Dissertations / Theses on the topic 'Volatility estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Volatility estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sandmann, Gleb. "Stochastic volatility : estimation and empirical validity." Thesis, London School of Economics and Political Science (University of London), 1997. http://etheses.lse.ac.uk/1456/.
Full textGu, Ying. "Essays on volatility models using EMM estimation /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/7426.
Full textLu, Shan. "Essays on volatility forecasting and density estimation." Thesis, University of Aberdeen, 2019. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=240161.
Full textMarchese, Malvina. "Whittle estimation of multivariate exponential volatility models." Thesis, London School of Economics and Political Science (University of London), 2015. http://etheses.lse.ac.uk/3173/.
Full textZhang, Yuzhao. "Essays on return predictability and volatility estimation." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1666139151&sid=3&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textLuo, Ling. "High Quantile Estimation for some Stochastic Volatility Models." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20295.
Full textHawkes, Richard Nathanael. "Linear state models for volatility estimation and prediction." Thesis, Brunel University, 2007. http://bura.brunel.ac.uk/handle/2438/7138.
Full textWang, Jian. "Real time estimation of multivariate stochastic volatility models." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/16786/.
Full textEratalay, Mustafa Hakan. "Three essays on multivariate volatility modelling and estimation." Doctoral thesis, Universidad de Alicante, 2012. http://hdl.handle.net/10045/26482.
Full textWhite, Scott Ian. "Stochastic volatility: Maximum likelihood estimation and specification testing." Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/16220/1/Scott_White_Thesis.pdf.
Full textWhite, Scott Ian. "Stochastic volatility : maximum likelihood estimation and specification testing." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16220/.
Full textPodolskij, Mark. "New theory on estimation of integrated volatility with applications /." Bochum, 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980588391.
Full textSun, Yucheng. "Essays in volatility estimation based on high frequency data." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/402831.
Full textBasándonos en datos de precios de alta frecuencia, esta tesis se centra en la estimación de la covarianza realizada y la volatilidad integrada de precios de activos, y la aplicación de la estimación de la volatilidad para la detección de saltos en los precios. El primer capítulo utiliza el procedimiento LASSO para regularizar algunos estimadores de matrices de covarianza realizada de alta dimensión. Establecemos propiedades teóricas de los estimadores regularizados que muestran su precisión de estimación y la probabilidad de que revelen correctamente la estructura de red de los activos. En el segundo capítulo se propone un nuevo estimador de la volatilidad integrada que es la variación cuadrática de la parte continua en el proceso de precios. Este estimador se obtiene truncando el estimador de varianza realizado en dos escalas. Demostramos su consistencia en presencia de ruido de microestructura del mercado y saltos de actividad finitos o infinitos en el proceso de precios. El tercer capítulo emplea este estimador para diseñar un test para explorar la existencia de saltos en los precios con ruido.
Burnos, Sergey, and ChaSing Ngow. "SVI estimation of the implied volatility by Kalman filter." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-13949.
Full textVeraart, Almut Elisabeth Dorothea. "Volatility estimation and inference in the presence of jumps." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670107.
Full textBarkhagen, Mathias. "Risk-Neutral and Physical Estimation of Equity Market Volatility." Licentiate thesis, Linköpings universitet, Produktionsekonomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94360.
Full textDet övergripande syftet med doktorandprojektet är att utveckla ett ramverk för att fatta optimala beslut på aktiederivatmarknaderna. Att fatta optimala beslut syftar till exempel på hur man optimalt ska hedga en optionsportfölj, eller hur man ska göra optimala investeringar på aktiederivatmarknaderna. Ramverket för att fatta optimala beslut kommer att baseras på stokastisk programmerings-modeller (SP-modeller), vilket betyder att det är nödvändigt att generera högkvalitativa scenarier för marknadspriser för en framtida tidpunkt som indata till SP-modellen. Detta leder till en situation där de traditionella metoderna, som finns beskrivna i litteraturen, för att modellera marknadspriser inte ger scenarier av tillräckligt hög kvalitet för att fungera som indata till SP-modellen. Följaktligen är huvudfokus för denna avhandling att utveckla metoder som, jämfört med de traditionella metoderna som finns beskrivna i litteraturen, förbättrar estimeringen av ytor som impliceras av en given mängd observerade optionspriser. Estimeringen kompliceras av att observerade optionspriser innehåller mycket brus och möjligen också arbitrage. Det betyder att för att kunna estimera optionsimplicerade ytor som är arbitragefria och av hög kvalitet, så behöver estimeringsmetoden hantera bruset i indata på ett adekvat sätt. De första två artiklarna i avhandlingen utvecklar ett icke-parametriskt optimeringsbaserat ramverk för estimering av högkvalitativa och arbitragefria options-implicerade ytor. Den första artikeln behandlar estimeringen av den risk-neutrala täthetsytan (RND-ytan) och den andra artikeln estimeringen av den lokala volatilitetsytan. Båda metoderna ger upphov till jämna och realistiska ytor för marknadsdata. Estimeringen av RND-ytan är ett konvext optimeringsproblem men resultatet är känsligt för valet av parametrar. När den lokala volatilitetsytan estimeras är parametervalet mycket enklare men optimeringsproblemet är icke-konvext, även om algoritmen inte verkar fastna i lokala optima. SP-modellerna som används för att fatta optimala beslut på aktiederivatmarknaderna behöver också indata i form av genererade scenarier för de underliggande aktiepriserna eller indexnivåerna. Den tredje artikeln i avhandlingen behandlar estimering och evaluering av existerande modeller för aktiemarknaden. Den tredje artikeln tillhandahåller preliminära resultat som visar att, av de jämförda modellerna, ger en GARCH(1,1)-modell med Poissonhopp en bättre beskrivning av dynamiken för det svenska aktieindexet OMXS30 jämfört med mer komplicerade modeller som innehåller stokastisk volatilitet.
Zeytun, Serkan. "Stochastic Volatility, A New Approach For Vasicek Model With Stochastic Volatility." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606561/index.pdf.
Full textYang, Xiaoran. "Essays on volatility estimation and forecasting of crude oil futures." Thesis, University of Essex, 2017. http://repository.essex.ac.uk/19692/.
Full textAvramidis, Panagiotis. "Estimation of the volatility function : non-parametric and semiparametric approaches." Thesis, London School of Economics and Political Science (University of London), 2004. http://etheses.lse.ac.uk/1793/.
Full textMattiussi, Vanessa. "Non parametric estimation of high-frequency volatility and correlation dynamics." Thesis, City University London, 2010. http://openaccess.city.ac.uk/12095/.
Full textManikas, Theodoros. "Robust volatility estimation for multiscale diffusions with zero quadratic variation." Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/111074/.
Full textLi, Yifan. "Point process based high frequency volatility estimation : theory and applications." Thesis, Lancaster University, 2018. http://eprints.lancs.ac.uk/127786/.
Full textRuivo, Sandra Cristina Rosa. "Volatility forecasts and value-at-risk estimation using TGARCH model." Master's thesis, Instituto Superior de Economia e Gestão, 2007. http://hdl.handle.net/10400.5/675.
Full textValue-at-Risk (VaR) has emerged in recent years as a standard tool to measure and control the risk, mainly the market risk, of financial portfolios. It measures the worst loss to be expected of a portfolio over a given time horizon at a given level of confidence. The calculation of Value-at-Risk commonly, involves estimation of the volatility return price and quantile of standardized returns. In this paper, two parametric techniques were used to estimate the volatility of the returns (market prices) of a Portuguese Financial Institution portfolio. Although to achieve the quantiles of standardized returns, both parametric technique and one nonparametric technique were considered. The quality of the measuring result was analysed through the backtesting technique for the forecasting multiperiod. In this study it is revealed that AR(1)-TGARCH methodology produces the most accurate VaR forecast, for one day holding period. The volatility forecasts for the two other holding periods, considering the three methodologies, revealed to be biased.
Awasthi, Achal. "Parameter Estimation in Stochastic Volatility Models Via Approximate Bayesian Computing." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534335592622713.
Full textBroll, Udo, Soumyatanu Mukherjee, and Rudra Sensarma. "Exchange Rate Volatility and Exports: Estimation of Firms Risk Preferences." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-223571.
Full textFang, Yue. "Volatility modeling and estimation of high-frequency data with Gaussian noise." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/11041.
Full textKalnina, Ilze. "Essays on estimation and inference for volatility with high frequency data." Thesis, London School of Economics and Political Science (University of London), 2009. http://etheses.lse.ac.uk/3005/.
Full textDe, Marco Stefano. "On probability distributions of diffusions and financial models with non-globally smooth coefficients." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00588686.
Full textAntonakakis, Nikolaos, and Julia Darby. "Forecasting volatility in developing countries' nominal exchange returns." Routledge, 2013. http://dx.doi.org/10.1080/09603107.2013.844323.
Full textReno', Roberto. "Volatility estimate via Fourier analysis." Doctoral thesis, Scuola Normale Superiore, 2005. http://hdl.handle.net/11384/85694.
Full textKastner, Gregor, and Sylvia Frühwirth-Schnatter. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models." WU Vienna University of Economics and Business, 2013. http://epub.wu.ac.at/3771/1/paper.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Yin, Pei. "Volatility estimation and price prediction using a hidden Markov model with empirical study." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4795.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on December 18, 2007) Vita. Includes bibliographical references.
Telfah, Ahmad. "Analytical Estimation of Value at Risk Under Thick Tails and Fast Volatility Updating." ScholarWorks@UNO, 2003. http://scholarworks.uno.edu/td/26.
Full textSoane, Andrew. "Latent State and Parameter Estimation of Stochastic Volatility/Jump Models via Particle Filtering." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29223.
Full textTunyavetchakit, Sophon [Verfasser], and Rainer [Akademischer Betreuer] Dahlhaus. "Volatility Decomposition and Nonparametric Estimation of Spot Volatility of Models with Poisson Sampling under Market Microstructure Noise / Sophon Tunyavetchakit ; Betreuer: Rainer Dahlhaus." Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180615786/34.
Full text[Verfasser], Sophon Tunyavetchakit, and Rainer [Akademischer Betreuer] Dahlhaus. "Volatility Decomposition and Nonparametric Estimation of Spot Volatility of Models with Poisson Sampling under Market Microstructure Noise / Sophon Tunyavetchakit ; Betreuer: Rainer Dahlhaus." Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-214504.
Full textAmorino, Chiara. "Bias correction for drift and volatility estimation of jump diffusion processes and non - parametric adaptive estimation of the invariant measure." Thesis, université Paris-Saclay, 2020. https://www.biblio.univ-evry.fr/theses/2020/2020UPASE006.pdf.
Full textThe thesis deal with the parametric and non-parametric inference in jump process models.It consists of 3 parts which gather 4 chapters.The first part, which contains 2 chapters, focuses on the estimation of the drift and volatility parameters via some contrast function methods starting from a discretely observed process.The main goal is to minimise the conditions on the discretization step so that it can go to $0$ arbitrarily slowly.The second part of the thesis regards some asymptotic developments, and bias correction, for the estimation of the integrated volatility.The third part of the thesis is about the adaptive estimation of the invariant measure for jump processes
Vives, David Mendez. "Applied financial econometric analysis : the dynamics of swap spreads and the estimation of volatility." Thesis, London School of Economics and Political Science (University of London), 2003. http://etheses.lse.ac.uk/2655/.
Full textCheng, Xixin, and 程細辛. "Mixture time series models and their applications in volatility estimation and statistical arbitrage trading." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40988053.
Full textYevstihnyeyev, Roman. "Estimation of Asset Volatility and Correlation Over Market Microstructure Noise in High-Frequency Data." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:14398547.
Full textCheng, Xixin. "Mixture time series models and their applications in volatility estimation and statistical arbitrage trading." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40988053.
Full textKau, Jonas. "Stochastic Volatility Models with Jumps and High Frequency Data : Theory, Estimation, and Option Pricing /." Aarhus : Institut for Økonomi, Aarhus Universitet, 2009. http://mit.econ.au.dk/Library/Specialer/2009/20033896.pdf.
Full textPopovic, Ray. "Parameter estimation error: a cautionary tale in computational finance." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34731.
Full textHusodo, Za??fri Ananto Banking & Finance Australian School of Business UNSW. "Speed of adjustment, volatility and noise in the Indonesia Stock Exchange." Awarded by:University of New South Wales. Banking & Finance, 2008. http://handle.unsw.edu.au/1959.4/41860.
Full textZhou, Dongya. "VALUE-AT-RISK ESTIMATION USING GARCH MODELS FOR THE CHINESE MAINLAND STOCK MARKET." Thesis, Uppsala universitet, Statistiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412997.
Full textDombeck, Brian. "The Effects of News Shocks and Bounded Rationality on Macroeconomic Volatility." Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22636.
Full textIshakova, Gulmira. "On the use of Quasi-Maximum Likelihood Estimation and Indirect Method for Stochastic Volatility models." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1641.
Full textStochastic volatility models have been focus for research in recent years.
One interesting and important topic has been the estimation procedure.
For a given stochastic volatility model this project aims to compare two
methods of parameter estimation.
Gorynin, Ivan. "Bayesian state estimation in partially observable Markov processes." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLL009/document.
Full textThis thesis addresses the Bayesian estimation of hybrid-valued state variables in time series. The probability density function of a hybrid-valued random variable has a finite-discrete component and a continuous component. Diverse general algorithms for state estimation in partially observable Markov processesare introduced. These algorithms are compared with the sequential Monte-Carlo methods from a theoretical and a practical viewpoint. The main result is that the proposed methods require less processing time compared to the classic Monte-Carlo methods
TOSCANO, Giacomo. "Non-parametric estimation of stochastic volatility models: spot volatility, leverage and vol-of-vol. Four essays on asymptotic error distributions, finite-sample properties and empirical applications." Doctoral thesis, Scuola Normale Superiore, 2021. http://hdl.handle.net/11384/106264.
Full textCAMPOS, EDUARDO LIMA. "LOCAL SCALE MODEL: AN MULTIPLICATIVE ALTERNATIVE SPECIFICATION TO VOLATILITY ESTIMATION AND FORECASTING FOR FINANCIAL RETIVEN SERIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7771@1.
Full textEste trabalho apresenta um modelo de volatilidade estocástica com especificação multiplicativa, chamado modelo de escala local. O modelo trabalha com a precisão (recíproca da variância) de uma série temporal. A precisão é tratada como componente não observável, caracterizando o modelo como estrutural, e é suposta evoluir segundo um filtro Gama, com um ruído multiplicativo que segue distribuição Beta. A função de previsão para a variância é uma média móvel com amortecimento exponencial (EWMA) no quadrado das observações passadas, a mesma função de previsão do modelo IGARCH(1,1). O fator de amortecimento é estimado por máxima verossimilhança. A densidade de medida é Gaussiana, condicional à precisão não observável, e a densidade preditiva resulta t de Student, cujos graus de liberdade são monitorados pelo fator de amortecimento estimado. A densidade de medida Gaussiaan, embora induza excesso de curtose nas distribuições incondicional e preditiva, pode ser inadequada para modelar dados com um grande excesso de curtose, como é o caso de séries financeiras. Por isso, é testada uma densidade de medida mais genérica, a densidade de potência exponencial, que possui a normal como caso particular. O modelo é chamado modelo de escala local generalizado. A introdução de variáveis explicativas é efetuada de maneira trivial. Intervalos de confiança para os parâmetros do modelo são obtidos via Bootstrap paramétrico. Os resultados obtidos são semelhantes àqueles fornecidos pelos modelos GARCH (1,1) e AR(1)-SV, sendo que o modelo de escala local, além da maior facilidade de implementação, fornece soluções exatas, o que não ocorre no AR(1)-SV, e é mais parcimonioso do que o GARCH(1,1).
In this thesis, we investigate, and develop further, a stochastic volatility modelo named local scale model. This model deals the precision, which is the inverse of the variance unobserved component, and so fits within the framework of structural time series models, the precision is assumed to be a Gamma variable, which evolves through a multiplicative equation, scaled by a Beta variable. The measurement density is Gaussian, conditional on the unobserved precision, and the resulting forecast is a Student`s t density, with a scale which is approximately an exponencially weighted moving average (EWMA) of the sqares of the past observations. The degrees of freedom of the Student`s t distribution are controlled by the size of the discount parameter of the EWMA scheme. The Gaussiannity of the measurement density is potentially inadequate when the model is applied to heavy tailed finance data. Instead, this assumption can be replaced by an exponential power density, which allows the modeling of the observed excess kurtosis. The extension of the model to account for explanatory variables is straightforward. Confidence intervals for the parameters are obtained by Bootstrap. The model fits like the GARCH(1,1)mand AR(1)- SV, but the local scale model, besides being easier to fit, provides a more parcimonious alternative to the GARCH (1,1) model, and has an exact filter, rather than a best linear one, like in the AR(1)-SV.