Academic literature on the topic 'Volcanoes – Indonesia'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Volcanoes – Indonesia.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Volcanoes – Indonesia"

1

Wibisono, Aryo Bayu, Bayu Suryo Ridho Saputro, and Puspita Sari Sukardhani. "Infographic Design As An Effective Communication Model For Volcano Eruption Disaster's Socialization." JURNAL ILMU KOMUNIKASI, no. 2 (December 7, 2018): 11–17. http://dx.doi.org/10.33005/jkom.v0i2.19.

Full text
Abstract:
Indonesia is an archipelago surrounded by cluster of volcanoes known as the ring of fire. Indonesian volcanoes located within the range of the fire ring has the natural disaster potential of volcano eruption. The main concern in this study is the number of tribes people / communities in Indonesia who live in the slopes of the volcano, and the other factor is the fact that people living on the slopes are mostly came from low-education background, making it difficult for the government to socializing the danger. This study will discuss the design and stages of appropriate communication to convey the volcano eruption socialization to the tribes that live in the volcano area using the visual language of infographic. The case studies of this research will take a sampling of the Tengger tribe who inhabit the area of Mount Bromo as one of the active volcano on the Java island, Indonesia. The data retrieving methods used in this study are in-depth interviews, direct observation, and the collection of related books and journal literature. Contributions and model of this research is expected to be applicable to inform people who inhabit the volcano areas in Indonesia of the proper action to take when the volcano eruption strikes.
APA, Harvard, Vancouver, ISO, and other styles
2

Agustin, Fitriani, and Sutikno Bronto. "Volkanostratigrafi Inderaan Jauh Kompleks Gunungapi Gede dan Sekitarnya, Jawa Barat, Indonesia." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 9. http://dx.doi.org/10.33332/jgsm.2019.v20.1.9-16.

Full text
Abstract:
Remote sensing technology greatly helps to identify the various of volcano features, including active, old and ancient volcanoes. The aim of this paper is intended to introduce various volcanic features in the Gede Volcano Complexs (GVC) and souronding area; compose volcanostratigraphy; and estimate the history of the volcanoes. The method used is a visual interpretation 9 meters spatial resolution of Digital Elevation Model (DEM) TerraSar-x image. Indonesian Stratigraphy Nomenclature Guide 1996 was implemented in vocanostratigraphy unit classification, involving Arc, Super Brigate, Brigate, Crown and Hummockly. Based on the interpretation the DEM image, volcanostratigraphic unit the Gede Volcano Complex consists of Bregade Masigit (Br. M.), which consists of Joklok (Gm.J.) and Gegerbentang (Gm.G.) Hummocs; Crown Lingkung (Kh.L.) consisting of Pangrango (Gm.P.), Situ Gunung (Gm Sg.), Cikahuripan (Gm.Ck.), Pasir Prahu (Gm.Ph) Hummocs; Gege Crown (Kh.G.), which is located in the east of Lingkung Crown. The Gede Crown consists of Gumuruh humock (Gm.Gh.), Gunung Gede lava flows (LG 1,2,3,4,5), and giant debrise avalances (gv-G). The geological mapping based volcanostratigraphy is very useful for exploration of mineral and energy resources, as well as geological hazards.Keywords : volcanostratigraphy, DEM TerraSar-x image, Gunung Gede Complexs.
APA, Harvard, Vancouver, ISO, and other styles
3

Agustin, Fitriani, and Sutikno Bronto. "Volkanostratigrafi Inderaan Jauh Kompleks Gunungapi Gede dan Sekitarnya, Jawa Barat, Indonesia." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 9. http://dx.doi.org/10.33332/jgsm.geologi.20.1.9-16.

Full text
Abstract:
Remote sensing technology greatly helps to identify the various of volcano features, including active, old and ancient volcanoes. The aim of this paper is intended to introduce various volcanic features in the Gede Volcano Complexs (GVC) and souronding area; compose volcanostratigraphy; and estimate the history of the volcanoes. The method used is a visual interpretation 9 meters spatial resolution of Digital Elevation Model (DEM) TerraSar-x image. Indonesian Stratigraphy Nomenclature Guide 1996 was implemented in vocanostratigraphy unit classification, involving Arc, Super Brigate, Brigate, Crown and Hummockly. Based on the interpretation the DEM image, volcanostratigraphic unit the Gede Volcano Complex consists of Bregade Masigit (Br. M.), which consists of Joklok (Gm.J.) and Gegerbentang (Gm.G.) Hummocs; Crown Lingkung (Kh.L.) consisting of Pangrango (Gm.P.), Situ Gunung (Gm Sg.), Cikahuripan (Gm.Ck.), Pasir Prahu (Gm.Ph) Hummocs; Gege Crown (Kh.G.), which is located in the east of Lingkung Crown. The Gede Crown consists of Gumuruh humock (Gm.Gh.), Gunung Gede lava flows (LG 1,2,3,4,5), and giant debrise avalances (gv-G). The geological mapping based volcanostratigraphy is very useful for exploration of mineral and energy resources, as well as geological hazards.Keywords : volcanostratigraphy, DEM TerraSar-x image, Gunung Gede Complexs.DOI: 10.33332/jgsm.2019.v20.1.9-16
APA, Harvard, Vancouver, ISO, and other styles
4

Agustin, Fitriani, and Sutikno Bronto. "Volkanostratigrafi Inderaan Jauh Kompleks Gunungapi Gede dan Sekitarnya, Jawa Barat, Indonesia." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 9. http://dx.doi.org/10.33332/jgsm.geologi.v20i1.386.

Full text
Abstract:
Remote sensing technology greatly helps to identify the various of volcano features, including active, old and ancient volcanoes. The aim of this paper is intended to introduce various volcanic features in the Gede Volcano Complexs (GVC) and souronding area; compose volcanostratigraphy; and estimate the history of the volcanoes. The method used is a visual interpretation 9 meters spatial resolution of Digital Elevation Model (DEM) TerraSar-x image. Indonesian Stratigraphy Nomenclature Guide 1996 was implemented in vocanostratigraphy unit classification, involving Arc, Super Brigate, Brigate, Crown and Hummockly. Based on the interpretation the DEM image, volcanostratigraphic unit the Gede Volcano Complex consists of Bregade Masigit (Br. M.), which consists of Joklok (Gm.J.) and Gegerbentang (Gm.G.) Hummocs; Crown Lingkung (Kh.L.) consisting of Pangrango (Gm.P.), Situ Gunung (Gm Sg.), Cikahuripan (Gm.Ck.), Pasir Prahu (Gm.Ph) Hummocs; Gege Crown (Kh.G.), which is located in the east of Lingkung Crown. The Gede Crown consists of Gumuruh humock (Gm.Gh.), Gunung Gede lava flows (LG 1,2,3,4,5), and giant debrise avalances (gv-G). The geological mapping based volcanostratigraphy is very useful for exploration of mineral and energy resources, as well as geological hazards.Keywords : volcanostratigraphy, DEM TerraSar-x image, Gunung Gede Complexs.DOI: 10.33332/jgsm.2019.v20.1.9-16
APA, Harvard, Vancouver, ISO, and other styles
5

Agustin, Fitriani, and Sutikno Bronto. "Volkanostratigrafi Inderaan Jauh Kompleks Gunungapi Gede dan Sekitarnya, Jawa Barat, Indonesia." Jurnal Geologi dan Sumberdaya Mineral 20, no. 1 (February 4, 2019): 9. http://dx.doi.org/10.33332/jgsm.v20i1.386.

Full text
Abstract:
Remote sensing technology greatly helps to identify the various of volcano features, including active, old and ancient volcanoes. The aim of this paper is intended to introduce various volcanic features in the Gede Volcano Complexs (GVC) and souronding area; compose volcanostratigraphy; and estimate the history of the volcanoes. The method used is a visual interpretation 9 meters spatial resolution of Digital Elevation Model (DEM) TerraSar-x image. Indonesian Stratigraphy Nomenclature Guide 1996 was implemented in vocanostratigraphy unit classification, involving Arc, Super Brigate, Brigate, Crown and Hummockly. Based on the interpretation the DEM image, volcanostratigraphic unit the Gede Volcano Complex consists of Bregade Masigit (Br. M.), which consists of Joklok (Gm.J.) and Gegerbentang (Gm.G.) Hummocs; Crown Lingkung (Kh.L.) consisting of Pangrango (Gm.P.), Situ Gunung (Gm Sg.), Cikahuripan (Gm.Ck.), Pasir Prahu (Gm.Ph) Hummocs; Gege Crown (Kh.G.), which is located in the east of Lingkung Crown. The Gede Crown consists of Gumuruh humock (Gm.Gh.), Gunung Gede lava flows (LG 1,2,3,4,5), and giant debrise avalances (gv-G). The geological mapping based volcanostratigraphy is very useful for exploration of mineral and energy resources, as well as geological hazards.Keywords : volcanostratigraphy, DEM TerraSar-x image, Gunung Gede Complexs.
APA, Harvard, Vancouver, ISO, and other styles
6

Bani, P., M. Hendrasto, H. Gunawan, and S. Primulyana. "Sulfur dioxide emissions from Papandayan and Bromo, two Indonesian volcanoes." Natural Hazards and Earth System Sciences 13, no. 10 (October 2, 2013): 2399–407. http://dx.doi.org/10.5194/nhess-13-2399-2013.

Full text
Abstract:
Abstract. Indonesia hosts 79 active volcanoes, representing 14% of all active volcanoes worldwide. However, little is known about their SO2 contribution into the atmosphere, due to isolation and access difficulties. Existing SO2 emission budgets for the Indonesian archipelago are based on extrapolations and inferences as there is a considerable lack of field assessments of degassing. Here, we present the first SO2 flux measurements using differential optical absorption spectroscopy (DOAS) for Papandayan and Bromo, two of the most active volcanoes in Indonesia. Results indicate mean SO2 emission rates of 1.4 t d−1 from the fumarolic activity of Papandayan and more than 22–32 t d−1 of SO2 released by Bromo during a declining eruptive phase. These DOAS results are very encouraging and pave the way for a better evaluation of Indonesian volcanic emissions.
APA, Harvard, Vancouver, ISO, and other styles
7

Bani, P., M. Hendrasto, H. Gunawan, and S. Primulyana. "Sulfur dioxide emissions from Papandayan and Bromo, two Indonesian volcanoes." Natural Hazards and Earth System Sciences Discussions 1, no. 3 (May 14, 2013): 1895–912. http://dx.doi.org/10.5194/nhessd-1-1895-2013.

Full text
Abstract:
Abstract. Indonesia hosts 79 active volcanoes, representing 14% of all active volcanoes worldwide. However, little is known about their passive degassing into the atmosphere due to isolation and access difficulties. Existing SO2 emission budgets for the Indonesian archipelago are based on extrapolations and inferences as there is a considerable lack of field assessments of degassing. Here, we present the first SO2 flux measurements using DOAS for Papandayan and Bromo, two of the most active volcanoes in Indonesia. Results indicate mean SO2 emission rates of 1.4 t d−1 from the fumarolic activity of Papandayan and more than 22–32 t d−1 of SO2 released by Bromo during a declining eruptive phase.
APA, Harvard, Vancouver, ISO, and other styles
8

Iguchi, Masato, Surono, Takeshi Nishimura, Muhamad Hendrasto, Umar Rosadi, Takahiro Ohkura, Hetty Triastuty, et al. "Methods for Eruption Prediction and Hazard Evaluation at Indonesian Volcanoes." Journal of Disaster Research 7, no. 1 (January 1, 2012): 26–36. http://dx.doi.org/10.20965/jdr.2012.p0026.

Full text
Abstract:
We report methods, based on geophysical observations and geological surveys, for the prediction of eruptions and the evaluation of the activity of 4 volcanoes in Indonesia. These are Semeru, Guntur, Kelud and Sinabung volcanoes. Minor increases in tilt were detected by borehole tiltmeters prior to eruptions at the Semeru volcano depending on the seismic amplitude of explosion earthquakes. The results show the possibility of prediction of the type and magnitude of eruption and the effectiveness of observation with a high signalto-noise ratio. The establishment of background data is important for evaluating volcanic activity in longterm prediction. Typical distributions of volcanic and local tectonic earthquakes were obtained around the Guntur volcano, where geodetic monitoring by continuous GPS observation is valuable. The cumulative volume of eruptive products is valuable for evaluating the potential for future eruption. The eruptive rate of the Kelud volcano is ca 2×106m3/y (dense rock equivalent), but the volume of the 2007 eruption was only 2×107m3, suggesting a still high potential for eruption. Based on geological surveys and dating, an eruption scenario is proposed for the activity of Mt. Sinabung, where phreatic eruptions occurred in 2010 after a historically long dormancy.
APA, Harvard, Vancouver, ISO, and other styles
9

Sarjito, Aris. "Crisis Management Policy of Natural Disaster." Advances in Social Sciences Research Journal 7, no. 9 (September 14, 2020): 183–92. http://dx.doi.org/10.14738/assrj.79.8985.

Full text
Abstract:
Abstract Indonesia is the country that has the most active volcanoes in the entire world. The Eurasian Plate, the Pacific Plate, and the Indo-Australian Plate are three active tectonic plates that cause collision zones to form these volcanoes. Indonesia is estimated to have 129 volcanoes, all of which are carefully monitored by the Centre for Volcanology and Geological Disaster Mitigation. This is done because several volcanoes in Indonesia continue to show activity. Moreover, it is estimated that more than five million people live in the "danger zone" of a volcano where they must be immediately evacuated if the mountain shows significant upward activity (Indonesia-Investment, 2019). However, efforts to reduce the risk of natural hazards remain largely uncoordinated in different types of hazards and do not necessarily focus on areas with the highest disaster risk. This paper uses a descriptive qualitative approach as the main writing approach and uses crisis management theory by Rosenthal, that crisis management involves efforts: (1) to prevent a crisis from occurring; (2) to prepare better protection against the impact of crisis agents; (3) to make effective responses to the actual crisis; and (4) to provide plans and resources for post-crisis recovery and rehabilitation. The results of this study are: (1) to accelerate forest recovery, the government can engage the community with security and welfare approach; (2) natural disaster management is the main responsibility of the government; (3) In crises due to natural disasters, form a team that is responsive to critical situations. This team was formed by involving government agencies, community leaders, and NGOs; and (4) to increase the government's capacity to reduce the impact of natural disasters, assessment of potential damage, the establishment of an early warning system, and the improvement of disaster-resistant capabilities are needed. Keywords: Crisis Management; Natural Disaster; Policy.
APA, Harvard, Vancouver, ISO, and other styles
10

Nakada, Setsuya, Fukashi Maeno, Mitsuhiro Yoshimoto, Natsumi Hokanishi, Taketo Shimano, Akhmad Zaennudin, and Masato Iguchi. "Eruption Scenarios of Active Volcanoes in Indonesia." Journal of Disaster Research 14, no. 1 (February 1, 2019): 40–50. http://dx.doi.org/10.20965/jdr.2019.p0040.

Full text
Abstract:
Eruption scenarios were prepared as possible sequences in event trees for six active volcanoes in Indonesia, that are located near populated areas or have erupted in recent years (Galunggung, Guntur, Kelud, Merapi, Semeru, and Sinabung). The event trees prepared here show sequences of possible eruption phenomena without probabilities on branches and cover sequences experienced in historical and pre-historical eruptions based on archives and field research results. Changing magma discharge rates during eruption sequences were considered for the event tree of Merapi. This conceptual event tree can also be used as a short-term event tree in which forecasting the coming eruption became possible with geophysical and geochemical monitoring data. Eruption event trees prepared for selected time windows cannot illustrate all plausible hazards and risks associated with an eruption. Therefore, hazards and risks generated from an eruption should be considered in different domains from the event tree.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Volcanoes – Indonesia"

1

Schmitt, Susanne F. "Disturbance and succession on the Krakatau Islands, Indonesia." Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:a2b3257d-0a00-4286-a38a-01e3016da708.

Full text
Abstract:
This thesis set out to investigate the influence of disturbance on the succession of the Krakatau islands (Rakata, Sertung, Panjang). The hierarchical model of succession by S. Pickett and colleagues (1987) was adopted as a research framework, and provided the basis for an alternative model of succession on Krakatau that focuses on processes rather than successional pathways. Investigations were conducted on (i) the meso-scale, and (ii) the patch-scale, (i) quantified the recent disturbance regime, and inter- and intra-island differences in diversity, (ii) compared sapling performance (growth, mortality and recruitment), and species compositional patterning in space and time for saplings and the seed bank with respect to island, gap size and severity of disturbance. Multivariate techniques were used, and amongst other attempts at characterising the light environment, hemispherical photography was employed. For the first time the effect of a continuous period of volcanic activity (1992-1995) of Anak Krakatau could be directly quantified and compared between Panjang and Sertung (ash-affected) and Rakata (receiving no ash). Increased rates of gap formation in the volcanically active period in comparison to the previous decade were found for all islands. This supports the disturbance-driven model of Whittaker and colleagues. However, an extension is required, because, contrary to expectation, Rakata also experienced more disturbance. This increase is argued to be a result of more severe weather conditions, and an increased number of earth tremors, during times of volcanic activity. The disturbance factors of extreme climatic events (e.g. ENSO events) and human impact are also proposed for inclusion in the alternative model. Drought associated with the 1994 El Niño is of relevance to short-term and potential long-term impact on regeneration dynamics and succession. Attention was drawn to the local human influence of pumice mining on the coastal forests. Supporting previous findings on the plot- and whole island scales, data from species presence/absence transects established that species richness and beta-diversity on the ash- affected islands was also lower on the meso-scale. Panjang's canopy composition is less uniform, and locally more species-rich than Sertung's. More evidence of the suggested decline of the mono-dominant species Neonauclea calycina and Timonius compressicaulis was gathered. The third dominant, Dysoxylum gaudichaudianum, is expanding in the lowlands of all islands. This is aided by its ability to regenerate in moderate shade, to grow rapidly in gap environments, and its tolerance of ash-fall, drought and herbivory. However, on Rakata, it is not expected to become generally mono-dominant because a considerable number of other potential canopy species are present. Sapling performance and species composition and its changes were in general strongly affected by ash-fall and drought. These factors tended to override effects of gap size and severity of disturbance. Advance regeneration, and the composition of the local forest type were identified as important factors influencing the composition of the early stages of gap-fill. The local forest type also seemed to contribute most to seed bank composition. As rarer species tended to have clumped distributions, and 'safe sites' for regeneration seemed not to be limiting, dispersal constraints were argued to be the most likely factors slowing diversification, unless further severe volcanic disturbance leads to successional set-back. The latter also strongly limits the predictability of succession on Krakatau.
APA, Harvard, Vancouver, ISO, and other styles
2

Geiger, Harri. "Characterising the magma supply system of Agung and Batur volcanoes on Bali, Indonesia." Thesis, Uppsala universitet, Berggrundsgeologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-235247.

Full text
Abstract:
Volcanic and magmatic processes are controlled by the composition of the magmas involved and the nature and structure of their underlying plumbing systems. To understand and predict volcanic behaviour, it is of critical importance to characterize the associated magmatic plumbing and supply system. This study investigates the magma plumbing system beneath Bali, Indonesia by employing several thermobarometric models using mineral phases in lavas from the simultaneous eruptions of Agung and Batur volcanoes in 1963 and the 1974 eruption of Batur. Compositional data were acquired from feldspar, pyroxene, and olivine crystals, using electron microprobe analysis, as well as from whole-rock samples using inductively coupled plasma mass spectrometry. Clinopyroxene-melt and clinopyroxene composition thermobarometers were then applied to equilibrated clinopyroxene-melt couples, while plagioclase-melt thermobarometry was employed on equilibrated plagioclase-melt pairs. The results were used to construct comprehensive magmatic plumbing models for Agung and Batur and are compared with geochemical, geophysical and petrological data on these volcanoes and others in the region. For the 1963 Agung eruption, results from clinopyroxene-melt thermobarometry suggest dominant crystallisation levels between 18 and 22 km depth. Clinopyroxene from the 1963 eruption of Batur record crystallisation depths between 12 and 18 km, whereas clinopyroxene from the 1974 Batur eruption show a main crystallisation level between 15 and 19 km. Furthermore, plagioclase-melt thermobarometry indicates the existence of shallow level magma reservoirs, with depths between 3 and 7 km for the 1963 eruption of Agung, between 2 and 4 km for the 1963 Batur eruption and between 3 and 5 km for the 1974 Batur event. The deep magma storage regions notably coincide with lithological boundaries in the crust and mantle beneath Bali, while the shallow reservoirs are consistent with recent geophysical studies that point to regional shallow-level magma storage. An along-arc comparison reveals this trend to be characteristic of Sunda arc magma storage systems and highlights the utility of a thermobarometric approach to detect multi-level systems beneath recently active volcanic systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Delmelle, Pierre. "Geochemical, isotopic and heat budget study of two volcano-hosted hydrothermal systems: the acid crater lakes of Kawah Ijen, Indonesia, and Taal, philippines, volcanoes." Doctoral thesis, Universite Libre de Bruxelles, 1995. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Syahbana, Davy Kamil. "Seismological study of volcanic activity at Papandayan volcano, West Java, Indonesia." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209395.

Full text
Abstract:
Dans l'histoire des éruptions volcaniques, le Papandayan à l'Ouest de Java est considéré comme l'un des plus meurtriers après avoir causé la mort de 2957 personnes et des dégâts sérieux en 1772. L'éruption la plus récente de ce volcan a eu lieu en 2002 et était de type phréatique. Cette éruption a été précédée d'une augmentation soudaine de l'activité sismique moins de deux jours avant l'éruption. Aucune victime n'a été déplorée. La nature de cette éruption est indéfinie. Cette thèse regroupe plusieurs études utilisant différentes techniques en vue d'améliorer la prédictibilité des éruptions du volcan Papandayan, principalement via l'interprétation des signatures sismiques.

Le monitoring sismique passif a débuté en décembre 2009 par l'installation d'une station sismique permanente à large bande dans le cratère du Papandayan. L'année suivante, une station météorologique a été installée pour compléter les mesures. La troisième année, 8 stations sismiques temporaires ont été déployées autour du volcan en réponse à une augmentation de l'activité sismique en 2011.

Nous avons conduit différentes études; (1) Nous avons examiné l'évolution de l'activité volcanique par réalisation d'une revue complète de l'histoire éruptive du volcan, autant pour la période préhistorique qu'historique. (2) Nous avons réalisé une analyse temps-fréquence des événements sismiques, étudié leurs caractéristiques et proposé une nouvelle classification avec une description des processus physiques supposés les générer. (3) Nous avons étudié les signatures sismiques précurseur de l'éruption de 2002 et pendant la crise volcanique de 2011 en implémentant différentes méthodologies, dont: la détection automatique d'événements sismiques à l'aide de filtres récursifs STA/LTA, l'analyse spectrale des formes d'onde, la mesure continue de l'amplitude spectrale du signal (SSAM), la polarisation des ondes et l'analyse de la distribution fréquence/magnitude (b-value). Nous avons alors réalisé un modèle chronologique des séquences sismiques du Papandayan. (4) Pour améliorer la compréhension de la dynamique des fluides sous le volcan Papandayan, nous avons réalisé une analyse des fréquences complexes des événements longue période (LP) et leurs variations temporelles peuvent être utilisées pour estimer (a) la composition des fluides présents dans les fractures sous le volcan et/ou (b) l'évolution des dimensions de ces fractures. Ces variations des fréquences complexes des événements LP peuvent être interprétées comme les réponses dynamiques du système hydrothermal à des changements d'impulsions de chaleur transférées par les flux de gaz volcaniques du magma sous le volcan. (5) nous avons calculé l'évolution temporelle du rapport spectral horizontal-sur-vertical (HVSR) en utilisant le bruit sismique ambiant enregistré par une station unique pour estimer les variations de vitesse de propagation des ondes de cisaillement en lien avec l'activité dynamique du volcan. Nous avons trouvé une corrélation claire entre les variations de fréquence de résonnance HVSR et l'augmentation de la sismicité.

Enfin, nous proposons des hypothèses sur les processus physiques qui se produisent sous le Papandayan. Cette étude est une première tentative d'utilisation de cette méthode pour surveiller l'activité volcanique en continu.


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
5

Caudron, Corentin. "Multi-disciplinary continuous monitoring of Kawah Ijen volcano, East Java, Indonesia." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209416.

Full text
Abstract:
Kawah Ijen (2386 m) is a stratovolcano located within Ijen Caldera, at the easternmost

part of Java island in Indonesia. Since 2010, the volcano has been equipped with seismometers

and several sensors (temperature and level) have been immersed in its acidic lake waters and in the acidic river seeping on the volcano flanks. While finding instruments capable of resisting to such extreme conditions (pH~0) has been challenging, the coupling of lake monitoring techniques with seismic data improves the knowledge of the volcanic-hydrothermal dynamics. Moreover, the monitoring capabilities have been considerably

enhanced supporting the decision-making of the authorities in case of emergency.

Several methods and processing techniques were used to analyze the seismic data. Much effort has been given to implement the seismic velocities (Moving Window Cross Spectral Analysis (MWCSA)) calculations. At Kawah Ijen, the frequency band that is less affected by the volcanic tremor and the seasonal fluctuations at the source ranges between 0.5-1.0 Hz. Moreover, a stack of 5 days for the current CCF gives reliable results with low errors and allows to detect fluctuations which are missed using a 10-day stack.

The background seismic activity mostly consists in low frequency events and a continuous tremor of low amplitude. Fluctuations of the lake temperature and level result from the recharge of the hydrothermal system during the rainy season. Kawah Ijen lake waters are not perfectly mixed and a shallow stratification occurs during the rainy season, because meteoric waters are less dense than the lake fluids.

Different unrest occurred during our study. Some of them strongly affected the volcanic lake, while others did only weakly. In the first category, a strong unrest commenced in October 2011 with heightened VT (Volcano Tectonic) earthquakes and low frequency events activity, which culminated mid-December 2011. This unrest was correlated with an enhanced heat and hydrothermal fluids discharge to the crater and significant variations of the relative velocities (~1%). This suggests an important build-up of stress into the system. VT earthquakes opened pathways for the fluids to ascend, by increasing the permeability of the system, which latter allowed the initiation of monochromatic tremor (MT) when the steam/gases interacted with the shallow portions of the aquifer. Our calculations evidence a higher contribution of steam in March 2012 that might explain the increase of the MT frequency when bubbles were observed at the lake surface. This period was also characterized by short-lived but strong velocity variations, related to water level

rises containing important amount of bubbles, and important heat and mass discharges

into the lake. On the contrary, the second category of unrest did only slightly affect the

lake system. This could be explained by a dryer hydrothermal system and/or locations of

the seismic sources, which were not directly linked to the lake.

While a magmatic eruption will likely be preceded by a strong seismic activity, the major challenges remain to understand why the unrest we studied did not lead to an eruption and to identify precursory signs of a phreatic eruption. Even a small phreatic eruption would be devastating for the people working everyday in the crater and the ones

who live nearby the voluminous acidic lake.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
6

Barbier, Benjamin. "Bilan thermique et caractérisation géochimique de l'activité hydrothermale du volcan Rinjani, Lombok, Indonésie." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210140.

Full text
Abstract:
La caldera du volcan Rinjani contient un lac d’un volume de 1 km³ qui est probablement le plus grand lac volcanique au monde présentant une anomalie thermique nette. Ce lac présente une composition neutre chlorure sulfate bicarbonate inhabituelle pour les lacs volcaniques. Sa TDS (2600 mg/l) et conductivité (3500µs/cm) élevées indiquent un apport de fluides hydrothermaux très important. Enfin, son alcalinité élevée (520 mg/l), indique un apport important de dioxyde de carbone dans le lac.

Les sources thermales situées autour du Gunung Baru (cône volcanique situé dans la caldera) ont une composition chimique en éléments majeurs et une composition isotopique proche de celles du lac volcanique indiquant qu’elles sont essentiellement le résultat du recyclage du lac par le système hydrothermal. Les variations de compositions entre les différentes sources ont permis de montrer que leurs compositions est le résultat du mélange entre un fluide hydrothermal profond de composition neutre chlorure, dont la température a été estimée à 270°C, et d’un fluide plus superficiel riche en magnésium et en sulfate.

Le flux de dioxyde de carbone à la surface du lac a été estimé à l’aide de la méthode de la chambre d’accumulation et par calcul à environ 2300 t/j, ce qui représente un apport significatif de gaz. Cependant, comme le lac présente une structure polymictique, le risque d’accumulation de dioxyde de carbone en profondeur et donc d’éruption limnique peut être exclus.

Pour la première fois dans cette thèse, le modèle d’estimation des flux thermiques émis par les lacs volcaniques mis au point par Stevenson (1992) a été contraint par des mesures des paramètres météorologiques mesurés en continu, ce qui a permis de valider le modèle. De plus, nous avons pu montrer que l’essentiel des variations de températures des lacs volcaniques est dû à des variations météorologiques. En utilisant le flux thermique plutôt que la température, il est dès lors possible d’avoir accès à des variations de l’activité volcanique.

Le flux thermique estimé pour le lac du Rinjani est de 1700 MW, ce qui représente le flux le plus élevé jamais mesuré sur un lac volcanique aérien. Ce flux thermique est aussi plus élevé que le flux thermique mesuré sur des lacs de lave à 800°C. Ce paradoxe apparent s’explique par la plus grande dimension des lacs volcaniques, la capacité calorifique de l’eau quatre fois plus importante que celle du magma et la viscosité de l’eau 1 million de fois inférieure, ce qui fait de l’eau un excellent fluide caloporteur pour transporter les calories vers la surface.


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
7

Solikhin, Akhmad. "Geology, tectonics and post-2001 eruptive activity interpreted from high-spatial resolution satellite imagery : the case study of Merapi and Seremu volcanoes, Indonesia." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22559/document.

Full text
Abstract:
L’intérêt de la télédétection appliquée aux volcans actifs et potentiellement dangereux a été démontré depuis longtemps dans la mesure où cette technique a participé à l’amélioration de la compréhension des processus éruptifs et des aléas volcaniques, amélioration qui permet une réduction des risques volcaniques. Nous avons entrepris plusieurs études volcanologiques reposant sur l’usage d’images de moyenne et haute résolution spatiale, qu’elles soient optiques (IKONOS, Pléiades, GeoEye, Quickbird and SPOT5), radar (ALOS-PALSAR) ou bien thermiques (ASTER et MODIS «hot spot»). Associées à l’analyse de MNTs et de photographies aériennes acquises par un drone, ces études ont consisté à appliquer des techniques de télédétection sur le Semeru et le Merapi, deux des volcans composites les plus actifs et les plus densément peuplés de l’ile de Java en Indonésie. Cette recherche fondée sur la télédétection a permis de mettre en évidence des structures géologiques et tectoniques, d’identifier, de classer et de cartographier des dépôts éruptifs sur les deux volcans et a servi à améliorer l’évaluation des risques à la suite des grandes éruptions de 2002-2003 au Semeru et de 2010 au Merapi. Nous avons également initié une étude afin de comprendre les interactions entre l’activité éruptive et le contexte sismo-tectonique régional en utilisant l’analyse des données MODIS avec la méthode MODVOLC. Nous avons remis à jour la carte géologique du volcan Semeru en y associant des données issues de l’interprétation d’images HSR récentes, des photographies aériennes, l’analyse de MNTs et des observations de terrain, notamment dans le réseau hydrograhique qui convoie des lahars. Nous avons décrit l’histoire éruptive postérieure à 2001 au Semeru en incluant la grande éruption à l’origine des écoulements pyroclastiques (EPs) en 2002-2003 et les éruptions effusives de 2012-2014, qui constituent un phénomène rarement observé sur ce volcan. Le Semeru a produit un volume de 2.5 ± 0.5 106m3 de coulées de lave provenant du cratère sommital entre 2010 et 2014, ce qui peut annoncer, pour la première fois depuis 1967 ou 1941, une modification profonde du style éruptif de ce volcan. Au moment de terminer cette thèse, le dome-coulée situé dans le cratère Jonggring-Seloko continue à croître et les coulées de lave dépassent 2 km de longueur dans la cicatrice majeure en pente raide sur le flanc SE ; leurs fronts pourraient s’effondrer et produire des EPs dont le volume moyen pourrait excéder les valeurs de 3 à 6.5 million de m3 mesurées sur la période 1967-2007. Les écoulements futurs pourront déborder des parois de la cicatrice vers l’aval et se propager vers les vallées des flancs est et sud-ouest. L’épisode éruptif du 26 octobre au 23 novembre 2010 s’est avéré l’événement majeur de l’activité du Merapi depuis 1872. Notre interprétation des images HSR démontre qu’à l’issue des éruptions explosives, le sommet du Merapi a perdu un volume de 10 x 106m3 et la gorge de Gendol orientée SSE a été élargie jusqu’à mesurer 1.3 x 0.3 x 0.2 km. Le nouveau cratère élargi et profond inclut le dome post-2010, qui a été fracturé en 2013, tandis que ses parois verticales instables peuvent être fragilisées par les explosions mineures de 2013 et 2014. Nous avons identifié et cartographié les dépôts pyroclastiques et de lahar de 2010 en appliquant plusieurs méthodes de classification aux images optiques HSR et aux données polarisées de Radar à Synthèse d’Ouverture (RSO). Les résultats démontrent la capacité de l’imagerie satellitaire HSR à capturer l’extension et les impacts de dépôts immédiatement après une grande éruption et avant tout remaniement. Cette technique met en exergue l’utilité de l’imagerie haute résolution et des données radar pour les volcans en activité persistante dont l’accès est souvent rendu impossible. (...)
Remote sensing has long been recognized as a tool for analysis at active and hazardous volcanoes because it can augment our understanding of the processes that underlie volcanic activity so as enable us to apply this understanding to volcanic risk reduction. This thesis presents a volcanological study using High-Spatial Resolution optical images (IKONOS, Pléiades, GeoEye, Quickbird and SPOT5 satellites), radar data (ALOS-PALSAR sensor) and thermal (ASTER satellite and MODIS hot spot) images. In association with DEMs and low-altitude aerial photographs, remote sensing techniques have been applied for tracing the evolution of activity at Semeru and Merapi, two of the most active and densely populated volcanoes in Java, Indonesia. This remotely sensing-based study has unraveled structures, geological features and erupted deposits of both volcanoes and has improved the existing hazard assessment after their most recent eruptions. The thesis also presents the first advance towards deciphering possible interactions between regional tectonic earthquakes and renewed stages of eruptive activity of Merapi and Semeru volcanoes based on the analysis of volcanic hotspots detected by the MODVOLC technique. The geological map of Semeru is updated, including additional data derived from the interpretation of the most recent satellite images, aerial photographs, DEM analysis and fieldwork. The post-2001 eruptive activity at Semeru, including the large PDC-forming eruption in 2002-2003 and uncommon lava flow eruptions in 2010-2014 are investigated. The fact that Semeru has produced several lava flows from the central summit vent between 2010 and 2014 may herald a profound change in eruption style for the first time since at least 1967. At the time of writing, a dome-fed coulée in the Jonggring-Seloko crater continues to grow and lava flows are extending to distances of >2 km down Semeru's SE-scar; their fronts may collapse and produce large-volume pyroclastic density currents (PDCs), perhaps exceeding the average (1967-2007) volume range of 3 to 6.5 million m3. Future dome-collapse PDCs may travel farther down the main SE scar and can spill over its lowermost rims towards the southwest and eastward radiating drainage network. The 26 October-23 November 2010 eruption was the Merapi’s largest event since 1872 (it attained VEI=4). The interpretation of HSR images shows that due to the explosive eruptions, the summit area lost about 10 x 106m3 and the SSE-trending Gendol Breach enlarged to reach 1.3 x 0.3 x 0.2 km in size. The new, enlarged and deep summit crater including the 2010 lava dome is extremely unstable having been weakened by the post-2010 explosive events. This instability is a result of the steep Gendol Breach below the mouth of the crater and the steep and unstable crater walls. The 2010 Merapi pyroclastic and lahar deposits have been identified by applying several classification methods to HSR optical images and dual-polarization synthetic aperture radar (SAR) data. The results show the ability of remotely sensed data to capture the extent and impacts of pristine deposits shortly after emplacement and before any reworking, and highlight the purpose of using high-spatial resolution imagery and SAR data on persistently active volcanoes where access for field survey is often impossible. The 2010 tephra and PDC deposits covered ca. 26 km2 in two catchments of Gendol and Opak Rivers on Merapi’s south flank, i.e. 60-75% of the total PDC deposit area and a total bulk volume of 45 x 106m3. The tephra-fall deposit covered an area of ca. 1300 km2 with a volume range of 18-21 x 106m3. Volumes of these deposits were estimated using the areas determined from remote sensing data and deposit thickness measured in the field. (...)
Penginderaan jauh telah lama dikenal sebagai suatu alat untuk analisis di gunungapi aktif dan berbahaya karena dapat meningkatkan pemahaman kita tentang proses yang mendasari aktivitas gunung berapi sehingga memungkinkan kita untuk menerapkan pemahaman ini dalam pengurangan risiko erupsi gunungapi. Disertasi ini menyajikan studi vulkanologi menggunakan citra satelit optik resolusi tinggi (IKONOS, Pléiades, GeoEye, Quickbird dan SPOT5), data radar (ALOS-PALSAR sensor) dan citra termal (satelit ASTER dan hotspot MODIS). Dalam kaitannya dengan DEM dan foto udara, teknik penginderaan jauh telah diterapkan untuk melihat evolusi aktivitas di Semeru dan Merapi, dua gunung berapi yang paling aktif dengan kepadatan penduduk yang tinggi terletak di Pulau Jawa, Indonesia. Studi berbasis penginderaan jauh ini telah mengkaji struktur, fitur geologi dan material erupsi dari kedua gunungapi tersebut dan telah mempertajam penilaian bahaya yang ada setelah erupsi terkini. Disertasi ini juga menyajikan kemajuan awal dalam menafsirkan kemungkinan interaksi antara gempa tektonik regional dan aktivitas gunungapi Merapi dan Semeru berdasarkan analisis hotspot vulkanik yang terdeteksi oleh MODVOLC. Peta geologi Semeru telah diperbaharui dengan memasukkan data tambahan yang berasal dari interpretasi citra satelit terbaru, foto udara, analisis DEM dan data lapangan. Aktivitas erupsi pasca-2001 di Semeru, termasuk erupsi dengan aliran pirokastik (Pyroclastic Density Current/PDC) besar pada tahun 2002-2003 dan erupsi tidak biasa dengan aliran lava pada 2010-2014, telah dikaji. Fakta bahwa Semeru telah menghasilkan beberapa aliran lava dari kawah di puncak antara tahun 2010 dan 2014, mengindikasikan perubahan besar dalam gaya erupsi untuk pertama kalinya setidaknya sejak 1967. Pada saat penulisan disertasi ini, sebuah kubah lava (Coulée) di kawah Jonggring- Seloko terus tumbuj dan aliran lava yang memanjang hingga jarak >2 km arah tenggara Semeru; ujung lava kemungkinan dapat runtuh dan menghasilkan aliran piroklastik yang mungkin melebihi volume rata-rata (tahun 1967 hingga 2007) dalam kisaran 3-6.5 juta m3. Aliran piroklastik yang akan datang mungkin mengalir sepanjang gawir utama ke arah tenggara dan dapat menyebar melampaui lereng paling bawah ke arah barat daya dan ke arah timur menyebar ke jaringan drainase. Erupsi yang terjadi pada 26 Oktober-23 November 2010 adalah erupsi terbesar Merapi (mencapai VEI 4) sejak 1872. Interpretasi citra resolusi tinggi menunjukkan bahwa daerah puncak kehilangan batuannya sekitar 10 juta m3 akibat erupsi eksplosif. Erupsi juga memperbesar “Gendol Breach” dengan orientasi tenggara menjadi berukuran 1.3x0.3x0.2 km. Kawah puncak yang baru, diperbesar dan dalam, termasuk juga kubah lava tahun 2010 sangat tidak stabil dan telah diperlemah oleh beberapa erupsi eksplosif pasca-2010. Ketidakstabilan ini diakibatkan oleh curamnya Gendol Breach di bawah mulut kawah dan kondisi dinding kawah yang curam dan tidak stabil. Deposit piroklastik dan lahar diidentifikasi dengan menerapkan beberapa metode klasifikasi terhadap citra optik resolusi tinggi dan data dual-polarisasi Synthetic Aperture Radar (SAR). Hasilnya menunjukkan kemampuan data penginderaan jauh untuk merekam jangkauan dan dampak dari deposit murni sesaat setelah pengendapan dan sebelum proses erosi, serta menyoroti tujuan penggunaan citra resolusi tinggi dan data SAR di gunungapi sangat aktif dengan akses untuk survei lapangan sering kali tidak memungkinkan. Endapan tephra dan PDC menutupi area sekitar 26 km2 di dua DAS, Kali Gendol dan Opak, di sisi selatan Merapi, atau 60-75% dari total luas endapan PDC, dan total volume 45 juta m3. Deposit tephra jatuh menutupi area seluas sekitar 1.300 km2 dengan volume 18-21 juta m3. Volume endapan vulkanik ini diestimasi menggunakan informasi luas yang ditentukan dari data penginderaan jauh dan ketebalan yang diukur di lapangan. (...)
APA, Harvard, Vancouver, ISO, and other styles
8

Kunrat, Syegi Lenarahmi. "Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and their Bearing on Explosive Eruptions of a Basalt Volcano." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3828.

Full text
Abstract:
Soputan volcano is one of the few basaltic volcanoes among 127 active volcanoes in Indonesia. It is part of the Sempu-Soputan volcanic complex located south of Tondano Caldera, North Sulawesi and commonly produces both explosive eruptions with VEI 2-3 and effusive lava dome and flow eruptions. Over the last two decades, Soputan had thirteen eruptions, the most recent in 2016. Most eruptions started explosively, followed by dome growth and in some cases pyroclastic flows. Our study focuses on understanding the magmatic system of Soputan and what processes are responsible for its highly explosive eruptions, which are typically uncommon for a basaltic magma composition. Our study includes tephra samples predating the 1911 eruptions, lava flow samples from the 2015 eruption, and ash from a 2015 fallout deposit. Our whole rock major and trace element composition are virtually identical to lava flow and select pyroclastic deposit compositions of Kushendratno et al. (2012) for the 1911-1912 and 1991-2007 eruptions. Bulk rocks contain 49 to 51 wt.% SiO2, whereas 2015 ash samples are slightly more silicic with 53 wt.% SiO2, consistent with segregation of groundmass from phenocrysts in the eruption cloud. Mantle normalized incompatible trace elements indicate strongly depleted HFSE (High Field Strength Elements) and REE (Rare Earth Elements) signatures but with spikes at Pb and Sr and mild enrichment of Rb and Ba. In comparison of data of this study with what was reported by Kushendratno et al. (2012), Fo68-79 olivine-hosted melt inclusions range from basaltic (48-52 wt.% SiO2) to basaltic andesite (54-55 wt.%) as compared to 54 - 65 wt.% SiO2 glass in Fo68-74 olivines. The compositional range of melt inclusions is consistent with 50% fractionation of multiple minerals including observed phenocrysts of olivine, plagioclase, pyroxene and oxides. Compositional trends with an inflection point likely reflect a change in the crystallizing assemblage, where early crystallization includes clinopyroxene and plagioclase, while later crystallization is dominated by plagioclase. New volatile concentration data from melt inclusions (S max. 0.35 wt.%, Cl max. 0.17%, H2O max. 5.2 wt.% from FTIR analyses) are higher than previously reported from younger samples (S max. ~0.07 wt.%, Cl max. 0.2%, H2O max. ~1 wt.%). H2O is relatively constant (~1-4 wt.%) for individual tephra samples (data by FTIR and water by difference method). Our inclusion data suggest that more volatile-rich magmas exist at depth and this is consistent with a model whereby recharge of deep, volatile-rich magmas into a more degassed and crystal-rich magma initiates a new, highly explosive eruption.
APA, Harvard, Vancouver, ISO, and other styles
9

Mazot, Agnès. "Activité hydrothermale des volcans Kelud et Papandayan (Indonésie) et évaluation des flux de gaz carbonique." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210971.

Full text
Abstract:
Surface manifestations of hydrothermal fluids such as fumaroles and hot springs provide valuable information about the level of activity of a volcano during quiescent period. Geochemical study of gas and spring waters is useful to elaborate geochemical model for magmatic-hydrothermal system. Furthermore, temporal geochemical monitoring of these fluids with time provides a better understanding in processes occurring inside the volcano and can be useful to detect any changes in the activity of the magmatic-hydrothermal system. This thesis investigates two hydrothermal systems at Kelud and Papandayan volcanoes that are located at Java Island in Indonesia. Kelud is considered as one of the most dangerous volcanoes of Java because of its frequent eruptions. After the last eruption that occurred in 1990, a new lake rapidly filled the crater of Kelud volcano. Water samples collected since 1993 are near neutral Na-K chloride fluids and are typical of aged hydrothermal system where the acidity has been completely neutralized by fluid-rock interaction and where the emission of acid magmatic gases has stopped. Two sudden increases in lake temperature in 1996 and 2001 were accompanied by rapid changes in lake water compositions and suggest the existence of two hydrothermal systems feeding the lake: a shallow hydrothermal system dominated by Ca-Mg sulfate waters and a deepest aquifer with neutral alkali chloride waters. From 2001 to 2005, measurements of CO2 emitted by the surface of the lake were performed by using the accumulation chamber method modified in order to work at the surface of a crater lake. Two statistical methods were used to process data: the graphical statistical and stochastic simulation methods. The results of graphical statistical approach showed that two different degassing processes are acting at the lake surface: one corresponding to CO2 fluxes resulting from rising bubbles and the other corresponding to equilibrium diffusion of dissolved CO2 at the water-air surface. Total CO2 emission rate estimated by stochastic simulation ranges from 105 t/day for 2001 to 32 t/day for 2005. Thermal energy released by the lake was also estimated by using an energy balance model with a new constraint using the CO2 flux. The thermal flux decreased from 200 MW (2001) to 100 MW (2002) and then remained stable. Correlation between the chemical data of waters, the fluxes of CO2 and energy show that a constant decrease in the level of activity of the volcano since 1993 occurred although the lake temperature has been stable since 2003. Since the last magmatic eruption that occurred in 1772, phreatic eruptions occur on Papandayan volcano with the last one in 2002. The volcanic material ejected during this eruption is essentially made of altered rocks from within the hydrothermal system. The interaction of acid waters with the host rocks corresponds to an advanced argilic alteration. The chemical compositions of waters from Papandayan volcano and Kelud lake waters are contrasting. Indeed, the spring waters sampled since 1994 are acid sulfate-chloride waters and acid sulfate waters. The chemical and isotopic analyses of gases and waters suggest a significant magmatic contribution in SO2, HCl and HF to the hydrothermal system. The chemical composition of waters sampled after the 2002 eruption have provided information about origin of this eruption. Decrease in chloride concentration and in delta 34S of dissolved sulfates showed that the magmatic contribution in these fluids are less important and that the waters are likely to be formed by the condensation of steam (H2O, H2S) rising from a boiling aquifer.


Doctorat en sciences, Spécialisation géologie
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
10

Palmer, Stephanie. "Hydrogeochemistry of the upper Banyu Pahit River valley, Kawah Ijen volcano, Indonesia." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86725.

Full text
Abstract:
The largest naturally-occurring lake of hyperacid brine in the world is located in the crater of Kawah Ijen volcano in East Java, Indonesia. The hyperacid Banyu Pahit River flows down the side of Kawah Ijen and is a major source of regional natural pollution. Hydrothermal fluid, meteoric derived groundwater, seepage from the hyperacid crater lake, and water-rock interaction are the major sources and sinks of water and solutes from the volcano to the surrounding environment. The current research is focused on the upper Banyu Pahit River valley (within 3 km of the summit) which has been understudied to date. Detailed chemical analyses of the Banyu Pahit River, the crater lake, and all observed springs (neutral and acid) that contribute water to the river were made, including 46 major, minor and trace elements. The distinct chemical signature of each water source, as well as that of water-rock interaction, is determined. Several elements have been identified as conservative tracers of hydrologic sources and sinks as they enter the surface water system. Mass balance mixing analysis using the conservative tracers, combined with discharge measurements, is used to quantify the fluid and solute mass contribution of each source. The results of this analysis indicate that fluid from the deep hydrothermal system contributes the majority of the solute flux from Kawah Ijen, and that it also forms the headwaters of the Banyu Pahit River. The flux of crater lake seepage, which was previously assumed to be both the main source of acid water for the Kawah Ijen hydrologic system and the headwaters of the Banyu Pahit River, has now been determined to be a full order of magnitude lower than that of hydrothermal fluid (total calculated flux = 1.2 l/s crater lake seepage versus 15.4 l/s hydrothermal fluid).
Le plus grand lac naturel de saumure hyperacide du monde est situé dans le cratère du volcan Kawah Ijen, dans la province de Java Est, en Indonésie. La rivière hyperacide Banyu Pahit s'écoule sur le flan du Kawah Ijen et constitue une importante source de pollution naturelle régionale. Les fluides hydrothermaux, l'eau souterraine d'origine météorique, les eaux d'exfiltration provenant du lac du cratère et les interactions eau-roche représentent les principaux puits et sources d'eau et de solutés de ce basin. La présente étude est centrée sur la vallée du cours supérieur de la rivière Banyu Pahit (dans un rayon de 3 km du sommet), une région sur laquelle peu d'études se sont penché. Des analyses chimiques détaillées (incluant 46 éléments majeurs, mineurs et en traces) ont été effectuées sur les eaux de la rivière Banyu Pahit, du lac du cratère et de toutes les sources observées (neutres et acides) qui contribuent à l'écoulement de la rivière. La signature chimique distincte de toutes les sources d'eau, ainsi que celle des interactions eau-roche, a été établie. Plusieurs éléments s'avèrent être des traceurs conservatifs de sources et puits hydrologiques du système d'écoulement de surface. L'analyse de mélange basée sur le bilan massique des traceurs conservatifs, combinée aux mesures de débit d'écoulement, est utilisée pour quantifier la contribution massique de fluides et solutés de chaque source. Les résultats de cette analyse indiquent que les fluides provenant du système hydrothermal profond sont responsables de la majeure partie de l'apport de solutés provenant du Kawah Ijen et qu'ils constituent également la source de la rivière Banyu Pahit. Il est maintenant établi que l'apport du lac aux eaux de surface du basin, apport qui jusqu'à present était considéré comme dominant, est largement inférieur à l'apport associé aux fluides hydrothermaux (débit calculé total = 1,2 l/s pour l'apport du lac cont
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Volcanoes – Indonesia"

1

Geologi, Indonesia Badan. Data dasar gunung api Indonesia. [Jakarta]: Kementerian Energi dan Sumber Daya Mineral, Badan Geologi, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Indonesia. Badan Nasional Penanggulangan Bencana. Baseline kegunungapian Indonesia. Jakarta: Badan Nasional Penanggulangan Bencana, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Katili, John A. Pemantauan gunungapi di Filipina dan Indonesia. [Bandung]: Ikatan Ahli Geologi Indonesia, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zimmerman, Dwight Jon. The day the world exploded: The earthshaking catastrophe at Krakatoa. New York: Collins, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Troa, Rainer Arief. Potensi gunungapi bawah laut dan aktivitas hidrotermal perairan Kawasan Timur Indonesia: Suatu tinjauan regional berdasarkan teknik pencitraan tomografi seismik. Jakarta: Pusat Riset Wilayah Laut dan Sumberdaya Nonhayati, Badan Riset Kelautan dan Perikanan, Departemen Kelautan dan Perikanan, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matthews, Rupert. The eruption of Krakatoa. New York: Bookwright Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Benoit, Peter. The Krakatau eruption. New York: Children's Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Forth, Gregory L. Beneath the volcano: Religion, cosmology and spirit classification among the Nage of eastern Indonesia. Leiden: KITLV Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krakatau: The destruction and reassembly of an island ecosystem. Cambridge, Mass: Harvard University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vroon, Pieter Zeger. Subduction of continental material in the Banda Arc, eastern Indonesia: Sr-Nd-Pb isotope and trace-element evidence from volcanics and sediments. [Utrecht: Faculteit Aardwetenschappen der Rijksuniversiteit Utrecht, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Volcanoes – Indonesia"

1

Gerstenecker, C., G. Läufer, B. Snitil, and A. Sunantyo. "Determination of a Unified Height Reference System for the Computation of a Local Geoid around the Volcanoes Merapi and Merbabu, Java, Indonesia." In International Association of Geodesy Symposia, 339–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04683-8_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zimmer, Martin, and Joerg Erzinger. "Geochemical Monitoring on Merapi Volcano, Indonesia." In Early Warning Systems for Natural Disaster Reduction, 511–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55903-7_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Erfurt-Cooper, Patricia. "Volcano Tourism at Mount Batur in Bali, Indonesia." In Volcanic Tourist Destinations, 209–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-16191-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bernard, A., and D. Tedesco. "Geochemistry of the crater lake of Kelut volcano in Indonesia." In Water-Rock Interaction, 299. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203734049-73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Delmelle, P., and A. Bernard. "Power output and volatile fluxes at Kawah Ijen volcano, Indonesia." In Water-Rock Interaction, 301. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203734049-74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jenkins, Susanna F., Jean-Christophe Komorowski, Peter J. Baxter, Sylvain J. Charbonnier, Noer Cholik, and Surono. "The Devastating Impact of the 2010 Eruption of Merapi Volcano, Indonesia." In Plate Boundaries and Natural Hazards, 259–69. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119054146.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rahayuningsih, Handayani, Kwartarini Wahyu Yuniarti, and Tri Kuntoro Priyambodo. "An Exploratory Study of Tourists Photo Taking Behavior at Nglanggeran Ancient Volcano, Gunungkidul, Indonesia." In Balancing Development and Sustainability in Tourism Destinations, 199–209. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1718-6_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rizos, Chris, Shaowei Han, Craig Roberts, Xiujiao Han, Hasanuddin Z. Abidin, Ony K. Suganda, and A. Djumarma Wirakusumah. "Continuously operating GPS-based volcano deformation monitoring in Indonesia: the technical and logistical challenges." In Geodesy Beyond 2000, 361–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59742-8_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ciptahening, Ayu Narwastu, Nandra Eko Nugroho, and Noppadol Phienwej. "Geological Investigation and Risk Assessment for Disaster Management of Merapi Volcano and Surrounding Area, Yogyakarta Special Territory, Indonesia." In Sustainable Civil Infrastructures, 49–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02032-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fathani, Teuku Faisal, and Djoko Legono. "The Application of Monitoring and Early Warning System of Rainfall-Triggered Debris Flow at Merapi Volcano, Central Java, Indonesia." In Environmental Science and Engineering, 263–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29107-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Volcanoes – Indonesia"

1

Saepuloh, Asep, and Mila Olivia Trianaputri. "Observing ground surface change series at active volcanoes in Indonesia using backscattering intensity of SAR data." In NATIONAL PHYSICS CONFERENCE 2014 (PERFIK 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4915050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Evita, Maria, Mitra Djamal, Bernd Zimanowski, and Klaus Schilling. "Mobile Monitoring System for Indonesian volcano." In 2015 4th International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME). IEEE, 2015. http://dx.doi.org/10.1109/icici-bme.2015.7401378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aulia, Atin Nur, Andri Dian Nugraha, Novianti Indrastuti, and Hendra Gunawan. "Seismic tomography imaging beneath Sinabung Volcano, North Sumatra area, Indonesia." In INTERNATIONAL SYMPOSIUM ON EARTH HAZARD AND DISASTER MITIGATION (ISEDM) 2016: The 6th Annual Symposium on Earthquake and Related Geohazard Research for Disaster Risk Reduction. Author(s), 2017. http://dx.doi.org/10.1063/1.4987091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Evita, Maria, Mitra Djamal, Bernd Zimanowski, and Klaus Schilling. "Fixed-mode of mobile monitoring system for Indonesian volcano." In 2015 4th International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME). IEEE, 2015. http://dx.doi.org/10.1109/icici-bme.2015.7401379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ry, Rexha V., A. Priyono, A. D. Nugraha, and A. Basuki. "Seismicity study of volcano-tectonic in and around Tangkuban Parahu active volcano in West Java region, Indonesia." In THE 5TH INTERNATIONAL SYMPOSIUM ON EARTHHAZARD AND DISASTER MITIGATION: The Annual Symposium on Earthquake and Related Geohazard Research for Disaster Risk Reduction. Author(s), 2016. http://dx.doi.org/10.1063/1.4947372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jimawan, Owen Nixon, Stephanie Stephanie, and Philbertha Aurelia. "Probabilistic and statistical analysis of historical activity of Merapi volcano, Indonesia." In INTERNATIONAL SYMPOSIUM ON EARTH HAZARD AND DISASTER MITIGATION (ISEDM) 2017: The 7th Annual Symposium on Earthquake and Related Geohazard Research for Disaster Risk Reduction. Author(s), 2018. http://dx.doi.org/10.1063/1.5047352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kusumawardani, Rini, Rizki Kurniadhi, Muhammad Mukhlisin, and Djoko Legono. "Rainfall threshold for triggering debris flow on Merapi volcano area, Yogyakarta, Indonesia." In ENGINEERING INTERNATIONAL CONFERENCE (EIC) 2016: Proceedings of the 5th International Conference on Education, Concept, and Application of Green Technology. Author(s), 2017. http://dx.doi.org/10.1063/1.4976891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nurhasan, D. Sutarno, W. Srigutomo, S. Viridi, and D. Fitriani. "Integrated geophysical measurements for subsurface mapping at Papandayan volcano, Garut, Indonesia (preliminary result)." In INTERNATIONAL CONFERENCE ON PHYSICS AND ITS APPLICATIONS: (ICPAP 2011). AIP, 2012. http://dx.doi.org/10.1063/1.4730710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Evita, Maria, Mitra Djamal, Bernd Zimanowski, and Klaus Schilling. "Bandwidth management for mobile mode of mobile monitoring system for Indonesian Volcano." In THE 6TH INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED PHYSICS (THE 6th ICTAP). Author(s), 2017. http://dx.doi.org/10.1063/1.4973114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Retnowati, Dyah Ayu, Irwan Meilano, and Akhmad Riqqi. "Modeling of Volcano Eruption Risk toward Building Damage and Affected Population in Guntur, Indonesia." In 2018 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS). IEEE, 2018. http://dx.doi.org/10.1109/agers.2018.8554097.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Volcanoes – Indonesia"

1

Kunrat, Syegi. Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and Their Bearing on Explosive Eruptions of a Basalt Volcano. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography