Academic literature on the topic 'Volcanoes – Indonesia'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Volcanoes – Indonesia.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Volcanoes – Indonesia"
Wibisono, Aryo Bayu, Bayu Suryo Ridho Saputro, and Puspita Sari Sukardhani. "Infographic Design As An Effective Communication Model For Volcano Eruption Disaster's Socialization." JURNAL ILMU KOMUNIKASI, no. 2 (December 7, 2018): 11–17. http://dx.doi.org/10.33005/jkom.v0i2.19.
Full textAgustin, Fitriani, and Sutikno Bronto. "Volkanostratigrafi Inderaan Jauh Kompleks Gunungapi Gede dan Sekitarnya, Jawa Barat, Indonesia." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 9. http://dx.doi.org/10.33332/jgsm.2019.v20.1.9-16.
Full textAgustin, Fitriani, and Sutikno Bronto. "Volkanostratigrafi Inderaan Jauh Kompleks Gunungapi Gede dan Sekitarnya, Jawa Barat, Indonesia." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 9. http://dx.doi.org/10.33332/jgsm.geologi.20.1.9-16.
Full textAgustin, Fitriani, and Sutikno Bronto. "Volkanostratigrafi Inderaan Jauh Kompleks Gunungapi Gede dan Sekitarnya, Jawa Barat, Indonesia." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 9. http://dx.doi.org/10.33332/jgsm.geologi.v20i1.386.
Full textAgustin, Fitriani, and Sutikno Bronto. "Volkanostratigrafi Inderaan Jauh Kompleks Gunungapi Gede dan Sekitarnya, Jawa Barat, Indonesia." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 9. http://dx.doi.org/10.33332/jgsm.v20i1.386.
Full textBani, P., M. Hendrasto, H. Gunawan, and S. Primulyana. "Sulfur dioxide emissions from Papandayan and Bromo, two Indonesian volcanoes." Natural Hazards and Earth System Sciences 13, no. 10 (October 2, 2013): 2399–407. http://dx.doi.org/10.5194/nhess-13-2399-2013.
Full textBani, P., M. Hendrasto, H. Gunawan, and S. Primulyana. "Sulfur dioxide emissions from Papandayan and Bromo, two Indonesian volcanoes." Natural Hazards and Earth System Sciences Discussions 1, no. 3 (May 14, 2013): 1895–912. http://dx.doi.org/10.5194/nhessd-1-1895-2013.
Full textIguchi, Masato, Surono, Takeshi Nishimura, Muhamad Hendrasto, Umar Rosadi, Takahiro Ohkura, Hetty Triastuty, et al. "Methods for Eruption Prediction and Hazard Evaluation at Indonesian Volcanoes." Journal of Disaster Research 7, no. 1 (January 1, 2012): 26–36. http://dx.doi.org/10.20965/jdr.2012.p0026.
Full textSarjito, Aris. "Crisis Management Policy of Natural Disaster." Advances in Social Sciences Research Journal 7, no. 9 (September 14, 2020): 183–92. http://dx.doi.org/10.14738/assrj.79.8985.
Full textNakada, Setsuya, Fukashi Maeno, Mitsuhiro Yoshimoto, Natsumi Hokanishi, Taketo Shimano, Akhmad Zaennudin, and Masato Iguchi. "Eruption Scenarios of Active Volcanoes in Indonesia." Journal of Disaster Research 14, no. 1 (February 1, 2019): 40–50. http://dx.doi.org/10.20965/jdr.2019.p0040.
Full textDissertations / Theses on the topic "Volcanoes – Indonesia"
Schmitt, Susanne F. "Disturbance and succession on the Krakatau Islands, Indonesia." Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:a2b3257d-0a00-4286-a38a-01e3016da708.
Full textGeiger, Harri. "Characterising the magma supply system of Agung and Batur volcanoes on Bali, Indonesia." Thesis, Uppsala universitet, Berggrundsgeologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-235247.
Full textDelmelle, Pierre. "Geochemical, isotopic and heat budget study of two volcano-hosted hydrothermal systems: the acid crater lakes of Kawah Ijen, Indonesia, and Taal, philippines, volcanoes." Doctoral thesis, Universite Libre de Bruxelles, 1995. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212559.
Full textSyahbana, Davy Kamil. "Seismological study of volcanic activity at Papandayan volcano, West Java, Indonesia." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209395.
Full textLe monitoring sismique passif a débuté en décembre 2009 par l'installation d'une station sismique permanente à large bande dans le cratère du Papandayan. L'année suivante, une station météorologique a été installée pour compléter les mesures. La troisième année, 8 stations sismiques temporaires ont été déployées autour du volcan en réponse à une augmentation de l'activité sismique en 2011.
Nous avons conduit différentes études; (1) Nous avons examiné l'évolution de l'activité volcanique par réalisation d'une revue complète de l'histoire éruptive du volcan, autant pour la période préhistorique qu'historique. (2) Nous avons réalisé une analyse temps-fréquence des événements sismiques, étudié leurs caractéristiques et proposé une nouvelle classification avec une description des processus physiques supposés les générer. (3) Nous avons étudié les signatures sismiques précurseur de l'éruption de 2002 et pendant la crise volcanique de 2011 en implémentant différentes méthodologies, dont: la détection automatique d'événements sismiques à l'aide de filtres récursifs STA/LTA, l'analyse spectrale des formes d'onde, la mesure continue de l'amplitude spectrale du signal (SSAM), la polarisation des ondes et l'analyse de la distribution fréquence/magnitude (b-value). Nous avons alors réalisé un modèle chronologique des séquences sismiques du Papandayan. (4) Pour améliorer la compréhension de la dynamique des fluides sous le volcan Papandayan, nous avons réalisé une analyse des fréquences complexes des événements longue période (LP) et leurs variations temporelles peuvent être utilisées pour estimer (a) la composition des fluides présents dans les fractures sous le volcan et/ou (b) l'évolution des dimensions de ces fractures. Ces variations des fréquences complexes des événements LP peuvent être interprétées comme les réponses dynamiques du système hydrothermal à des changements d'impulsions de chaleur transférées par les flux de gaz volcaniques du magma sous le volcan. (5) nous avons calculé l'évolution temporelle du rapport spectral horizontal-sur-vertical (HVSR) en utilisant le bruit sismique ambiant enregistré par une station unique pour estimer les variations de vitesse de propagation des ondes de cisaillement en lien avec l'activité dynamique du volcan. Nous avons trouvé une corrélation claire entre les variations de fréquence de résonnance HVSR et l'augmentation de la sismicité.
Enfin, nous proposons des hypothèses sur les processus physiques qui se produisent sous le Papandayan. Cette étude est une première tentative d'utilisation de cette méthode pour surveiller l'activité volcanique en continu.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Caudron, Corentin. "Multi-disciplinary continuous monitoring of Kawah Ijen volcano, East Java, Indonesia." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209416.
Full textpart of Java island in Indonesia. Since 2010, the volcano has been equipped with seismometers
and several sensors (temperature and level) have been immersed in its acidic lake waters and in the acidic river seeping on the volcano flanks. While finding instruments capable of resisting to such extreme conditions (pH~0) has been challenging, the coupling of lake monitoring techniques with seismic data improves the knowledge of the volcanic-hydrothermal dynamics. Moreover, the monitoring capabilities have been considerably
enhanced supporting the decision-making of the authorities in case of emergency.
Several methods and processing techniques were used to analyze the seismic data. Much effort has been given to implement the seismic velocities (Moving Window Cross Spectral Analysis (MWCSA)) calculations. At Kawah Ijen, the frequency band that is less affected by the volcanic tremor and the seasonal fluctuations at the source ranges between 0.5-1.0 Hz. Moreover, a stack of 5 days for the current CCF gives reliable results with low errors and allows to detect fluctuations which are missed using a 10-day stack.
The background seismic activity mostly consists in low frequency events and a continuous tremor of low amplitude. Fluctuations of the lake temperature and level result from the recharge of the hydrothermal system during the rainy season. Kawah Ijen lake waters are not perfectly mixed and a shallow stratification occurs during the rainy season, because meteoric waters are less dense than the lake fluids.
Different unrest occurred during our study. Some of them strongly affected the volcanic lake, while others did only weakly. In the first category, a strong unrest commenced in October 2011 with heightened VT (Volcano Tectonic) earthquakes and low frequency events activity, which culminated mid-December 2011. This unrest was correlated with an enhanced heat and hydrothermal fluids discharge to the crater and significant variations of the relative velocities (~1%). This suggests an important build-up of stress into the system. VT earthquakes opened pathways for the fluids to ascend, by increasing the permeability of the system, which latter allowed the initiation of monochromatic tremor (MT) when the steam/gases interacted with the shallow portions of the aquifer. Our calculations evidence a higher contribution of steam in March 2012 that might explain the increase of the MT frequency when bubbles were observed at the lake surface. This period was also characterized by short-lived but strong velocity variations, related to water level
rises containing important amount of bubbles, and important heat and mass discharges
into the lake. On the contrary, the second category of unrest did only slightly affect the
lake system. This could be explained by a dryer hydrothermal system and/or locations of
the seismic sources, which were not directly linked to the lake.
While a magmatic eruption will likely be preceded by a strong seismic activity, the major challenges remain to understand why the unrest we studied did not lead to an eruption and to identify precursory signs of a phreatic eruption. Even a small phreatic eruption would be devastating for the people working everyday in the crater and the ones
who live nearby the voluminous acidic lake.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Barbier, Benjamin. "Bilan thermique et caractérisation géochimique de l'activité hydrothermale du volcan Rinjani, Lombok, Indonésie." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210140.
Full textLes sources thermales situées autour du Gunung Baru (cône volcanique situé dans la caldera) ont une composition chimique en éléments majeurs et une composition isotopique proche de celles du lac volcanique indiquant qu’elles sont essentiellement le résultat du recyclage du lac par le système hydrothermal. Les variations de compositions entre les différentes sources ont permis de montrer que leurs compositions est le résultat du mélange entre un fluide hydrothermal profond de composition neutre chlorure, dont la température a été estimée à 270°C, et d’un fluide plus superficiel riche en magnésium et en sulfate.
Le flux de dioxyde de carbone à la surface du lac a été estimé à l’aide de la méthode de la chambre d’accumulation et par calcul à environ 2300 t/j, ce qui représente un apport significatif de gaz. Cependant, comme le lac présente une structure polymictique, le risque d’accumulation de dioxyde de carbone en profondeur et donc d’éruption limnique peut être exclus.
Pour la première fois dans cette thèse, le modèle d’estimation des flux thermiques émis par les lacs volcaniques mis au point par Stevenson (1992) a été contraint par des mesures des paramètres météorologiques mesurés en continu, ce qui a permis de valider le modèle. De plus, nous avons pu montrer que l’essentiel des variations de températures des lacs volcaniques est dû à des variations météorologiques. En utilisant le flux thermique plutôt que la température, il est dès lors possible d’avoir accès à des variations de l’activité volcanique.
Le flux thermique estimé pour le lac du Rinjani est de 1700 MW, ce qui représente le flux le plus élevé jamais mesuré sur un lac volcanique aérien. Ce flux thermique est aussi plus élevé que le flux thermique mesuré sur des lacs de lave à 800°C. Ce paradoxe apparent s’explique par la plus grande dimension des lacs volcaniques, la capacité calorifique de l’eau quatre fois plus importante que celle du magma et la viscosité de l’eau 1 million de fois inférieure, ce qui fait de l’eau un excellent fluide caloporteur pour transporter les calories vers la surface.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Solikhin, Akhmad. "Geology, tectonics and post-2001 eruptive activity interpreted from high-spatial resolution satellite imagery : the case study of Merapi and Seremu volcanoes, Indonesia." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22559/document.
Full textRemote sensing has long been recognized as a tool for analysis at active and hazardous volcanoes because it can augment our understanding of the processes that underlie volcanic activity so as enable us to apply this understanding to volcanic risk reduction. This thesis presents a volcanological study using High-Spatial Resolution optical images (IKONOS, Pléiades, GeoEye, Quickbird and SPOT5 satellites), radar data (ALOS-PALSAR sensor) and thermal (ASTER satellite and MODIS hot spot) images. In association with DEMs and low-altitude aerial photographs, remote sensing techniques have been applied for tracing the evolution of activity at Semeru and Merapi, two of the most active and densely populated volcanoes in Java, Indonesia. This remotely sensing-based study has unraveled structures, geological features and erupted deposits of both volcanoes and has improved the existing hazard assessment after their most recent eruptions. The thesis also presents the first advance towards deciphering possible interactions between regional tectonic earthquakes and renewed stages of eruptive activity of Merapi and Semeru volcanoes based on the analysis of volcanic hotspots detected by the MODVOLC technique. The geological map of Semeru is updated, including additional data derived from the interpretation of the most recent satellite images, aerial photographs, DEM analysis and fieldwork. The post-2001 eruptive activity at Semeru, including the large PDC-forming eruption in 2002-2003 and uncommon lava flow eruptions in 2010-2014 are investigated. The fact that Semeru has produced several lava flows from the central summit vent between 2010 and 2014 may herald a profound change in eruption style for the first time since at least 1967. At the time of writing, a dome-fed coulée in the Jonggring-Seloko crater continues to grow and lava flows are extending to distances of >2 km down Semeru's SE-scar; their fronts may collapse and produce large-volume pyroclastic density currents (PDCs), perhaps exceeding the average (1967-2007) volume range of 3 to 6.5 million m3. Future dome-collapse PDCs may travel farther down the main SE scar and can spill over its lowermost rims towards the southwest and eastward radiating drainage network. The 26 October-23 November 2010 eruption was the Merapi’s largest event since 1872 (it attained VEI=4). The interpretation of HSR images shows that due to the explosive eruptions, the summit area lost about 10 x 106m3 and the SSE-trending Gendol Breach enlarged to reach 1.3 x 0.3 x 0.2 km in size. The new, enlarged and deep summit crater including the 2010 lava dome is extremely unstable having been weakened by the post-2010 explosive events. This instability is a result of the steep Gendol Breach below the mouth of the crater and the steep and unstable crater walls. The 2010 Merapi pyroclastic and lahar deposits have been identified by applying several classification methods to HSR optical images and dual-polarization synthetic aperture radar (SAR) data. The results show the ability of remotely sensed data to capture the extent and impacts of pristine deposits shortly after emplacement and before any reworking, and highlight the purpose of using high-spatial resolution imagery and SAR data on persistently active volcanoes where access for field survey is often impossible. The 2010 tephra and PDC deposits covered ca. 26 km2 in two catchments of Gendol and Opak Rivers on Merapi’s south flank, i.e. 60-75% of the total PDC deposit area and a total bulk volume of 45 x 106m3. The tephra-fall deposit covered an area of ca. 1300 km2 with a volume range of 18-21 x 106m3. Volumes of these deposits were estimated using the areas determined from remote sensing data and deposit thickness measured in the field. (...)
Penginderaan jauh telah lama dikenal sebagai suatu alat untuk analisis di gunungapi aktif dan berbahaya karena dapat meningkatkan pemahaman kita tentang proses yang mendasari aktivitas gunung berapi sehingga memungkinkan kita untuk menerapkan pemahaman ini dalam pengurangan risiko erupsi gunungapi. Disertasi ini menyajikan studi vulkanologi menggunakan citra satelit optik resolusi tinggi (IKONOS, Pléiades, GeoEye, Quickbird dan SPOT5), data radar (ALOS-PALSAR sensor) dan citra termal (satelit ASTER dan hotspot MODIS). Dalam kaitannya dengan DEM dan foto udara, teknik penginderaan jauh telah diterapkan untuk melihat evolusi aktivitas di Semeru dan Merapi, dua gunung berapi yang paling aktif dengan kepadatan penduduk yang tinggi terletak di Pulau Jawa, Indonesia. Studi berbasis penginderaan jauh ini telah mengkaji struktur, fitur geologi dan material erupsi dari kedua gunungapi tersebut dan telah mempertajam penilaian bahaya yang ada setelah erupsi terkini. Disertasi ini juga menyajikan kemajuan awal dalam menafsirkan kemungkinan interaksi antara gempa tektonik regional dan aktivitas gunungapi Merapi dan Semeru berdasarkan analisis hotspot vulkanik yang terdeteksi oleh MODVOLC. Peta geologi Semeru telah diperbaharui dengan memasukkan data tambahan yang berasal dari interpretasi citra satelit terbaru, foto udara, analisis DEM dan data lapangan. Aktivitas erupsi pasca-2001 di Semeru, termasuk erupsi dengan aliran pirokastik (Pyroclastic Density Current/PDC) besar pada tahun 2002-2003 dan erupsi tidak biasa dengan aliran lava pada 2010-2014, telah dikaji. Fakta bahwa Semeru telah menghasilkan beberapa aliran lava dari kawah di puncak antara tahun 2010 dan 2014, mengindikasikan perubahan besar dalam gaya erupsi untuk pertama kalinya setidaknya sejak 1967. Pada saat penulisan disertasi ini, sebuah kubah lava (Coulée) di kawah Jonggring- Seloko terus tumbuj dan aliran lava yang memanjang hingga jarak >2 km arah tenggara Semeru; ujung lava kemungkinan dapat runtuh dan menghasilkan aliran piroklastik yang mungkin melebihi volume rata-rata (tahun 1967 hingga 2007) dalam kisaran 3-6.5 juta m3. Aliran piroklastik yang akan datang mungkin mengalir sepanjang gawir utama ke arah tenggara dan dapat menyebar melampaui lereng paling bawah ke arah barat daya dan ke arah timur menyebar ke jaringan drainase. Erupsi yang terjadi pada 26 Oktober-23 November 2010 adalah erupsi terbesar Merapi (mencapai VEI 4) sejak 1872. Interpretasi citra resolusi tinggi menunjukkan bahwa daerah puncak kehilangan batuannya sekitar 10 juta m3 akibat erupsi eksplosif. Erupsi juga memperbesar “Gendol Breach” dengan orientasi tenggara menjadi berukuran 1.3x0.3x0.2 km. Kawah puncak yang baru, diperbesar dan dalam, termasuk juga kubah lava tahun 2010 sangat tidak stabil dan telah diperlemah oleh beberapa erupsi eksplosif pasca-2010. Ketidakstabilan ini diakibatkan oleh curamnya Gendol Breach di bawah mulut kawah dan kondisi dinding kawah yang curam dan tidak stabil. Deposit piroklastik dan lahar diidentifikasi dengan menerapkan beberapa metode klasifikasi terhadap citra optik resolusi tinggi dan data dual-polarisasi Synthetic Aperture Radar (SAR). Hasilnya menunjukkan kemampuan data penginderaan jauh untuk merekam jangkauan dan dampak dari deposit murni sesaat setelah pengendapan dan sebelum proses erosi, serta menyoroti tujuan penggunaan citra resolusi tinggi dan data SAR di gunungapi sangat aktif dengan akses untuk survei lapangan sering kali tidak memungkinkan. Endapan tephra dan PDC menutupi area sekitar 26 km2 di dua DAS, Kali Gendol dan Opak, di sisi selatan Merapi, atau 60-75% dari total luas endapan PDC, dan total volume 45 juta m3. Deposit tephra jatuh menutupi area seluas sekitar 1.300 km2 dengan volume 18-21 juta m3. Volume endapan vulkanik ini diestimasi menggunakan informasi luas yang ditentukan dari data penginderaan jauh dan ketebalan yang diukur di lapangan. (...)
Kunrat, Syegi Lenarahmi. "Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and their Bearing on Explosive Eruptions of a Basalt Volcano." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3828.
Full textMazot, Agnès. "Activité hydrothermale des volcans Kelud et Papandayan (Indonésie) et évaluation des flux de gaz carbonique." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210971.
Full text
Doctorat en sciences, Spécialisation géologie
info:eu-repo/semantics/nonPublished
Palmer, Stephanie. "Hydrogeochemistry of the upper Banyu Pahit River valley, Kawah Ijen volcano, Indonesia." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86725.
Full textLe plus grand lac naturel de saumure hyperacide du monde est situé dans le cratère du volcan Kawah Ijen, dans la province de Java Est, en Indonésie. La rivière hyperacide Banyu Pahit s'écoule sur le flan du Kawah Ijen et constitue une importante source de pollution naturelle régionale. Les fluides hydrothermaux, l'eau souterraine d'origine météorique, les eaux d'exfiltration provenant du lac du cratère et les interactions eau-roche représentent les principaux puits et sources d'eau et de solutés de ce basin. La présente étude est centrée sur la vallée du cours supérieur de la rivière Banyu Pahit (dans un rayon de 3 km du sommet), une région sur laquelle peu d'études se sont penché. Des analyses chimiques détaillées (incluant 46 éléments majeurs, mineurs et en traces) ont été effectuées sur les eaux de la rivière Banyu Pahit, du lac du cratère et de toutes les sources observées (neutres et acides) qui contribuent à l'écoulement de la rivière. La signature chimique distincte de toutes les sources d'eau, ainsi que celle des interactions eau-roche, a été établie. Plusieurs éléments s'avèrent être des traceurs conservatifs de sources et puits hydrologiques du système d'écoulement de surface. L'analyse de mélange basée sur le bilan massique des traceurs conservatifs, combinée aux mesures de débit d'écoulement, est utilisée pour quantifier la contribution massique de fluides et solutés de chaque source. Les résultats de cette analyse indiquent que les fluides provenant du système hydrothermal profond sont responsables de la majeure partie de l'apport de solutés provenant du Kawah Ijen et qu'ils constituent également la source de la rivière Banyu Pahit. Il est maintenant établi que l'apport du lac aux eaux de surface du basin, apport qui jusqu'à present était considéré comme dominant, est largement inférieur à l'apport associé aux fluides hydrothermaux (débit calculé total = 1,2 l/s pour l'apport du lac cont
Books on the topic "Volcanoes – Indonesia"
Geologi, Indonesia Badan. Data dasar gunung api Indonesia. [Jakarta]: Kementerian Energi dan Sumber Daya Mineral, Badan Geologi, 2011.
Find full textIndonesia. Badan Nasional Penanggulangan Bencana. Baseline kegunungapian Indonesia. Jakarta: Badan Nasional Penanggulangan Bencana, 2012.
Find full textKatili, John A. Pemantauan gunungapi di Filipina dan Indonesia. [Bandung]: Ikatan Ahli Geologi Indonesia, 1994.
Find full textZimmerman, Dwight Jon. The day the world exploded: The earthshaking catastrophe at Krakatoa. New York: Collins, 2007.
Find full textTroa, Rainer Arief. Potensi gunungapi bawah laut dan aktivitas hidrotermal perairan Kawasan Timur Indonesia: Suatu tinjauan regional berdasarkan teknik pencitraan tomografi seismik. Jakarta: Pusat Riset Wilayah Laut dan Sumberdaya Nonhayati, Badan Riset Kelautan dan Perikanan, Departemen Kelautan dan Perikanan, 2007.
Find full textForth, Gregory L. Beneath the volcano: Religion, cosmology and spirit classification among the Nage of eastern Indonesia. Leiden: KITLV Press, 1998.
Find full textKrakatau: The destruction and reassembly of an island ecosystem. Cambridge, Mass: Harvard University Press, 1996.
Find full textVroon, Pieter Zeger. Subduction of continental material in the Banda Arc, eastern Indonesia: Sr-Nd-Pb isotope and trace-element evidence from volcanics and sediments. [Utrecht: Faculteit Aardwetenschappen der Rijksuniversiteit Utrecht, 1992.
Find full textBook chapters on the topic "Volcanoes – Indonesia"
Gerstenecker, C., G. Läufer, B. Snitil, and A. Sunantyo. "Determination of a Unified Height Reference System for the Computation of a Local Geoid around the Volcanoes Merapi and Merbabu, Java, Indonesia." In International Association of Geodesy Symposia, 339–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04683-8_63.
Full textZimmer, Martin, and Joerg Erzinger. "Geochemical Monitoring on Merapi Volcano, Indonesia." In Early Warning Systems for Natural Disaster Reduction, 511–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55903-7_67.
Full textErfurt-Cooper, Patricia. "Volcano Tourism at Mount Batur in Bali, Indonesia." In Volcanic Tourist Destinations, 209–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-16191-9_16.
Full textBernard, A., and D. Tedesco. "Geochemistry of the crater lake of Kelut volcano in Indonesia." In Water-Rock Interaction, 299. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203734049-73.
Full textDelmelle, P., and A. Bernard. "Power output and volatile fluxes at Kawah Ijen volcano, Indonesia." In Water-Rock Interaction, 301. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203734049-74.
Full textJenkins, Susanna F., Jean-Christophe Komorowski, Peter J. Baxter, Sylvain J. Charbonnier, Noer Cholik, and Surono. "The Devastating Impact of the 2010 Eruption of Merapi Volcano, Indonesia." In Plate Boundaries and Natural Hazards, 259–69. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119054146.ch12.
Full textRahayuningsih, Handayani, Kwartarini Wahyu Yuniarti, and Tri Kuntoro Priyambodo. "An Exploratory Study of Tourists Photo Taking Behavior at Nglanggeran Ancient Volcano, Gunungkidul, Indonesia." In Balancing Development and Sustainability in Tourism Destinations, 199–209. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1718-6_20.
Full textRizos, Chris, Shaowei Han, Craig Roberts, Xiujiao Han, Hasanuddin Z. Abidin, Ony K. Suganda, and A. Djumarma Wirakusumah. "Continuously operating GPS-based volcano deformation monitoring in Indonesia: the technical and logistical challenges." In Geodesy Beyond 2000, 361–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59742-8_59.
Full textCiptahening, Ayu Narwastu, Nandra Eko Nugroho, and Noppadol Phienwej. "Geological Investigation and Risk Assessment for Disaster Management of Merapi Volcano and Surrounding Area, Yogyakarta Special Territory, Indonesia." In Sustainable Civil Infrastructures, 49–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02032-3_5.
Full textFathani, Teuku Faisal, and Djoko Legono. "The Application of Monitoring and Early Warning System of Rainfall-Triggered Debris Flow at Merapi Volcano, Central Java, Indonesia." In Environmental Science and Engineering, 263–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29107-4_13.
Full textConference papers on the topic "Volcanoes – Indonesia"
Saepuloh, Asep, and Mila Olivia Trianaputri. "Observing ground surface change series at active volcanoes in Indonesia using backscattering intensity of SAR data." In NATIONAL PHYSICS CONFERENCE 2014 (PERFIK 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4915050.
Full textEvita, Maria, Mitra Djamal, Bernd Zimanowski, and Klaus Schilling. "Mobile Monitoring System for Indonesian volcano." In 2015 4th International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME). IEEE, 2015. http://dx.doi.org/10.1109/icici-bme.2015.7401378.
Full textAulia, Atin Nur, Andri Dian Nugraha, Novianti Indrastuti, and Hendra Gunawan. "Seismic tomography imaging beneath Sinabung Volcano, North Sumatra area, Indonesia." In INTERNATIONAL SYMPOSIUM ON EARTH HAZARD AND DISASTER MITIGATION (ISEDM) 2016: The 6th Annual Symposium on Earthquake and Related Geohazard Research for Disaster Risk Reduction. Author(s), 2017. http://dx.doi.org/10.1063/1.4987091.
Full textEvita, Maria, Mitra Djamal, Bernd Zimanowski, and Klaus Schilling. "Fixed-mode of mobile monitoring system for Indonesian volcano." In 2015 4th International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME). IEEE, 2015. http://dx.doi.org/10.1109/icici-bme.2015.7401379.
Full textRy, Rexha V., A. Priyono, A. D. Nugraha, and A. Basuki. "Seismicity study of volcano-tectonic in and around Tangkuban Parahu active volcano in West Java region, Indonesia." In THE 5TH INTERNATIONAL SYMPOSIUM ON EARTHHAZARD AND DISASTER MITIGATION: The Annual Symposium on Earthquake and Related Geohazard Research for Disaster Risk Reduction. Author(s), 2016. http://dx.doi.org/10.1063/1.4947372.
Full textJimawan, Owen Nixon, Stephanie Stephanie, and Philbertha Aurelia. "Probabilistic and statistical analysis of historical activity of Merapi volcano, Indonesia." In INTERNATIONAL SYMPOSIUM ON EARTH HAZARD AND DISASTER MITIGATION (ISEDM) 2017: The 7th Annual Symposium on Earthquake and Related Geohazard Research for Disaster Risk Reduction. Author(s), 2018. http://dx.doi.org/10.1063/1.5047352.
Full textKusumawardani, Rini, Rizki Kurniadhi, Muhammad Mukhlisin, and Djoko Legono. "Rainfall threshold for triggering debris flow on Merapi volcano area, Yogyakarta, Indonesia." In ENGINEERING INTERNATIONAL CONFERENCE (EIC) 2016: Proceedings of the 5th International Conference on Education, Concept, and Application of Green Technology. Author(s), 2017. http://dx.doi.org/10.1063/1.4976891.
Full textNurhasan, D. Sutarno, W. Srigutomo, S. Viridi, and D. Fitriani. "Integrated geophysical measurements for subsurface mapping at Papandayan volcano, Garut, Indonesia (preliminary result)." In INTERNATIONAL CONFERENCE ON PHYSICS AND ITS APPLICATIONS: (ICPAP 2011). AIP, 2012. http://dx.doi.org/10.1063/1.4730710.
Full textEvita, Maria, Mitra Djamal, Bernd Zimanowski, and Klaus Schilling. "Bandwidth management for mobile mode of mobile monitoring system for Indonesian Volcano." In THE 6TH INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED PHYSICS (THE 6th ICTAP). Author(s), 2017. http://dx.doi.org/10.1063/1.4973114.
Full textRetnowati, Dyah Ayu, Irwan Meilano, and Akhmad Riqqi. "Modeling of Volcano Eruption Risk toward Building Damage and Affected Population in Guntur, Indonesia." In 2018 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS). IEEE, 2018. http://dx.doi.org/10.1109/agers.2018.8554097.
Full textReports on the topic "Volcanoes – Indonesia"
Kunrat, Syegi. Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and Their Bearing on Explosive Eruptions of a Basalt Volcano. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5722.
Full text