Academic literature on the topic 'Voltage droop'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Voltage droop.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Voltage droop"
Gorijeevaram Reddy, Prudhvi Kumar, Sattianadan Dasarathan, and Vijayakumar Krishnasamy. "Investigation of Adaptive Droop Control Applied to Low-Voltage DC Microgrid." Energies 14, no. 17 (August 28, 2021): 5356. http://dx.doi.org/10.3390/en14175356.
Full textS. Pilehvar, Mohsen, and Behrooz Mirafzal. "Frequency and Voltage Supports by Battery-Fed Smart Inverters in Mixed-Inertia Microgrids." Electronics 9, no. 11 (October 22, 2020): 1755. http://dx.doi.org/10.3390/electronics9111755.
Full textGadhethariya, Fenil V., and Melvin Z. Thomas. "Analysis of Voltage Droop Control of Dc Micro-Grid." Indian Journal of Applied Research 4, no. 5 (October 1, 2011): 235–38. http://dx.doi.org/10.15373/2249555x/may2014/69.
Full textZhang, Liang, Kang Chen, Shengbin Chi, Ling Lyu, and Guowei Cai. "The Hierarchical Control Algorithm for DC Microgrid Based on the Improved Droop Control of Fuzzy Logic." Energies 12, no. 15 (August 3, 2019): 2995. http://dx.doi.org/10.3390/en12152995.
Full textLe, Phuong Minh, Huy Minh Nguyen, Hoa Thi Xuan Pham, and Tho Quang Tran. "Analysis and design of new droop control scheme for three-phase parallel inverters in standelone Microgrid." Science and Technology Development Journal 19, no. 1 (March 31, 2016): 5–19. http://dx.doi.org/10.32508/stdj.v19i1.605.
Full textMohammadi, Fazel, Gholam-Abbas Nazri, and Mehrdad Saif. "An Improved Droop-Based Control Strategy for MT-HVDC Systems." Electronics 9, no. 1 (January 1, 2020): 87. http://dx.doi.org/10.3390/electronics9010087.
Full textRen, Biying, Xiangdong Sun, Shasha Chen, and Huan Liu. "A Compensation Control Scheme of Voltage Unbalance Using a Combined Three-Phase Inverter in an Islanded Microgrid." Energies 11, no. 9 (September 18, 2018): 2486. http://dx.doi.org/10.3390/en11092486.
Full textChen, Xiao Qi, and Hong Jie Jia. "A New more Stable Droop Control Strategy in the Islanded Microgrid." Applied Mechanics and Materials 448-453 (October 2013): 2228–34. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.2228.
Full textZhang, Quan-Quan, and Rong-Jong Wai. "Robust Power Sharing and Voltage Stabilization Control Structure via Sliding-Mode Technique in Islanded Micro-Grid." Energies 14, no. 4 (February 8, 2021): 883. http://dx.doi.org/10.3390/en14040883.
Full textYan, Xiangwu, Hongbin Ma, Jiaoxin Jia, Waseem Aslam, Chenguang Wang, Shizheng Zhang, and Baixue Liang. "Precise Reactive Power-Voltage Droop Control of Parallel Virtual Synchronous Generators That Considers Line Impedance." Electronics 10, no. 11 (June 3, 2021): 1344. http://dx.doi.org/10.3390/electronics10111344.
Full textDissertations / Theses on the topic "Voltage droop"
Ahmed, Faisal Mahmood. "Estimated Droop Control for Parallel Connected Voltage Source Inverters : Stability Enhancement." Thesis, Karlstads universitet, Avdelningen för fysik och elektroteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-30794.
Full textAluru, Radha Krishna. "Voltage Droop Analysis and Mitigation in STTRAM-based Last Level Cache." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6455.
Full textButcher, Nicholas David. "Active Paralleling of High Power Voltage Source Inverters." Thesis, University of Canterbury. Electrical and Computer, 2007. http://hdl.handle.net/10092/3430.
Full textNord, Thomas. "Voltage Stability in an Electric Propulsion System for Ships." Thesis, KTH, Elektriska energisystem, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118932.
Full textChen, Fang. "Control of DC Power Distribution Systems and Low-Voltage Grid-Interface Converter Design." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77532.
Full textPh. D.
Tomaszewski, Michal. "Reactive power management capabilities of Swedish sub-transmission and medium voltage level grid." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240411.
Full textHogre genomslagskraft av förnyelsebara energikällor i elnäteten är bådeen utmaning och möjlighet för att optimalt kunna utnyttja potentialen av vindkraft och PV källor, med avseende på att stabilisera driften av framtida elkraftsystem. Tvåvägsflöden mellan distributionoch transmissionsoperatörer orsakar betydande problem att hålla spänningen i nätet inom tillåtna gränsvärden.Denna uppsats innehåller en beskrivning av Ö lands mellanoch lågspänningsnät,på 0.4 kV till 130 kV i syftet att utföra en kvasistatisk analys av aktiva och reaktiva effektflöden i systemet. Målet med analysen är att optimera det reaktiva effektutbytet i kopplingspunkten med fastlandets nät. I det analyserade systemet, finns det en enorm potential på 190% genomslagskraft av vindkraft. Kapaciteten på vindkraftsparker kopplade till medtagna samlingsskenor i systemet uppgår till 136,1 MW, som tillgodoser upp till 90.5 MW last. Med industrimässigt begränsad reaktiv effektkapabilitet, uppgår vindkraftsparkernas bidrag till nästan 66 MVAr, vilken möjliggör kompensation för underskott och överskott av reaktiv effekt i nätet. Det presenterade systemet är kopplat till fastlandet genom en kopplingspunkt, där fastlandet är simulerat som en Thevenin ekvivalent. Huvudsakliga målet med denna uppsats är att testa och analysera gångbara lösningar för att minimera det reaktiva effektutbytet vid kopplingspunkten i Stävlö, som kopplar ihop Ö land med resterande nät i Sverige, samtidigt som alla nödvändiga villkor enligt nuvarande nätkoder i Sverige bibehålls, liksom termiska gränser för ledningarna och spanningsgränser för systemet. Ytterligare beskrivs den bästa tillgängliga tekniken som finns idag för reaktiv effektkompensation, och de mest lovande teknikerna för att effektivt och verkningsfullt kontrollera reaktiva effektflöden. Droop-kontroll-metodologier, med fokus på globala och lokala tillämpningar, och smarta nät-möjligheter testas och modelleras av författarna och presenterar djupgående i detta arbete. Dessutom jämförs ekonomiska kostnader för olika kontrollmetoder. Analyser av aktiva effektförluster i systemet samt kostnader för implementation av alternativa lösningar presenteras, där de flesta gångbara losningar behandlas, och ger en överskådlig bild av framtida perspektiv och utmaningar i elkraftsystemet. Det visas att vindturbiners kontroll av reaktiv effekt, kan förbättra driften av elnäten, genom att minimera det reaktiva effektflödesutbytet i gränsen mellan distributionoch transmissionsoperatörers nät. Ytterligare pekar resultat på att extra understöd av reaktiv effekt från vindturbiner kan leda till förminskning av aktiva förluster i systemet. Det presenterade systemet modelleras i mjukvaruprogrammet PSS/E dedikerat för elkraftsingenjörer med hjälp av Python. Analys av data gjordes antingen i Pythoneller R-relaterade miljöer. Detta arbete har gjorts tillsam-mans med KTH och E.ON Energidistribution AB.
Samadi, Afshin. "Large Scale Solar Power Integration in Distribution Grids : PV Modelling, Voltage Support and Aggregation Studies." Doctoral thesis, KTH, Elektriska energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154602.
Full textThe Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively. QC 20141028
Mohd, Daut Mohamad Hazwan. "Pico-grid : multiple multitype energy harvesting system." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289426.
Full textFerreira, Rodrigo Arruda Felício. "Controle de microrredes CC baseado em droop adaptativo de tensão – simulação em tempo real com control-hardware-in-loop." Universidade Federal de Juiz de Fora (UFJF), 2015. https://repositorio.ufjf.br/jspui/handle/ufjf/4173.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-26T12:05:46Z (GMT) No. of bitstreams: 1 rodrigoarrudafelicioferreira.pdf: 7303630 bytes, checksum: 971316c74f1313f54e1c09c837c93e74 (MD5)
Made available in DSpace on 2017-04-26T12:05:46Z (GMT). No. of bitstreams: 1 rodrigoarrudafelicioferreira.pdf: 7303630 bytes, checksum: 971316c74f1313f54e1c09c837c93e74 (MD5) Previous issue date: 2015-03-13
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Este trabalho apresenta um estudo sobre alguns dos aspectos relacionados às microrredes em corrente contínua, uma alternativa para utilização de fontes renováveis de energia em sistemas de geração distribuída. Considerando que a manutenção da tensão no barramento principal das microrredes, no qual as fontes e as cargas são conectadas, é uma das questões mais importantes para a operação de modo satisfatório destes sistemas, um sistema de controle descentralizado de tensão integrando técnicas de controle por droop de tensão e de controle por modos deslizantes é proposto. Uma microrrede CC de 10 kW conectada à rede CA e composta por arranjos fotovoltaicos e bancos de baterias, dimensionada para atender uma parcela das cargas eletrônicas e de iluminação do Instituto Federal de Educação, Ciência e Tecnologia – Campus Juiz de Fora, é modelada e simulada em tempo real utilizando o conceito de simulação CHIL. Resultados experimentais utilizando controladores externos como dispositivos em teste são utilizados para analisar o comportamento do sistema em diferentes condições e para validação da metodologia proposta. Além disso, é apresentado um estudo das técnicas de análise de estabilidade de tensão para sistemas em corrente contínua. Por fim, é apresentada uma metodologia baseada em síntese de elementos reativos utilizando conversores estáticos para estabilização ativa de sistemas CC simplificados, contendo uma fonte e uma carga do tipo potência constante.
This work presents aspects related to DC microgrids, an alternative way of using renewable energy sources in a decentralized fashion. Whereas the maintenance of the microgrid main bus voltage, in which the sources and loads are connected, is one of the most important issues for the satisfactory operation of these systems, a novel methodology for regulating DC bus voltage integrating voltage droop control and sliding mode control techniques is proposed. A grid-connected 10 kW DC microgrid containing photovoltaic arrays and a battery bank, sized to meet a portion of electronic and lighting loads of the Federal Institute of Education, Science and Technology - Campus Juiz de Fora, is modeled and simulated in real time using the concept of CHIL simulation. Experimental results using external controllers as hardware under test are used to analyze system behavior under different conditions and to validate the proposed methodology. Furthermore, a study regarding voltage stability analysis techniques applied to DC systems is presented. Finally, a methodology based on synthesis of reactive elements using static converters for active stabilization of simplified CC systems, containing one source and one constant power load, is presented.
Tazay, Ahmad F. "Smart Inverter Control and Operation for Distributed Energy Resources." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/7097.
Full textBooks on the topic "Voltage droop"
Ohm's law, electrical math and voltage drop calculations. [U.S.?]: Henry Publications, 2002.
Find full textPractical calculations for electricians: Step-by-step calculations & formulas for : branch circuits, conductors, boxes & raceways, voltage drop, AC motors, dwelling loads, commercial loads : based on the 2005 National Electrical Code. Carson City, Nev: Nevada Tech Publishers, 2006.
Find full textHenry, Tom. Ohm's Law, Electrical Math, & Low Voltage Drop Calculations. Tom Henry's Code Electrical Classes & Booksto, 1988.
Find full textHenry, Tom. Ohm's Law, Electrical Math and Voltage Drop Calculations. Tom Henry's Code Electrical Classes & Booksto, 1992.
Find full textOhm's Law, Electrical Math, and Low Voltage Drop Calculations. Tom Henrys Code Electrical, 1988.
Find full textBook chapters on the topic "Voltage droop"
Wu, Yongling, Xiaodong Zhao, Kang Li, and Shaoyuan Li. "Parameter Optimization of Voltage Droop Controller for Voltage Source Converters." In Communications in Computer and Information Science, 87–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45286-8_10.
Full textCanacsinh, H., José Fernando Silva, Sónia F. Pinto, and Luis M. Redondo. "Solid-State Bipolar Marx Generator with Voltage Droop Compensation." In Technological Innovation for Value Creation, 411–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28255-3_45.
Full textGrilo, António, and Mário Nunes. "Voltage Control in Low Voltage Grids with Distributed Energy Resources: A Droop-Based Approach." In Communications in Computer and Information Science, 184–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27753-0_10.
Full textAndrade, Iván, Rubén Peña, Ramón Blasco-Gimenez, Javier Riedemann, and Cristian Pesce. "Droop Control Strategy for Voltage Source Converters Containing Renewable Power Sources." In Lecture Notes in Electrical Engineering, 299–311. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37161-6_22.
Full textZammit, Daniel, Cyril Spiteri Staines, Maurice Apap, and Alexander Micallef. "Paralleling Converters in DC Microgrids with Modified Lag I-V Droop Control and Voltage Restoration." In Lecture Notes in Electrical Engineering, 161–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56970-9_13.
Full textKarkar, Hitesh M., and Indrajit N. Trivedi. "Primary and Secondary Droop Control Method for Islanded Microgrid with Voltage Regulation and Current Sharing." In Lecture Notes in Electrical Engineering, 75–86. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0226-2_6.
Full textHan, Yang. "Consensus-Based Enhanced Droop Control Scheme for Accurate Power Sharing and Voltage Restoration in Islanded Microgrids." In Modeling and Control of Power Electronic Converters for Microgrid Applications, 239–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74513-4_7.
Full textSukhadiaa, Rakesh, and Saurabh Pandya. "Modified Droop Control Strategy for Load Sharing and Circulating Current Minimization in Low-Voltage Standalone DC Microgrid." In Lecture Notes in Electrical Engineering, 57–74. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0226-2_5.
Full textWeik, Martin H. "voltage drop." In Computer Science and Communications Dictionary, 1904. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20935.
Full textYue, Dong, Huifeng Zhang, and Chunxia Dou. "A Virtual Complex Impedance Based $$P-\dot{V}$$ Droop Method for Parallel-Connected Inverters in Low-Voltage AC Microgrids." In Cooperative Optimal Control of Hybrid Energy Systems, 355–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6722-7_15.
Full textConference papers on the topic "Voltage droop"
Xie, Bo, Hailiang Hou, and Yun Cheng. "Droop Control of Low-voltage Microgrids With Voltage Compensation." In 2019 6th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2019. http://dx.doi.org/10.1109/icisce48695.2019.00150.
Full textRichardson, Bob, and Tudor Pike. "Pulse Droop Compensation using a PWM Technique." In 2008 IEEE International Power Modulators and High Voltage Conference (IPMC). IEEE, 2008. http://dx.doi.org/10.1109/ipmc.2008.4743620.
Full textWu, Guihong, Zhengchun Du, Yudi Zhao, and Yangyang Zhao. "A Weighted Voltage Droop Control for Reducing DC Voltage Deviation." In 2020 5th International Conference on Power and Renewable Energy (ICPRE). IEEE, 2020. http://dx.doi.org/10.1109/icpre51194.2020.9233215.
Full textAllison, Brandon, Diana Wallison, Thomas Overbye, and Jamie Weber. "Voltage Droop Controls in Power Flow Simulation." In 2019 IEEE Texas Power and Energy conference (TPEC). IEEE, 2019. http://dx.doi.org/10.1109/tpec.2019.8662197.
Full textMajumder, Ritwik, Arindam Ghosh, Gerard Ledwich, and Firuz Zare. "Angle droop versus frequency droop in a voltage source converter based autonomous microgrid." In Energy Society General Meeting (PES). IEEE, 2009. http://dx.doi.org/10.1109/pes.2009.5275987.
Full textLi, Chengcheng, Jianguo Wu, Kun Zhang, Xiang Dai, and Sheng Xu. "Improved droop control based voltage compensation and variable droop coefficient in DC microgrids." In 2016 UKACC 11th International Conference on Control (CONTROL). IEEE, 2016. http://dx.doi.org/10.1109/control.2016.7737608.
Full textCassel, R. L. "Pulsed Voltage Droop Compensation for Solid State Marx Modulator." In 2008 IEEE International Power Modulators and High Voltage Conference. IEEE, 2008. http://dx.doi.org/10.1109/ipmc.2008.4743593.
Full textTorres, Fernando, Sebastian Martinez, Claudio Roa, and Enrique Lopez. "Comparison Between Voltage Droop and Voltage Margin Controllers for MTDC Systems." In 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2018. http://dx.doi.org/10.1109/ica-acca.2018.8609748.
Full textZhang, Xing, Jilei Wang, Zixuan Guo, Feng Han, Xinxin Fu, and Shaolong Chen. "Low Voltage Ride Through of Voltage Source Converters With Droop Control." In 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2021. http://dx.doi.org/10.1109/iciea51954.2021.9516036.
Full textHoltz, Matthew Seetharam A., Seetharam Narasimhan, and Swarup Bhunia. "On-die CMOS voltage droop detection and dynamiccompensation." In the 18th ACM Great Lakes symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1366110.1366122.
Full text