Dissertations / Theses on the topic 'Voies aériennes – Remodelage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 dissertations / theses for your research on the topic 'Voies aériennes – Remodelage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gendron, David, and David Gendron. "Le rôle de la sphingosine-1-phosphate et impact des analogues de la sphingosine dans le remodelage pulmonaire." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/33710.
Full textLe remodelage pulmonaire cause une altération de la structure du poumon et peut mener à la diminution de la fonction respiratoire. Ce remodelage peut aussi bien affecter les voies respiratoires en obstruant le flot de l’air, comme il est observé dans l’asthme, que la compliance du parenchyme pulmonaire, tel qu’observé dans la fibrose pulmonaire idiopathique (FPI). Dans le cas de l’asthme allergique, la forme la plus commune d’asthme, une inflammation chronique de type allergique induit le remodelage bronchique, dont l’épaississement du muscle lisse bronchique. Ces deux composantes contribuent directement à l’hyperréactivité bronchique. Dans le cas de la FPI, les dommages tissulaires et l’inflammation semblent être impliqués dans l’induction de la maladie, mais la progression de la FPI est maintenue même en absence d’inflammation. Tant en asthme qu’en FPI, le remodelage est persistant et les options thérapeutiques sont partiellement efficaces, limitées ou absentes. La voie de signalisation de la sphingosine-1-phosphate (S1P) est reconnue non seulement pour son rôle dans la régulation de l’immunité et de l’inflammation, mais aussi pour ses impacts majeurs dans les phénomènes de prolifération et de survie cellulaire. Ces effets sont souvent associés à l’activation de cinq récepteurs membranaires, nommés S1P1 à S1P5. D’ailleurs, ces récepteurs peuvent être activés par les composés pharmacologiques analogues à la S1P. Bien que ces analogues répliquent ou modifient la plupart des effets de la S1P, ils possèdent aussi des activités intracellulaires indépendantes des récepteurs qui sont plutôt associées à la modulation de la survie cellulaire. Ainsi, les sphingolipides et leurs analogues sont susceptibles de moduler plusieurs mécanismes impliqués dans le remodelage pulmonaire. Le but de cette thèse était donc d’explorer l’impact des sphingolipides et leurs analogues sur divers aspects impliqués dans le remodelage pulmonaire. Dans une première étude, nous avons déterminé l’effet de l’analogue de la sphingosine AAL-R sur l’inflammation observée dans un modèle murin d’asthme allergique. AAL-R diminue l’accumulation pulmonaire des lymphocytes et induit leur apoptose au poumon. La réduction du nombre de lymphocytes pulmonaires est associée à une diminution importante de l’éosinophilie et de l’hyperréactivité bronchique. Ainsi, nous résultats montrent qu’AAL-R interfère avec l’inflammation et l’hyperréactivité bronchique dans un modèle d’asthme allergique aigu par un mécanisme impliquant l’apoptose des lymphocytes. Dans un second chapitre, l’impact d’AAL-R sur l’épaississement du muscle lisse bronchique a été évalué dans un modèle murin d’asthme chronique. AAL-R réduit l’épaisseur du muscle lisse bronchique dans le tissu remodelé, ce qui est associé à une diminution de l’hyperréactivité bronchique. Nous montrons d’ailleurs que AAL-R interfère avec la prolifération des cellules musculaires lisses, in vitro. Cette étude montre que des analogues de la sphingosine, tel qu’AALR, pourraient contrecarrer le remodelage tissulaire tel qu’observé en asthme, ce qui ouvre de nouvelles pistes précliniques pour cette maladie incurable. Troisièmement, nous avons étudié l’influence de l’analogue de la sphingosine FTY720 sur la phase inflammatoire ou la phase fibrotique d’un modèle murin de fibrose pulmonaire induit par une blessure cellulaire aiguë. En concordance avec la littérature, l’administration de FTY720 en phase inflammatoire diminue la fibrose pulmonaire. Toutefois, lorsqu’administré en phase fibrotique, FTY720 exacerbe cette dernière. Cette exacerbation ne semble pas impliquer l’augmentation de la perméabilité vasculaire, mais plutôt l’augmentation de la transcription du connective tissue growth factor (CTGF). Similairement, FTY720 stimule la transcription du CTGF par les fibroblastes in vitro. Contrairement au dogme actuel, notre étude montre que FTY720 promeut la fibrose pulmonaire ce qui serait médié, du moins en partie, par la transcription accrue du CTGF. Dans une dernière étude, nous avons exploré le lien entre la voie de signalisation de la S1P, le CTGF et les dérégulations des fibroblastes issus de patients atteints de FPI. Ces fibroblastes expriment plus de CTGF que des fibroblastes de patients ne souffrant pas de FPI, ce qui est exacerbé par la S1P. De plus, un antagoniste de S1P3 renverse partiellement cette augmentation. Nous postulons donc que la S1P et le S1P3 pourraient être impliqués dans la pathogenèse de la FPI. Dans son ensemble, cette thèse démontre que les sphingolipides et leurs analogues influencent des mécanismes du remodelage pulmonaire pathologique. Nos résultats suggèrent que certains acteurs de la voie de signalisation de la S1P pourraient être modulés de manière bénéfique dans le contexte de l’asthme et de la fibrose pulmonaire.
Pulmonary remodelling causes the alteration of the lung structure and can lead to reduced respiratory function. Remodelling can affect the lung airways by obstructing the airflow, as observed in asthma, as well as the lung parenchyma by reducing lung compliance, as observed in idiopathic pulmonary fibrosis (IPF). In the most widespread form of asthma, allergic asthma, chronic allergic inflammation induces lung remodelling, including airway smooth muscle thickening. Both components directly contribute to airway hyperresponsiveness. In IPF, acute lung injury and inflammation seem to be involved in its pathogenesis, yet the progression of the disease is maintained even in the absence of inflammation. Both in asthma and IPF, lung remodeling is persistent and therapeutic treatments are either partially effective, limited or simply unavailable. The sphingosine-1-phosphate (S1P) pathway is recognized not only for its role in the regulation of immunity and inflammation, but also for its major involvement in the events of cellular proliferation and survival. These effects are often associated with the activation of five G protein-coupled receptors, termed S1P1 to S1P5. Furthermore, these receptors can be activated by pharmacological compounds analogous to S1P. Although these analogs replicate or modify most S1P effects, they also possess intracellular activities independent of S1P receptors that are rather associated with the modulation of cell survival. Therefore, sphingolipids and their analogs likely modulate several mechanisms involved in pulmonary remodelling. The aim of this thesis was thus to explore the impact of sphingolipids and their analogs on various aspects of pulmonary remodelling. In a first study, we determined the effect of the sphingosine analog AAL-R on the inflammation observed in a murine model of allergic asthma. AAL-R reduces pulmonary accumulation of lymphocytes and induces their apoptosis specifically in the lung. The reduction of pulmonary lymphocytes number is associated with reduced lung eosinophilia and airway hyperresponsiveness. Our results show that AAL-R interferes with allergic inflammation and airway hyperresponsiveness in an acute allergic asthma model by a mechanism involving the apoptosis of pulmonary lymphocytes. vi In a second chapter, we evaluated the impact of AAL-R on airway smooth muscle thickening using a murine model of chronic asthma. AAL-R reduces the thickness of the airway smooth muscle in remodelled bronchi, which is associated with diminished airway hyperresponsiveness. Furthermore, we show that AAL-R interferes with airway smooth muscle cells proliferation in vitro. This study shows that sphingosines analogs, such as AAL-R, could reverse tissue remodelling as observed in asthma, offering new preclinical targets for this incurable disease. Thirdly, we studied the influence of the sphingosine analog FTY720 on the inflammatory phase or the fibrotic phase of a murine model of pulmonary fibrosis induced by an acute injury. In concordance with literature, FTY720 administration during the inflammatory phase reduce lung fibrosis. However, when administered during the fibrotic phase, FTY720 exacerbates fibrosis. This exacerbation does not involve increased vascular permeability, but rather increased connective tissue growth factor (CTGF) transcription. Similarly, FTY720 stimulates CTGF transcription by fibroblasts in vitro. Contrarily to the actual dogma, our study shows that FTY720 promotes pulmonary fibrosis which is mediated, at least in part, by increased CTGF transcription. Finally, we explored the link between the S1P signalling pathway, the transcription of CTGF and the deregulations observed in lung fibroblasts isolated from IPF patients. These fibroblasts express more CTGF than lung fibroblasts from patient without IPF, which is exacerbated by S1P. Moreover, a specific S1P3 antagonist partially reverses this exacerbation. We postulate that S1P and S1P3 could be involved in idiopathic lung fibrosis pathogenesis. As a whole, this thesis demonstrates that sphingolipids and their analogs influence mechanisms underlying pathological pulmonary remodelling. Our results suggest that certain components of the S1P signalling pathway could prove beneficial in the context of asthma and lung fibrosis. These results support the hypothesis that phosphorylatable sphingosine analogs interfere with inflammation and ASM thickening observed in allergic asthma. However, they also stimulate CTGF transcription by fibroblasts, thus possibly exacerbating pathologies involving these cells, such as IPF. Identification of the mechanisms modulated by S1P analogs could provide insights regarding putative targets in the context of pulmonary remodelling.
Pulmonary remodelling causes the alteration of the lung structure and can lead to reduced respiratory function. Remodelling can affect the lung airways by obstructing the airflow, as observed in asthma, as well as the lung parenchyma by reducing lung compliance, as observed in idiopathic pulmonary fibrosis (IPF). In the most widespread form of asthma, allergic asthma, chronic allergic inflammation induces lung remodelling, including airway smooth muscle thickening. Both components directly contribute to airway hyperresponsiveness. In IPF, acute lung injury and inflammation seem to be involved in its pathogenesis, yet the progression of the disease is maintained even in the absence of inflammation. Both in asthma and IPF, lung remodeling is persistent and therapeutic treatments are either partially effective, limited or simply unavailable. The sphingosine-1-phosphate (S1P) pathway is recognized not only for its role in the regulation of immunity and inflammation, but also for its major involvement in the events of cellular proliferation and survival. These effects are often associated with the activation of five G protein-coupled receptors, termed S1P1 to S1P5. Furthermore, these receptors can be activated by pharmacological compounds analogous to S1P. Although these analogs replicate or modify most S1P effects, they also possess intracellular activities independent of S1P receptors that are rather associated with the modulation of cell survival. Therefore, sphingolipids and their analogs likely modulate several mechanisms involved in pulmonary remodelling. The aim of this thesis was thus to explore the impact of sphingolipids and their analogs on various aspects of pulmonary remodelling. In a first study, we determined the effect of the sphingosine analog AAL-R on the inflammation observed in a murine model of allergic asthma. AAL-R reduces pulmonary accumulation of lymphocytes and induces their apoptosis specifically in the lung. The reduction of pulmonary lymphocytes number is associated with reduced lung eosinophilia and airway hyperresponsiveness. Our results show that AAL-R interferes with allergic inflammation and airway hyperresponsiveness in an acute allergic asthma model by a mechanism involving the apoptosis of pulmonary lymphocytes. vi In a second chapter, we evaluated the impact of AAL-R on airway smooth muscle thickening using a murine model of chronic asthma. AAL-R reduces the thickness of the airway smooth muscle in remodelled bronchi, which is associated with diminished airway hyperresponsiveness. Furthermore, we show that AAL-R interferes with airway smooth muscle cells proliferation in vitro. This study shows that sphingosines analogs, such as AAL-R, could reverse tissue remodelling as observed in asthma, offering new preclinical targets for this incurable disease. Thirdly, we studied the influence of the sphingosine analog FTY720 on the inflammatory phase or the fibrotic phase of a murine model of pulmonary fibrosis induced by an acute injury. In concordance with literature, FTY720 administration during the inflammatory phase reduce lung fibrosis. However, when administered during the fibrotic phase, FTY720 exacerbates fibrosis. This exacerbation does not involve increased vascular permeability, but rather increased connective tissue growth factor (CTGF) transcription. Similarly, FTY720 stimulates CTGF transcription by fibroblasts in vitro. Contrarily to the actual dogma, our study shows that FTY720 promotes pulmonary fibrosis which is mediated, at least in part, by increased CTGF transcription. Finally, we explored the link between the S1P signalling pathway, the transcription of CTGF and the deregulations observed in lung fibroblasts isolated from IPF patients. These fibroblasts express more CTGF than lung fibroblasts from patient without IPF, which is exacerbated by S1P. Moreover, a specific S1P3 antagonist partially reverses this exacerbation. We postulate that S1P and S1P3 could be involved in idiopathic lung fibrosis pathogenesis. As a whole, this thesis demonstrates that sphingolipids and their analogs influence mechanisms underlying pathological pulmonary remodelling. Our results suggest that certain components of the S1P signalling pathway could prove beneficial in the context of asthma and lung fibrosis. These results support the hypothesis that phosphorylatable sphingosine analogs interfere with inflammation and ASM thickening observed in allergic asthma. However, they also stimulate CTGF transcription by fibroblasts, thus possibly exacerbating pathologies involving these cells, such as IPF. Identification of the mechanisms modulated by S1P analogs could provide insights regarding putative targets in the context of pulmonary remodelling.
Pegorier, Sophie. "Rôle de l'épithélium bronchique dans le remodelage des voies aériennes dans l'asthme." Paris 6, 2007. http://www.theses.fr/2007PA066048.
Full textRiyad, Oussama. "Impact de l'IL-1β et du TGF-β dans la régulation du KGF-1 par les fibroblastes : importance dans l'asthme." Master's thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/23360.
Full textBoublil, Laura. "Effets à long terme des particules atmosphériques fines et ultrafines : implication dans le remodelage des voies aériennes." Paris 7, 2012. http://www.theses.fr/2012PA077145.
Full textAs the long term effects of atmospheric particles (PM) are misunderstood, we develop an experimental strategy using primary culture of human bronchial epithelial repeatedly exposed to PM to investigate (1) whether particles could contribute to airway remodelling by inducing sustained inflammation and mucus secretion (2) the impact of the epithelial secretions on the proliferation and the differentiation of the bronchial fibroblasts. Observations revealed that ambient particles are still present in the bronchial epithelium 5 weeks after treatments, and a part of the organic compounds of particles were metabolized by cells. We also showed an induction of the inflammatory response after particles treatment which persists with the secretion of several pro-inflammatory cytokines. The secretion of growth factors ligand was observed after the end of treatments, and this secretion may contribute to the mucous differenciation. Moreover, epithelial secretions may induce an increase of the number of fibroblasts which in co-culture. We showed that EGFR pathway and these ligands were involved in fibroblasts proliferation. Our results suggest that bronchial epithelial cells repeatedly exposed to ambient particles exhibit a sustained pro- inflammatory response and evolve towards a mucous phenotype. The respiratory epithelium exposed to particles would so contribute to the remodeling airways through the secretion of growth factors which could be involved in the fibroblast proliferation
Bara, Imane. "Le rôle de la cellule musculaire lisse bronchique humaine dans le remodelage des voies aériennes dans l’asthme." Thesis, Bordeaux 2, 2010. http://www.theses.fr/2010BOR21778/document.
Full textThe decline in lung function in asthma is associated with an increased bronchial smooth muscle (BSM) mass. BSM cells play a central role in the pathophysiology of asthma. They are involved in inflammation and are an important component of airway remodelling. Recently, the role of the chitinase YKL-40 as biomarker of this remodelling in asthma has been evoked. In this context, the central question that motivated part of this thesis was to study the effects of YKL-40 on various properties of BSM cells. We also studied the protease activated receptor 2 (PAR-2), as a potential receptor of YKL-40, as well as an important actor of airway inflammation.This work has established that YKL-40 is more than just a biomarker for asthma since YKL-40 alters physiological properties of BSM cells and appears to play a role in BSM remodelling. Moreover, this work has also highlighted an overexpression of PAR-2 in asthmatic BSM cells, as well as an increase of both PAR-2 expression and BSM cell proliferation in response to chronic stimulation. This work has finally allowed us to optimize lentiviral RNA interference in human BSM cells
Lederlin, Mathieu. "Etude de l’atténuation scanographique de la paroi bronchique dans l’imagerie de l’inflammation et du remodelage des voies aériennes." Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21905.
Full textAsthma and chronic obstructive pulmonary disease (COPD) are frequent conditions characterized by two main pathological changes: bronchial inflammation and remodelling. Pathological examination requires invasive biopsy, which is rarely performed in routine. Therefore there is a great interest in developing non-invasive methods that would lead to more precise phenotyping of patients and the development of new targeted treatments. Computed tomography (CT) can provide a quantitative morphometry-based analysis of the airways. These morphometric parameters have been shown to correlate with functional obstruction but are poorly used in routine practice due to their lack of standardisation. The aim of our studies was to investigate the value of CT attenuation-based parameters in humans and animals. In asthma and COPD, we have shown that the wall attenuation value had diagnostic performances comparable to those of morphometric parameters, correlated better with functional obstructive indexes, and could be a marker of remodelling in asthma. In asthmatic mice, peribronchial attenuation values extracted from respiratory-gated micro-CT images correlate with remodeling. Therefore, the concept of bronchial wall attenuation seems to be promising for assessing non-invasively airways remodeling. Further studies are required to ensure the full reproducibility of these methods
Vaillancourt, Mylène. "Étude des mécanismes étiologiques du remodelage vasculaire en hypertension pulmonaire primaire et secondaire aux cardiopathies gauches." Master's thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/26761.
Full textPulmonary hypertension (PH) is characterized by an elevation of pulmonary arterial pressure (> 25mmHg). This hypertension may be primary (PAH, pulmonary arterial hypertension) or secondary to another disease, for example, due to left heart disease (PH-LHD, pulmonary hypertension due to left heart disease). In PAH, pulmonary arterial smooth muscle cells (PASMC) are hyperproliferative and apoptosis resistant, causing vascular remodeling and PH. Recently, the epigenetic reader bromodomain-containing protein 4 (BRD4) was showed to sustain proliferation in cancer cells. Since BRD4 is a predictive target of miR-204, a micro-RNA downregulated in PAH, we hypothesized that BRD4 overexpression, caused by miR-204 downregulation, is involved in PAH-PASMC hyperproliferative and anti-apoptotic phenotype. In chapter 2, we showed that BRD4 overexpression was indeed regulated by miR-204 and sustains PASMC deregulation by modulating the oncoproteins NFATc2, Bcl-2 and Survivin. Finally, we showed that in vivo pharmacological and molecular BRD4 inhibition reversed vascular remodeling and PAH. Although PAH is the most severe form of PH, PH-LHD is by far the most common. Unfortunately, there are few models for its study. To expand our knowledge of the etiological mechanisms of pulmonary vascular remodeling to this group, we developed and characterised, in chapter 3, 2 PH-LHD models by the transverse aortic constriction (TAC) and the supracoronary banding (SAB) in rats. As expected, TAC ad SAB rats developed left ventricular hypertrophy and diastolic dysfunction. Furthermore, we observed in these animals the development of PH with pulmonary remodeling similar to the pulmonary histopathology reported in some PH-LHD patients, allowing us to confirm the validity of these two models for the study of vascular remodeling in this PH group.
Loubaki, Lionel. "Interaction entre l'inflammation et le remodelage dans l'asthme : rôle immunomodulateur des fibroblastes bronchiques." Doctoral thesis, Université Laval, 2011. http://hdl.handle.net/20.500.11794/23150.
Full textFerhani, Nassima. "Expression pulmonaire et rôle fonctionnel d'HMGB1 et de son recepteur, RAGE, dans la bronchopneumopathie chronique obstructive." Paris 7, 2010. http://www.theses.fr/2010PA077265.
Full textCOPD is characterized by airway inflammation and remodeling. HMGBl, a nuclear protein that is released during inflammation and repair, interacts with pro-inflammatory cytokines and with its receptor, RAGE, which is highly expressed in the lung. In the present study, we have shown higher levels of HMGB 1 in bronchoalveolar lavage (BAL) from smokers with COPD, as compared to smokers and never smokers, and similar differences wer observed in epithelial cells and alveolar macrophages. BAL HMGBl correlated positively with the levels of pro-inflammatory mediators in BAI including IL-1D, and with the degree of airflow obstruction and emphysema. HMGBl-IL-1D D complexes were found in BAL supernatant and alveolar macrophages from smokers and COPD patients, as well as in the human macrophage cell line, THP-1, where they enhanced the synthesis of TNF-C RAGE was overexpressed in the airway epithelium and smooth muscle of COPD patients and it co-localized with HMGBl. Finally, in preliminary experiments we demonstrated that HMGBl delays epithelium repair in an in vitro model of mechanical wound injury using human bronchial epithelial cells growth in a air-liquid interface conditions. We conclude that elevated HMGBl expression in COPD airways may sustain inflammation through i interaction with IL-1D and RAGE and may contribute to airway remodeling by interfering with the normal epithelial repair process. Therefore strategies aimed at inhibiting the expression of HMGBl and RAGE or at blocking their interaction in target cells would be of therapeutic value f( attenuating lung remodelling and the accompanying respiratory functional deterioration in COPD
Eap, Ronald. "Étude de l'effet des leucotriènes et du montélukast sur la synthèse de collagène par les fibroblastes bronchiques de sujets sains et asthmatiques." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28063/28063.pdf.
Full textLabonté, Isabelle. "Muscle lisse bronchique et asthme : Études in vivo et in vitro." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26931/26931.pdf.
Full textLemaire, Flora. "PHU RINNOPARI - Orientation de la réponse immune Thelper et rôle des peptides d’élastine au cours du remodelage des voies aériennes associé à la BPCO." Thesis, Reims, 2018. http://www.theses.fr/2018REIMM208/document.
Full textChronic obstructive pulmonary disease (COPD) is a chronic inflammatory respiratory pathology characterized by a progressive and irreversible limitation of airflow caused by the long-term inhalation of harmful particles such as tobacco. COPD presents a major and heterogeneous remodeling of the airways with important inter-individual variability. The inflammatory and immune response during COPD is characterized by infiltration of pulmonary tissue by neutrophils (PN), macrophages, and T cells. The degradation of lung elastic fibers into soluble elastin peptides (EP) is caused by the secretion of proteases by innate immunity cells and it is a consistent feature of COPD. These EP participate in the pathophysiology of COPD as demonstrated in different murine models of the emphysematous disease. The T helper (Th) and the T cytotoxic (Tc) orientation during COPD is unclear andremains controversial. The main objective of this work was to define the Th and Tc responses as well as the role ofEP in airways remodeling associated to COPD. For this purpose, we studied the cytokine signature Th-1/Tc-1 (IFN- ), Th-2/Tc-2 (IL-4), Th-17/Tc-17 (IL-17) specific of the airway remodeling associated to COPD both at the cellular, transcriptional and functional level. Association between the experimental results obtained and the phenotype of the patients included in the study was analyzed in order to determine the role of these mechanisms in the clinical expression of this chronic respiratory pathology. The results obtained showed a decrease in the expression of IL-4 (Th2) in COPD patients compared to control subjects as well as a potentiation of this cytokine expression in the presence of EP
Adam, Damien. "Rôle de l’inflammation dans le remodelage de l’épithélium des voies aériennes humaines mucoviscidosiques et potentiel thérapeutique d’une molécule issue des agro-ressources champenoises." Thesis, Reims, 2014. http://www.theses.fr/2014REIMS042.
Full textThe airway epithelium of cystic fibrosis (CF) patients is frequently injured and remodeled. Whether these alterations are related to infection and/or inflammation or to a dysregulated regeneration process remains to be elucidated. The first objective of this study was to determine the involvement of inflammation in remodeling and regeneration of the CF airway epithelium. Using an in vitro model of airway epithelial cell culture at the air-liquid interface, we demonstrated that, in absence of exogenous infection and inflammation, the CF airway epithelium regeneration was abnormal, delayed, and led to the reconstitution of a remodeled epithelium, in comparison to a non-CF regenerated airway epithelium. Moreover, by inducing a chronic inflammation in non-CF and CF cultures, we were able to attribute a role of the endogenous inflammation of CF cells (inflammatory memory) in the airway epithelium height increase as well as in the basal cell hyperplasia development, an essential involvement of exogenous inflammation in the development of goblet cell hyperplasia, and the absence of implication of inflammation in the ciliated cell differentiation delay. The second objective of this study was to identify an anti-remodeling and/or pro-regenerative molecule. The results we obtained showed that a molecule derived agro-resources regulated the increase in the airway epithelium height as well as the basal and goblet cell hyperplasia development, favored the ciliated cell differentiation, decreased the inflammation and the production of the MUC5-AC mucin, in the CF cultures an in the chronically inflamed non-CF cultures. Finally, this molecule restored chloride secretion through CFTR in CF cultures. In conclusion, the chosen molecule seems to be a promising therapeutics for cystic fibrosis
Tiendrebeogo, Arnaud Jean Florent. "Rôles du TA-65 dans le remodelage des petites voies aériennes de la bronchopneumopathie chronique obstructive (BPCO) induit par la fumée de cigarette." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC0095.
Full textSmall airway remodeling (SAR) is an important cause of airflow obstruction in smokers with chronic obstructive pulmonary disease (COPD). Small airways are the bronchioles having an internal diameter inferior to 2 mm. SAR results in an increased thickness of small airway wall, with a combination of peribronchiolar fibrosis with increased deposition of fibrous tissue and accumulation of mesenchymal and epithelial cells. SAR pathogenesis is still unclear and recent data suggest that alterations in telomerase activity could represent a possible underlying mechanism. Our study was therefore dedicated to identify a potential protective role of TA-65, a pharmacological telomerase activator in a cigarette smoke (CS) model of SAR in mice. C57BL/6J mice were daily exposed to air or CS during 4 weeks with or without a concomitant administration of TA-65, starting 7 days before CS exposure. Morphological analyses were performed, and mucus production, myofibroblast differentiation, collagen deposition, as well as transforming growth factor-β1 (TGF-β1) expression in the small airway wall were examined. Finally, the measurement of telomerase activity measured by the TRAP method (Telomere Repeat Amplification Protocol) and the effect of TA-65 treatment on TGF-β-induced fibroblast-to-myofibroblast differentiation were evaluated in primary cultures of pulmonary fibroblast and then exposed to TGF-β1 with or without pretreatment with modulators of telomerase. Exposure to CS during 4 weeks induced SAR in mice, characterized by a small airway wall thickening and a peribronchiolar fibrosis (increased deposition of collagen (total collagen, collagen I and III), expression of α-SMA in small airway wall), in the absence of mucus overproduction. Treatment of mice with TA-65 protected them from CS-induced SAR. This effect was associated with the prevention of CS-induced TGF-β1 expression in vivo, and a blockade of TGF-β-induced myofibroblast differentiation in vitro. CS-induced SAR was prevented by a pharmacological activator of telomerase. Our findings strongly suggest that telomerase is a critical player of SAR and therefore provide new insights in the understanding and treatment of COPD pathogenesis
Ruiz, Garcia Sandra. "Appréhender l'hétérogénéité cellulaire et la dynamique de différenciation des épithéliums des voies aériennes au moyen de signatures transcriptionnelles sur cellule unique." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4204/document.
Full textHuman airways are lined by a pseudostratified epithelium mainly composed of basal and columnar cells, among these cells we can find multiciliated, secretory cells and goblet cells. All these cells work together in the mucociliary clearance of the airways. This epithelium regenerates slowly under homeostatic conditions but is able to recover quickly after aggressions through proliferation, migration, polarization and differentiation processes. However, in patients with chronic pulmonary diseases such as chronic obstructive pulmonary disease, asthma or cystic fibrosis, epithelial repair is defective, tissue remodeling occurs, leading to loss of multiciliated cells and goblet cell hyperplasia, impairing correct mucociliary clearance. The sequence of cellular events leading to a functional or remodelled tissue are still poorly described. Hence, we aim at identifying the successive cell types appearing during tissue regeneration and the molecular events that are responsible for healthy or pathological regeneration. We have analysed airway epithelial cell composition at several stages of differentiation using an in vitro 3D culture model which reproduces in vivo epithelial cell composition. Applying single cell transcriptomics and computational methods, we have identified cell lineage hierarchies and thus constructed a comprehensive cell trajectory roadmap in human airways. We have confirmed the cell lineages that have been previously described and have discovered a novel trajectory linking goblet cells to multiciliated cells. We have also discovered novel cell populations and molecular interactors involved in the process of healthy human airway epithelium regeneration. Using these approaches, we have finally shed light on cell-type specific responses involved in pathological goblet cell hyperplasia. Our data, by bringing significant contributions to the understanding of differentiation’s dynamics in the context of healthy and pathological human airway epithelium, may lead to the identification of novel therapeutic targets
Benlala, Ilyes. "Apport de l’imagerie TDM et IRM quantitative à l’étude des modifications structurales et fonctionnelles respiratoires dans les maladies obstructives chroniques des voies aériennes chez l’homme." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0291.
Full textChronic obstructive airway diseases are a major public health problem, characterized by chronic inflammation and airways remodeling. Imaging of the structural elements of the lungs (bronchi, bronchioles, vessels...) is essential for defining, phenotyping and following-up these diseases. Visual assessment is prone to inter-observer variability that affects its reliability. Therefore, the development of reliable and reproducible new quantitative methods is necessary. CT and MRI are the two complete imaging methods of the various structural and functional compartments of the lung. This work focused on the development and the validation of quantitative methods using CT and MRI of the lung.Using quantitative CT, we have shown that measurements of bronchial and vascular remodeling in patients with severe pulmonary hypertension (PH), a particular phenotype in COPD patients, contributed to highlight interactions between the cardiovascular and respiratory systems. We have developed a method for small airway disease quantification, tested in a chronic hypersensitivity pneumonitis cohort, that may contribute to evaluate and monitor chronic obstructive airway diseases.Using quantitative MRI, we have developed a fully automated quantification technique to assess the severity of emphysema extent in COPD patients. In addition, transposing bronchial measurement methods from CT to MRI has become possible thanks to the new ultra short echo time (UTE) sequences. Thus, the quantification of bronchial remodeling at 3DUTE MRI in patients with cystic fibrosis, for whom it is necessary to reduce exposure to ionizing radiation, has shown morphological information similar to that of CT. We have also shown that automatic quantification of destructive and inflammatory phenomena by 3DUTE MRI in cystic fibrosis is a reliable and reproducible method for assessing the severity of structural alterations. Furthermore, the feasibility of an automatic quantification of T2 high signal intensity on MRI has been demonstrated and its relevance as a specific biomarker for inflammatory airway disease has been assessed.Thus, the quantitative analysis, in both CT and MRI, of various structural and functional modifications in chronic obstructive airway diseases could be a reliable method in the follow-up and the evaluation of the response to treatment in these diseases
Thumerel, Matthieu. "Approche translationnelle du remodelage bronchique dans la broncho-pneumopathie chronique obstructive et l’asthme." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0418/document.
Full textAirway remodeling groups pathophysiological entities such as smooth musclehypertrophy in asthma or increase bronchial thickness due to infiltration of inflammatory cellsand fibrosis in COPD. These remodeling is correlated with the functional obstruction andtherefore with the severity of these diseases. The bronchial or lung biopsies analysis allowsto study this phenomenon which, after understanding, is an interesting therapeutic target.The first article is a review of indications of bronchoscopy in critically ill patients. The secondstudy showed an increase in blood fibrocytes during severe exacerbation of COPD patientand a correlation between their rate and the risk of patient death. CXCR4 signaling pathwayseems to be involved in the fibrocyte recruitment. The third study seeks to explore thelocation and characteristics of intra-pulmonary fibrocytes in stable COPD patients. The fourthstudy has shown, in vivo, that gallopamil, a calcium channel blocker, could reduce airwaysmooth muscle size in severe asthmatic patient by targeting mitochondrial biogenesis. Thiscould make it an interesting therapeutic weapon and totally innovative. The last study hasisolated a non-severe asthma phenotype with "increased bronchial smooth muscle," whichpresents an increased risk of exacerbation and a suboptimal control of their asthma. Themitochondria appear to play a key role as in severe asthma
Bouté, Mélodie. "Etude des mécanismes impliqués dans le remodelage bronchique dans un modèle expérimental d’asthme sévère d’endotype Th2/Th17." Thesis, Lille 2, 2020. http://www.theses.fr/2020LIL2S002.
Full textSevere allergic asthma is a chronic inflammatory disease of the airways in response in anallergen. This disease is a public health problem and can be associated with bronchialremodeling, for which no treatment is yet available, except thermoplasty with neutrophilrecruitment in the lung, and Th17 cytokine production as well as mixed Th2/Th17 responses.Among Th17 cytokines, IL-17 and IL-22 are pro-inflammatory cytokines in asthma and arefound in sputum of asthmatics patients. IL-22 is involved in neutrophil recruitment, tissueremodeling and is induced in response to infectious agents, some of which can promote thedevelopment and exacerbation of asthma. These pathogens are recognized by an innateimmunity receptor, NOD2, present in epithelial and dendritic cells. This receptor is able torecognize a peptidoglycan named muramyl di peptide. So, our hypothesis was that costimulation between an allergen and the NOD2 ligand could promote the development of severe allergic asthma through IL-22. To answer this, a murine model of chronic neutrophilic asthma induced by dog allergen has been developed in the laboratory, which reproduces theTh17 severe asthma endotype. The PhD project has been divided in three parts. The first onehas evaluated the effects of NOD2 co-stimulation in the model of chronic dog-inducedexperimental asthma, in particular on lung remodeling, and the cellular origin of IL-22. Despitethe absence of adjuvant effect of NOD2 co-stimulation on asthma parameters, the discoveryof induced Bronchus-Associated Lymphoid Tissue (iBALT) in this model prompted us to pursuethe phenotypic and mechanistic characterization of the formation of these follicles. Atranscription factor, Aryl hydrocarbon receptor (AhR) expressed in Th17 cells and necessaryfor IL-22 production, has been studied in our model. An AhR antagonist inhibited someparameters of asthma including IL-22 production but also increased the formation of iBALTswith decreased IL-10 production. The aim of the second part was to determine the role of IL-22 in the chronic experimental model by using IL-22 deficient mice. IL-22 deficiency induced adecrease in lung neutrophil recruitment, airway hyperresponsiveness, and parametersassociated with iBALT formation, but not modification in humoral response. The last partconsisted in identifying the target cells involved in the IL-22 dependent effects, by using CreLoxP mice allowing to specifically delete the IL-22 receptor, IL-22Ra1 from epithelial or smoothmuscle cells. The first results show that both cells types are involved in Broncho-AlveolarLavage cell recruitment whereas only smooth muscle cells are involved in airwayhyperresponsiveness and humoral response. In conclusion, our results show that IL-22R is a target for treatment of severe allergic asthma.Altogether this project should identify novel mechanisms involved in this disease and opensthe way towards novel therapeutic strategies in severe asthma, potentially by localadministration targeting IL-22R, and potentially bronchial remodelling, an indicator of severeasthma
Dournes, Gaël. "Nouvelles approches en imagerie quantitative non-invasive pour l'évaluation des maladies broncho-pulmonaires obstructives chroniques." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0339/document.
Full textAirway remodeling is a critical outcome in broncho-pulmonary obstructive disorders such as asthma, COPD and cystic fibrosis. Research is needed in order to better understand the pathophysiological process underlying these different diseases, as well as their functional significance and consesquences in vivo. Imaging allows non-invasive and quantitative assessment of the remodeling process in vivo. In asthma, we have assessed the value of peribronchial density using microCT in murine models of ovalbumine sensitization. This novel biomarker was shown to relate with remodeling than inflammation of airways and could be used in preclinical studies. In humans, we first optimized an existing chain of post treatment in order to segment in 3 dimensions bronchi volumes in order to improve automation, detection and skeletonization. The software was applied in a prospective randomized double-blinded study in severe asthma, in order to test the effect of a new therapeutic anticalcic agent. Results showed that the software enables a non-invasive assessment of airway smooth muscle remodeling in severe asthma during therapeutic studies. In COPD, we have shown that quantitative CT is able to unravel new complex mechanisms that are involved in COPD but not in asthma, i.e. the development of pulmonary hypertension. CT measurements of small vessels were also shown to add complementary information on COPD phenotypes, supporting the existence of distinct subtypes of COPD related to a vascular rather than a broncho-pulmonary disease. Finally, lung MRI is still a challenging field of investigation, owing to the very low proton density of bronchi, the presence of movement artifact. We have tested and optimized an innovative sequence combined with respiratory synchronization in order to get images in close agreement with CT. Perspectives related to this novel non-invasive, quantitative and radiation-free imaging technique are promising in the evaluation of broncho-pulmonary obstructive diseases