Academic literature on the topic 'Voltage references'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Voltage references.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Voltage references"

1

Merev, Ahmet, and Jari K. Hallstrom. "A Reference System for Measuring High-DC Voltage Based on Voltage References." IEEE Transactions on Instrumentation and Measurement 64, no. 1 (2015): 184–89. http://dx.doi.org/10.1109/tim.2014.2338673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

POPA, COSMIN. "LOGARITHMICAL CURVATURE-CORRECTED VOLTAGE REFERENCES WITH IMPROVED TEMPERATURE BEHAVIOR." Journal of Circuits, Systems and Computers 18, no. 03 (2009): 519–34. http://dx.doi.org/10.1142/s0218126609005253.

Full text
Abstract:
Two voltage reference circuits will be presented. For the first circuit, the linear compensation of V GS (T) for an MOS transistor in subthreshold region will be realized using an original offset voltage follower block as PTAT voltage generator, with the advantages of reducing the silicon area and of increasing accuracy by replacing matched resistors with matched transistors. A new logarithmic curvature-correction technique will be implemented using an asymmetric differential amplifier for compensating the logarithmic temperature dependent term from V GS (T). Because of the operation in weak inversion of all MOS transistors, the circuit will have a very small current consumption, making it compatible with low-power low-voltage designs. The simulated temperature coefficient of the reference voltage for V DD = 2.5 V and a temperature range 0 < t < 30° C is 36.5 ppm/K, confirming the theoretical estimations. The variation of the reference voltage with respect to the supply voltage is 1.5 mV/V for 2–4 V. The circuit current consumption is about 1 μA and the minimal supply voltage is 2 V. The main goal of the second proposed voltage reference is to improve the temperature behavior of a previous reported bipolar voltage reference, by replacing the bipolar transistors with MOS transistors working in weak inversion, with the advantage of obtaining the compatibility with CMOS technology. The new proposed curvature-correction technique will be based on the compensation of the nonlinear temperature dependence of the gate-source voltage for a subthreshold operated MOS transistor by a correction current obtained by taking the difference between two gate-source voltages for MOS transistors biased at drain currents with different temperature dependencies. The circuit is implemented in 0.35 μm CMOS technology. The SPICE simulation confirms the theoretical estimated results, reporting a temperature coefficient of 4.23 ppm/K for the commercial temperature range, 0 < t < 70° C and a small supply voltage, V DD = 2.5 V . The variation of the reference voltage with respect to the supply voltage is 0.9 mV/V for 2–4 V.
APA, Harvard, Vancouver, ISO, and other styles
3

Egorychev, L. N. "Improving the output voltage reproducibility of dc voltage references." Measurement Techniques 32, no. 4 (1989): 361–62. http://dx.doi.org/10.1007/bf00866636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pandey, Brajesh, and A. N. Chandorkar. "Precision Low Voltage and Current References." Journal of Low Power Electronics 3, no. 2 (2007): 167–74. http://dx.doi.org/10.1166/jolpe.2007.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vukadinović, Dinko, and Mateo Bašić. "A Stand-Alone Induction Generator with Improved Stator Flux Oriented Control." Journal of Electrical Engineering 62, no. 2 (2011): 65–72. http://dx.doi.org/10.2478/v10187-011-0011-5.

Full text
Abstract:
A Stand-Alone Induction Generator with Improved Stator Flux Oriented ControlThis paper presents an improved stator flux oriented (SFO) control system for a stand-alone induction generator. The induction generator supplies a variable resistive dc load. In order to provide an essentially constant terminal voltage, the product of the rotor speed and the stator flux reference should remain constant. However, in this case the control system is not able to function properly at different loads and dc-link voltages. In this paper, we introduce a new algorithm in which this product is constant at certain dc-load and dc-link voltage references. The dependence of the stator flux reference on the dc load and dc voltage reference is mapped using an artificial neural network (ANN). We also present an analysis of the efficiency of the SFO control system, as well as its performance during transients, over a wide range of both dc-link voltage references and loads. The validity of the proposed approach is verified by realistic simulation in a Matlab-Simulink environment.
APA, Harvard, Vancouver, ISO, and other styles
6

Pflueger, R. J. "New RTD-boostrapped current and voltage references. I. Self-bootstrapped references." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 41, no. 11 (1994): 740–43. http://dx.doi.org/10.1109/81.331527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pflueger, R. J. "New RTD-bootstrapped current and voltage references. II. Mirror-based references." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 41, no. 11 (1994): 744–47. http://dx.doi.org/10.1109/81.331528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abesingha, B., G. A. Rincon-Mora, and D. Briggs. "Voltage shift in plastic-packaged bandgap references." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 49, no. 10 (2002): 681–85. http://dx.doi.org/10.1109/tcsii.2002.806734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Degrauwe, M. G. R., O. N. Leuthold, E. A. Vittoz, H. J. Oguey, and A. Descombes. "CMOS voltage references using lateral bipolar transistors." IEEE Journal of Solid-State Circuits 20, no. 6 (1985): 1151–57. http://dx.doi.org/10.1109/jssc.1985.1052453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bounouh, Alexandre, Henri Camon, and Denis Belieres. "Wideband High Stability MEMS-Based AC Voltage References." IEEE Transactions on Instrumentation and Measurement 62, no. 6 (2013): 1646–51. http://dx.doi.org/10.1109/tim.2012.2225963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Voltage references"

1

Colombo, Dalton Martini. "Bandgap voltage references in submicrometer CMOS technology." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/16136.

Full text
Abstract:
Referências de tensão são blocos fundamentais em uma série de aplicações de sinais mistos e de rádio frequência, como por exemplo, conversores de dados, PLL's e conversores de potência. A implementação CMOS mais usada para referências de tensão é o circuito Bandgap devido sua alta previbilidade, e baixa dependência em relação à temperatura e tensão de alimentação. Este trabalho estuda aplicação de Referência de Tensão Bandgap. O princípio, as topologias tradicionalmente usadas para implementar este método e as limitações que essas arquiteturas sofrem são investigadas. Será também apresentada uma pesquisa das questões recentes envolvendo alta precisão, operação com baixa tensão de alimentação e baixa potência, e ruído de saída para as referências Bandgap fabricadas em tecnologias submicrométricas. Além disso, uma investigação abrangente do impacto causado pelo o processo da fabricação e do ruído no desempenho da referência é apresentada. Será mostrado que o ruído de saída pode limitar a precisão dos circuitos Bandgap e seus circuitos de ajuste. Para desenvolver nosso trabalho, três Referências Bandgap foram projetadas utilizando o processo IBM 7RF 0.18 micra com uma tensão de alimentação de 1.8V. Também foram projetados os leiautes desses circuitos para prover informações pósleiaute extraídos e resultados de simulação elétrica. Este trabalho provê uma discussão de algumas topologias e das práticas de projeto para referências Bandgap.<br>A Voltage Reference is a pivotal block in several mixed-signal and radio-frequency applications, for instance, data converters, PLL's and power converters. The most used CMOS implementation for voltage references is the Bandgap circuit due to its highpredictability, and low dependence of the supply voltage and temperature of operation. This work studies the Bandgap Voltage References (BGR). The most relevant and the traditional topologies usually employed to implement Bandgap Voltage References are investigated, and the limitations of these architectures are discussed. A survey is also presented, discussing the most relevant issues and performance metrics for BGR, including, high-accuracy, low-voltage and low-power operation, as well as the output noise of Bandgap References fabricated in submicrometer technologies. Moreover, a comprehensive investigation on the impact of fabrication process effects and noise on the reference voltage is presented. It is shown that output noise can limit the accuracy of the BGR and trim circuits. To support and develop our work, three BGR´s were designed using the IBM 0.18 Micron 7RF process with a supply voltage of 1.8 V. The layouts of these circuits were also designed to provide post-extracted layout information and electrical simulation results. This work provides a comprehensive discussion on the structure and design practices for Bandgap References.
APA, Harvard, Vancouver, ISO, and other styles
2

Parker, Kevin. "An on-chip trimming technique for CMOS voltage references." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq20686.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mattia, Neto Oscar Elisio. "NanoWatt resistorless CMOS voltage references for Sub-1 V applications." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/107131.

Full text
Abstract:
Referências de tensão integradas sempre foram um bloco fundamental de qualquer sistema eletrônico e um importante tópico de pesquisa que tem sido estudado extensivamente nos últimos 50 anos. Uma tensão de referência é um circuito que provê uma tensão estável com baixa sensibilidade a variações em temperatura, alimentação, carga, características do processo de fabricação e tensões mecânicas de encapsulamento. Elas são normalmente implementadas através da soma ponderada de dois fenômenos físicos diferentes, com comportamentos em temperatura opostos. Normalmente, a tensão térmica, relacionada à constante de Boltzmann e à carga do elétron, fornece uma dependência positiva com temperatura, enquanto que a tensão base-emissor VBE de um transistor bipolar ou a tensão de limiar de um MOSFET fornece o termo complementar. Um bloco auxiliar é às vezes utilizado para fornecer as correntes de polarização do circuito, e outros blocos adicionais implementam a soma ponderada. A evolução da tecnologia de processos é o principal fator para aplicações em baixa tensão, enquanto que a emergência de dispositivos portáteis operados a bateria, circuitos biomédicos implantáveis e dispostivos de captura de energia do ambiente restringem cada circuito a consumir o mínimo possivel. Portanto, alimentações abaixo de 1 V e consumos na ordem de nanoWatts se tornaram características fundamentais de tais circuitos. Contudo, existem diversos desafios ao projetar referências de tensão de alta exatidão em processos CMOS modernos sob essas condições. As topologias tradicionais não são adequadas pois elas provêm uma referência de tensão acima de 1 V, e requerem resistências da ordem de G para atingir tão baixo consumo de potência, ocupando assim uma grande área de silício. Avanços recentes atingiram tais níveis de consumo de potência, porém com limitada exatidão, custosos procedimentos de calibração e grande área ocupada em silício. Nesta dissertação apresentam-se duas novas topologias de circuitos: uma tensão de junção bipolar com compensação de curvatura que não utiliza resistores e é auto-polarizada; e um circuito de referência bandgap sem resistores que opera abaixo de 1 V (também chamado de sub-bandgap). Ambos circuitos operam com consumo na ordem de nanoWatts e ocupam pequenas áreas de silício. Resultados de simulação para dois processos diferentes, 180 nm e 130 nm, e resultados experimentais de uma rodada de fabricação em 130 nm apresentam melhorias sobre tais limitações, mantendo as características desejadas de não conter resistores, ultra baixo consumo, baixa tensão de alimentação e áreas muito pequenas.<br>Integrated voltage references have always been a fundamental block of any electronic system, and an important research topic that has been extensively studied in the past 50 years. A voltage reference is a circuit that provides a stable voltage with low sensitivity to variations in temperature, supply, load, process characteristics and packaging stresses. They are usually implemented through the weighted sum of two independent physical phenomena with opposite temperature dependencies. Usually the thermal voltage, related to the Boltzmann’s constant and the electron charge, provides a positive temperature dependence, while the silicon bandgap voltage or a MOSFET’s threshold voltage provide the complementary term. An auxiliary biasing block is sometimes necessary to provide the necessary currents for the circuit to work, and additional blocks implement the weighted sum. The scaling of process technologies is the main driving factor for low voltage operation, while the emergence of portable battery-operated, implantable biomedical and energy harvesting devices mandate that every circuit consume as little power as possible. Therefore, sub-1 V supplies and nanoWatt power have become key characteristics for these kind of circuits, but there are several challenges when designing high accuracy voltage references in modern CMOS technologies under these conditions. The traditional topologies are not suitable because they provide a reference voltage above 1 V, and to achieve such power consumption levels would require G resistances, that occupy a huge silicon area. Recent advances have achieved these levels of power consumption but with limited accuracy, expensive calibration procedures and large silicon area.
APA, Harvard, Vancouver, ISO, and other styles
4

Bowers, Derek Frederick. "The Design of Bandgap Voltage References for Applications Requiring Minimal Output Noise." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Пилипенко, И. А., та А. А. Чубенко. "Обзор методов проектирования маломощных источников опорного напряжения в интегральном исполнении". Thesis, Видавництво СумДУ, 2012. http://essuir.sumdu.edu.ua/handle/123456789/27683.

Full text
Abstract:
Рук.: Л.Д. Писаренко<br>Развитие технологии производства, математического аппарата моделирования и прочих средств разработки электронных устройств постоянно расширяет сферу их применения и роль в нашей повседневной жизни. Миниатюризация электронных компонентов и переход к цифровым методам обработки сигналов и передачи данных предъявляют постоянно растущие требования к точности измерений и преобразований аналоговых сигналов в цифровой вид. Решение этой проблемы на данный момент невозможно без использования прецизионных источников опорного напряжения (ИОН), а также их точных математических моделей, которые сокращают время разработки и улучшают точность характеристик проектируемых устройств. При цитировании документа, используйте ссылку http://essuir.sumdu.edu.ua/handle/123456789/27683
APA, Harvard, Vancouver, ISO, and other styles
6

Gupta, Vishal. "An accurate, trimless, high PSRR, low-voltage, CMOS bandgap reference IC." Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-07052007-073154/.

Full text
Abstract:
Thesis (Ph. D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008.<br>Ayazi, Farrokh, Committee Member ; Rincon-Mora, Gabriel, Committee Chair ; Bhatti, Pamela, Committee Member ; Leach, W. Marshall, Committee Member ; Morley, Thomas, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
7

Balasubramanian, Sidharth. "Low-voltage and low-power libraries for Medical SoCs." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259776639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sassi, Mariela Mayumi Franchini Sasaki. "Projeto de fontes de tensão de referência através de metaheurísticas." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/18/18155/tde-26082013-134021/.

Full text
Abstract:
Geradores de referência, ou fontes de tensão de referência, são largamente empregados na composição de diversos circuitos eletrônicos, pois são responsáveis por gerar e manter uma tensão constante para o restante do circuito. Como se trata de um circuito analógico e que possui diversas condições a serem atendidas (baixo coeficiente de temperatura, baixa tensão de alimentação, baixa regulação de linha, dentre outras), sua complexidade é alta e isso se reflete no tempo/dificuldade de um projeto. Com a finalidade de aumentar a qualidade do circuito e diminuir o tempo de projeto, foi estudado o projeto de fontes de tensão de referência através da aplicação de metaheurísticas, que são métodos de otimização utilizados em problemas que não possuem solução analítica. As metaheurísticas aplicadas foram: algoritmos genéticos, simulated annealing e pattern search, todos disponíveis em uma toolbox de otimização do Matlab. A fonte projetada, utilizando uma topologia proposta neste trabalho, fornece uma tensão de referência de 0,302 V em 300 K a uma tensão mínima de operação de 1,01 V. O coeficiente de temperatura, no intervalo de -10°C a 90°C, é de 19 ppm/°C a 1,01 V e a regulação de linha, com tensão de alimentação no intervalo de 1,01 V a 2,5 V, é de 81 ppm/V a 300 K. O consumo de potência é de 4,2 \'mü\'W, também em 300 K e a 1,01 V e a área é de 0,061 \'MM POT.2\'. Como resultado, mostrou-se a eficiência da utilização destes métodos no dimensionamento de elementos do circuito escolhido e foi obtida uma fonte de tensão de referência que atende aos critérios estabelecidos e é superior quanto ao critério de regulação de linha, quando comparada a outras fontes da literatura. Neste trabalho, foi utilizada a tecnologia CMOS de 0,35 \'mü\'m da Austria Micro Systems (AMS).<br>Voltage references are widely employed to compose electronic circuits, since they are responsible for generating and maintaining a constant voltage to the rest of the circuit. As it is an analog circuit and it has several conditions to fulfill (low temperature coefficient, low supply voltage, low line regulation, among others), its complexity is high, which reflects at the time/difficulties of a design. In order to increase the quality of the circuit and to minimize the design time, it was studied voltage references design using metaheuristics, which are optimization methods used in problems with no analytical solution. The applied metaheuristics were: genetic algorithms, simulated annealing and pattern search, they are all available in an optimization toolbox at Matlab. The designed voltage reference, applying a topology proposed in this work, provides a reference voltage of 0.302 V at 300 K at a minimum supply voltage of 1.01 V. The temperature coefficient, from -10°C to 90°C, is 19 ppm/°C at 1.01 V and the line regulation, using a supply voltage from 1.01 V to 2.5 V, is 81 ppm/V at 300 K. The power consumption is 4.2 W also at 300 K and 1.01 V and the area is 0.061 \'MM POT.2\'. As a result, it was shown that those methods are efficient in sizing the devices of the chosen topology and it was obtained a voltage reference that fulfills all established criteria and that is superior at the line regulation criterion, when compared to other voltage reference of the literature. In this work, the 0.35-\'mü\'m CMOS technology provided by Austria Micro Systems (AMS) was used.
APA, Harvard, Vancouver, ISO, and other styles
9

Andersson, Martin. "Konstruktion av förstärkare och insamplingssteg till en PSAADC i 0.25 um CMOS." Thesis, Linköping University, Department of Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1132.

Full text
Abstract:
<p>The aim and goal of this work has been to design and implement a voltage reference network for a 12-bit PSAADC, Parallell Successive Analog to Digital Converter. A chip containing the design has been sent away for fabrication. Because of the long processing time, no measurement data are presented. The main specifications for the voltage reference generator is to generate stable reference voltages with low noise and a good PSRR. Efforts has also been made to minimize the power consumption.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Komark, Stina. "Design of an integrated voltage regulator." Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1711.

Full text
Abstract:
<p>Many analog systems need a stable power supply voltage that does not vary with temperature and time in order to operate properly. In a battery operated system the battery voltage is not stable, e.g. it decreases with decreasing temperature and with ageing. In that case a voltage regulator must be used, that regulates the battery voltage and generates a stable supply voltage to power other circuitry. </p><p>In this thesis a voltage regulator to be used in a battery operated system has been designed which meets the given specification of stability and power capabilities. A voltage reference, which is a commonly used devise in analog circuits, was also designed. The role of a reference voltage in an electrical system is the same as for a tuning fork in a musical ensemble; to set a standard to which other voltages are compared. </p><p>A functionality to detect when the lifetime of the battery is about to run out was also developed.</p>
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Voltage references"

1

Kok, Chi-Wah, and Wing-Shan Tam. CMOS Voltage References. John Wiley & Sons Singapore Pte. Ltd., 2012. http://dx.doi.org/10.1002/9781118275696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harrison, Linden T. Current sources & voltage references. Newnes, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kärkkäinen, Anna-Maija. MEMS based voltage references. VTT Technical Research Centre of Finland, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Semiconductors, Plessey. Data converters and voltage references IC handbook. Plessey Semiconductors, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Popa, Cosmin Radu. Superior-Order Curvature-Correction Techniques for Voltage References. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0416-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rincón-Mora, Gabriel A. Voltage references: From diodes to precision high-order bandgap circuits. IEEE Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Instruments, Texas. Power supply circuits data book: Voltage references, voltage regulators, PWM controllers, supervisors, switches, optoisolators, and special functions. Texas Instruments, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Smedt, Valentijn, Georges Gielen, and Wim Dehaene. Temperature- and Supply Voltage-Independent Time References for Wireless Sensor Networks. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09003-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

CMOS voltage reference: An analytical and practical perspective. IEEE ; Wiley, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

J, Plassche Rudy, and Sansen Willy M. C, eds. Analog Circuit Design: Low-Noise, Low-Power, Low-Voltage; Mixed-Mode Design with CAD Tools; Voltage, Current and Time References. Springer US, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Voltage references"

1

Plassche, Rudy. "Voltage and current references." In CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters. Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3768-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Popa, Cosmin Radu. "Current References." In Superior-Order Curvature-Correction Techniques for Voltage References. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0416-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pederson, Donald O., and Kartikeya Mayaram. "Rectifiers, Regulators and Voltage References." In Analog Integrated Circuits for Communication. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2128-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yuan, Fei. "Low-Power Precision Voltage References." In CMOS Circuits for Passive Wireless Microsystems. Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7680-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lei, Ka-Meng, Pui-In Mak, and Rui P. Martins. "Ultra-Low-Voltage Clock References." In Analog Circuits and Signal Processing. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22231-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Popa, Cosmin Radu. "Zero-Order Curvature-Corrected Voltage References." In Superior-Order Curvature-Correction Techniques for Voltage References. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0416-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Popa, Cosmin Radu. "First-Order Curvature-Corrected Voltage References." In Superior-Order Curvature-Correction Techniques for Voltage References. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0416-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Popa, Cosmin Radu. "Superior-Order Curvature-Corrected Voltage References." In Superior-Order Curvature-Correction Techniques for Voltage References. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0416-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Popa, Cosmin Radu. "Error Sources in Typical Voltage References." In Superior-Order Curvature-Correction Techniques for Voltage References. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0416-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meijer, Gerard C. M. "Concepts for bandgap References and voltage measurement systems." In Analog Circuit Design. Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2462-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Voltage references"

1

Kinget, P., C. Vezyrtzis, E. Chiang, B. Hung, and T. L. Li. "Voltage references for ultra-low supply voltages." In 2008 IEEE Custom Integrated Circuits Conference - CICC 2008. IEEE, 2008. http://dx.doi.org/10.1109/cicc.2008.4672187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lavrentiadis, Christos, Vasiliki Gogolou, and Stylianos Siskos. "Nano-Watt Voltage References for High Supply Voltages." In 2022 Panhellenic Conference on Electronics & Telecommunications (PACET). IEEE, 2022. http://dx.doi.org/10.1109/pacet56979.2022.9976364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivanov, Vadim V., Keith E. Sanborn, and Igor M. Filanovsky. "Bandgap voltage references with 1V supply." In ESSCIRC 2006. Proceedings of the 32nd European Solid-State Circuits Conference. IEEE, 2006. http://dx.doi.org/10.1109/esscir.2006.307593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"A3L-F Voltage References and Regulators." In 2008 15th IEEE International Conference on Electronics, Circuits and Systems. IEEE, 2008. http://dx.doi.org/10.1109/icecs.2008.4675151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Edward K. F. "Low voltage CMOS bandgap references with temperature compensated reference current output." In 2010 IEEE International Symposium on Circuits and Systems - ISCAS 2010. IEEE, 2010. http://dx.doi.org/10.1109/iscas.2010.5537472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Falconi, Christian, Arnaldo D'Amico, Giuseppe Scotti, and Alessandro Trifiletti. "Low Voltage CMOS Current and Voltage References without Resistors." In 2007 IEEE International Symposium on Circuits and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iscas.2007.378347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Huachao, Jinlong Hu, Yao Chen, Guofeng Li, and Chao Lu. "Pico-Ampere Voltage References for IoT Systems." In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Richelli, A., L. Colalongo, L. Toninelli, I. Rusu, and J. M. Redoute. "Measurements of EMI susceptibility of precision voltage references." In 2017 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMCCompo). IEEE, 2017. http://dx.doi.org/10.1109/emccompo.2017.7998103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bounouh, A., H. Camon, T. Ricart, et al. "Electrostatic actuated mems for precision AC voltage references." In 2008 Conference on Precision Electromagnetic Measurements. IEEE, 2008. http://dx.doi.org/10.1109/cpem.2008.4574732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Colombo, Dalton, Gilson Wirth, and Sérgio Bampi. "Trim range limited by noise in bandgap voltage references." In the 20th annual conference. ACM Press, 2007. http://dx.doi.org/10.1145/1284480.1284499.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Voltage references"

1

Garrett, D., T. Sims, R. Jones, and S. Jeter. PVREG - A photovoltaic voltage regulation investigation tool: Program reference manual. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/6014064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

NORTHROP GRUMMAN CORP ROLLING MEADOWS IL. Manufacturing Technology for High Voltage Power Supplies (HVPS). Volume IV. Reference Information. Defense Technical Information Center, 1996. http://dx.doi.org/10.21236/ada324508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography