP) kinases (pp44/42mapk/erk) and members of the rsk-encoded protein kinases (RSKs or pp90rsk) are present in the cytoplasm and nucleus of HeLa cells. Addition of growth factors to serum-deprived cells results in increased tyrosine and threonine phosphorylation and in the activation of cytosolic and nuclear MAP kinases. Activated MAP kinases then phosphorylate (serine/threonine) and activate RSKs. Concurrently, a fraction of the activated MAP kinases and RSKs enter the nucleus. In addition, a distinct growth-r
APA, Harvard, Vancouver, ISO, and other styles
43

Chen, R. H., C. Sarnecki, and J. Blenis. "Nuclear localization and regulation of erk- and rsk-encoded protein kinases." Molecular and Cellular Biology 12, no. 3 (1992): 915–27. http://dx.doi.org/10.1128/mcb.12.3.915.

Full text
Abstract:
We demonstrate that members of the erk-encoded family of mitogen-activated protein (MAP) kinases (pp44/42mapk/erk) and members of the rsk-encoded protein kinases (RSKs or pp90rsk) are present in the cytoplasm and nucleus of HeLa cells. Addition of growth factors to serum-deprived cells results in increased tyrosine and threonine phosphorylation and in the activation of cytosolic and nuclear MAP kinases. Activated MAP kinases then phosphorylate (serine/threonine) and activate RSKs. Concurrently, a fraction of the activated MAP kinases and RSKs enter the nucleus. In addition, a distinct growth-r
APA, Harvard, Vancouver, ISO, and other styles
44

Keates, Sarah, Andrew C. Keates, Michel Warny, Richard M. Peek, Paul G. Murray, and Ciarán P. Kelly. "Differential Activation of Mitogen-Activated Protein Kinases in AGS Gastric Epithelial Cells by cag+ and cagHelicobacter pylori." Journal of Immunology 163, no. 10 (1999): 5552–59. http://dx.doi.org/10.4049/jimmunol.163.10.5552.

Full text
Abstract:
Abstract The aim of this study was to determine whether Helicobacter pylori activates mitogen-activated protein (MAP) kinases in gastric epithelial cells. Infection of AGS cells with an H. pylori cag+ strain rapidly (5 min) induced a dose-dependent activation of extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) MAP kinases, as determined by Western blot analysis and in vitro kinase assay. Compared with cag+ strains, cag− clinical isolates were less potent in inducing MAP kinase, particularly JNK and p38, activation. Isogenic inactivation of the picB region of
APA, Harvard, Vancouver, ISO, and other styles
45

Nick, J. A., N. J. Avdi, P. Gerwins, G. L. Johnson, and G. S. Worthen. "Activation of a p38 mitogen-activated protein kinase in human neutrophils by lipopolysaccharide." Journal of Immunology 156, no. 12 (1996): 4867–75. http://dx.doi.org/10.4049/jimmunol.156.12.4867.

Full text
Abstract:
Abstract Stimulation of human neutrophils by LPS is central to the pathogenesis of sepsis and the adult respiratory distress syndrome. The intracellular signaling pathway that results in cellular responses following LPS stimulation in neutrophils is unknown. We report that exposure of neutrophils to LPS results in the phosphorylation and activation of a p38 mitogen-activated protein (MAP) kinase, occurring in a concentration-dependent manner, with maximum response at 20 to 25 min. Partial purification of a p38 MAP kinase by ion exchange chromatography established it as distinct from the p42/p4
APA, Harvard, Vancouver, ISO, and other styles
46

Lenormand, P., C. Sardet, G. Pagès, G. L'Allemain, A. Brunet, and J. Pouysségur. "Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts." Journal of Cell Biology 122, no. 5 (1993): 1079–88. http://dx.doi.org/10.1083/jcb.122.5.1079.

Full text
Abstract:
Mitogen-activated protein kinases (p42mapk and p44mapk) are serine/threonine kinases that are activated rapidly in cells stimulated with various extracellular signals. This activation is mediated via MAP kinase kinase (p45mapkk), a dual specificity kinase which phosphorylates two key regulatory threonine and tyrosine residues of MAP kinases. We reported previously that the persistent phase of MAP kinase activation is essential for mitogenically stimulated cells to pass the "restriction point" of the cell cycle. Here, using specific polyclonal antibodies and transfection of epitope-tagged recom
APA, Harvard, Vancouver, ISO, and other styles
47

Dóczi, R. "Mitogen-activated protein (MAP) kinase signalling in plant environmental stress responses." Acta Agronomica Hungarica 59, no. 3 (2011): 285–90. http://dx.doi.org/10.1556/aagr.59.2011.3.13.

Full text
Abstract:
Due to their sessile life style plants have to cope with a variety of unfavourable environmental conditions. Extracellular stimuli are perceived by specific sensors and receptors and are transmitted within the cell by various signal transduction pathways to trigger appropriate responses. The mitogen-activated protein (MAP) kinase cascades are well-conserved signalling pathway modules found in all eukaryotes. Activated MAP kinases phosphorylate an array of substrate proteins. Phosphorylation results in altered substrate activities that mediate a wide range of responses, including changes in gen
APA, Harvard, Vancouver, ISO, and other styles
48

Frost, J. A., S. Xu, M. R. Hutchison, S. Marcus, and M. H. Cobb. "Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members." Molecular and Cellular Biology 16, no. 7 (1996): 3707–13. http://dx.doi.org/10.1128/mcb.16.7.3707.

Full text
Abstract:
The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these
APA, Harvard, Vancouver, ISO, and other styles
49

Thorburn, J., J. A. Frost, and A. Thorburn. "Mitogen-activated protein kinases mediate changes in gene expression, but not cytoskeletal organization associated with cardiac muscle cell hypertrophy." Journal of Cell Biology 126, no. 6 (1994): 1565–72. http://dx.doi.org/10.1083/jcb.126.6.1565.

Full text
Abstract:
Shortly after birth, cardiac myocytes lose the ability to divide, and, in adult animals, heart muscle grows by a process of cellular hypertrophy where each individual cell gets larger. We have previously shown that activated Ras protein can induce markers of the hypertrophic phenotype, including atrial natriuretic factor (ANF) expression and organization of contractile proteins, and that Ras is at least partially required for the hypertrophic effect of phenylephrine. In the present study, we examine the requirement for the mitogen-activated protein kinases (MAP kinases) in the hypertrophic res
APA, Harvard, Vancouver, ISO, and other styles
50

Clark, Michelle A., Chinh Nguyen, and Hieu Tran. "Distinct Molecular Effects of Angiotensin II and Angiotensin III in Rat Astrocytes." International Journal of Hypertension 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/782861.

Full text
Abstract:
It is postulated that central effects of angiotensin (Ang) II may be indirect due to rapid conversion to Ang III by aminopeptidase A (APA). Previously, we showed that Ang II and Ang III induced mitogen-activated protein (MAP) kinases ERK1/2 and stress-activated protein kinase/Jun-terminal kinases (SAPK/JNK) phosphorylation in cultured rat astrocytes. Most importantly, both peptides were equipotent in causing phosphorylation of these MAP kinases. In these studies, we used brainstem and cerebellum astrocytes to determine whether Ang II’s phosphorylation of these MAP kinases is due to the convers
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!