To see the other types of publications on this topic, follow the link: Voltage source converter.

Journal articles on the topic 'Voltage source converter'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Voltage source converter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

S, Adarsh, and Nagendrappa H. "Duty ratio control ofthree port isolated bidirectional asymmetrical triple active bridge DC-DC converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 12, no. 2 (June 1, 2021): 943. http://dx.doi.org/10.11591/ijpeds.v12.i2.pp943-956.

Full text
Abstract:
Multiport converters are used in interfacing of distributed energy sources with grid/load. Isolated converters are needed in applications where converter gain is high and there is a requirement of isolation. Dual transformer asymmetric triple active bridge offers the advantage of reduced circulating current. However, the operating range is low for variation in load and source voltage. In this paper duty ratio modulation technique is proposed to regulate the load voltage and control the power flow in both the directions. As a result of the new gating scheme, the converter switches operate with ZVS, irrespective of variations in load power and source voltage. The converter is designed to ensure high switch utilization. The control technique is validatedthrough simulation of a 1kW three port DC-DC converter. It was observerd that the load voltage was regulated for wide range of variation in load power and source port voltages. The single input dual output mode was also verified.
APA, Harvard, Vancouver, ISO, and other styles
2

Gregor, Raúl, Sergio Toledo, Edgar Maqueda, and Julio Pacher. "Part I—Advancements in Power Converter Technologies: A Focus on SiC-MOSFET-Based Voltage Source Converters." Energies 16, no. 16 (August 15, 2023): 5994. http://dx.doi.org/10.3390/en16165994.

Full text
Abstract:
Power converter technologies have become vital in various applications due to their efficient management of electrical energy. With the growing prominence of renewable energy sources such as solar and wind, the high penetration of power electronic converters has been justified. However, ensuring power quality has emerged as a significant challenge for grid-connected power converters. The divergence from the ideal sinusoidal waveform in terms of magnitude and frequency impacts both grid-side currents and voltages. Several studies have proposed solutions to address power quality issues at the load side. The advancement of power converters has been fueled by the development of high-performance microprocessors and the emergence of high-speed switching devices, such as SiC-MOSFETs. This paper focuses on the design of voltage source converters, particularly those based on SiC-MOSFET semiconductor devices. The article presents the design of H-Bridge cells, discusses two-level voltage source converters based on cascade H-Bridge cells in a parallel configuration with experimental fault analysis, addresses the seven-level voltage source converter topology, and explores the design and experimental results of the matrix converter. The findings underscore the importance of considering the entire converter design for improved performance at high switching frequencies. The article concludes by summarizing the main outcomes and implications of this research.
APA, Harvard, Vancouver, ISO, and other styles
3

Sivapriyan, R., and D. Elangovan. "Impedance-Source DC-to-AC/DC Converter." Electronics 8, no. 4 (April 16, 2019): 438. http://dx.doi.org/10.3390/electronics8040438.

Full text
Abstract:
This article presents a novel impedance-source-based direct current (DC)-to-alternating current (AC)/DC converter (Z-Source DAD Converter). The Z-Source DAD converter converts the input DC voltage into AC or DC with buck or boost in the load voltage. This Z-Source DAD conversion circuit is a single-stage power conversion system. This converter circuit converts the input DC voltage into variable-magnitude output DC voltage or converts the DC voltage into a variable-magnitude output AC voltage. The higher voltage magnitude in boost mode can be controlled by controlling the shoot-through (ST) state timing of the converter. MATLAB-Simulink simulation and microcontroller-based hardware circuit results are presented to demonstrate power conversion with the buck and boost features of the Z-Source DAD converter for both types of output voltages. The simulation and experimental results show that the Z-Source DAD converter converts the given DC supply into AC or DC with buck or boost in the output load voltage.
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Sung-Hun, Hyung-Jun Byun, Junsin Yi, and Chung-Yuen Won. "A Bi-Directional Dual-Input Dual-Output Converter for Voltage Balancer in Bipolar DC Microgrid." Energies 15, no. 14 (July 11, 2022): 5043. http://dx.doi.org/10.3390/en15145043.

Full text
Abstract:
Bipolar DC microgrids (BDCMGs) have several issues related to the voltage and require numerous converters to supply power to both poles. To solve these issues, a bidirectional dual-input dual-output (DIDO) converter is proposed for the voltage balancer in BDCMG. The DIDO converter has dual-input sources and a dual-output port connected to the grid. Additionally, the DIDO converter simultaneously performs independent bidirectional power control and voltage balancing control. Based on the input voltages, this paper proposes modulation methods for three cases. The modulation method of the second case has a wide operating range and low balancing current ripple without increasing the switching frequency. Moreover, only voltage balancer mode without active input sources is proposed, considering the intermittent source. Therefore, it can operate as a voltage balancer under all conditions. The voltage balancing performance of the three cases was analyzed. Finally, the proposed modulation and control method of the DIDO converter were verified through experimental results.
APA, Harvard, Vancouver, ISO, and other styles
5

Salehi, Navid, Herminio Martínez-García, and Guillermo Velasco-Quesada. "Modified Cascaded Z-Source High Step-Up Boost Converter." Electronics 9, no. 11 (November 17, 2020): 1932. http://dx.doi.org/10.3390/electronics9111932.

Full text
Abstract:
To improve the voltage gain of step-up converters, the cascaded technique is considered as a possible solution in this paper. By considering the concept of cascading two Z-source networks in a conventional boost converter, the proposed topology takes the advantages of both impedance source and cascaded converters. By applying some modifications, the proposed converter provides high voltage gain while the voltage stress of the switch and diodes is still low. Moreover, the low input current ripple of the converter makes it absolutely appropriate for photovoltaic applications in expanding the lifetime of PV panels. After analyzing the operation principles of the proposed converter, we present the simulation and experimental results of a 100 W prototype to verify the proposed converter performance.
APA, Harvard, Vancouver, ISO, and other styles
6

Sladić, Saša, Srđan Skok, and David Nedeljković. "Efficiency Considerations and Application Limits of Single-Phase Active Power Filter with Converters for Photoenergy Applications." International Journal of Photoenergy 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/643912.

Full text
Abstract:
A new way of connecting PV sources to adaptive voltage active power filter (AV APF) has been compared with classic approach including active power filter (APF). In standard active power filter applications a relatively high DC link voltage (500 V or even more) with a buck converter or lower voltage (approx. 100 V) with boost converter can be used. These two converters appear also in adaptive voltage circuit of AV APF, but in this case it is possible to achieve many different connections of DC source. Benefit of this approach is that the same circuit is used for improving switching conditions in APF and for connection of solar cells. It appears that these two functions support each other and a large variety of DC voltages and currents can be connected to AC mains. Experimental results confirm expectations of increased energy transfer from additional DC source to network, especially for DC voltages being lower than DC link voltage.
APA, Harvard, Vancouver, ISO, and other styles
7

Rajaei, Amirhossein, Mahdi Shahparasti, Ali Nabinejad, and Mehdi Savaghebi. "A High Step-Up Partial Power Processing DC/DC T-Source Converter for UPS Application." Sustainability 12, no. 24 (December 14, 2020): 10464. http://dx.doi.org/10.3390/su122410464.

Full text
Abstract:
In this paper, a new modified structure of a DC/DC T-source converter is proposed. Since the proposed converter provides high voltage gain, it is suitable for photovoltaic integration into uninterruptible power supply (UPS) systems. The proposed structure employs partial power processing technique to increase the output voltage as well as efficiency without requiring new hardware. Partial power converters (PPCs) process only a fraction of flowing power while the remaining power directly flows through output. This generally causes an improvement in efficiency and output voltage. A total of two structures are presented: conventional partial power T-source converters and improved partial power T-source converters. The key advantage of the improved partial power converter is a higher voltage gain. Furthermore, it reduces the voltage and the current stresses on switches and diodes. The steady-state operation principles are described for both converters and the governed rules and equations are derived. The PPCs and full power converter are compared in terms of efficiency, voltage gain, voltage stress, and current stress of converter elements. The converter performance is evaluated through experimental and simulation studies. The presented results show good consistency with the theoretical analysis.
APA, Harvard, Vancouver, ISO, and other styles
8

Soldado-Guamán, Joaquin, Victor Herrera-Perez, Mayra Pacheco-Cunduri, Alejandro Paredes-Camacho, Miguel Delgado-Prieto, and Jorge Hernandez-Ambato. "Multiple Input-Single Output DC-DC Converters Assessment for Low Power Renewable Sources Integration." Energies 16, no. 4 (February 7, 2023): 1652. http://dx.doi.org/10.3390/en16041652.

Full text
Abstract:
This paper presents a comparison of Isolated (Flyback) and non-Isolated (Buck) multiple input-single output (MISO) DC-DC converters. The analysis of DC-DC converters is based on pulsed voltage source cells (PVSC). The modeling of both converter types is detailed through their mathematical models and electrical simulations using Matlab/Simulink and PSIM. The comparison focuses on the sizing parameters, non-ideal output characteristics and efficiency. Results show that the output voltage of the MISO Buck converter exhibits a linear dependence on the duty cycles control signal and has slightly higher efficiency than the Flyback converter. To validate the operation of both converters, a scenario with two inputs (low-power hydroelectric and photovoltaic voltage sources) is considered. The modeling and control of both source systems are detailed and the MISO converter performance response is evaluated under sources changes and efficiency point of view.
APA, Harvard, Vancouver, ISO, and other styles
9

Jagadeesh, Ingilala, and Vairavasundaram Indragandhi. "Comparative Study of DC-DC Converters for Solar PV with Microgrid Applications." Energies 15, no. 20 (October 13, 2022): 7569. http://dx.doi.org/10.3390/en15207569.

Full text
Abstract:
This review emphasizes the role and performance of versatile DC-DC converters in AC/DC and Hybrid microgrid applications, especially when solar (photo voltaic) PV is the major source. Here, the various converter topologies are compared with regard to voltage gain, component count, voltage stress, and soft switching. This study suggests the suitability of the converter based on the source type. The merits of a coupled inductor and interleaved converters in micro gird applications are elucidated. The efficiency and operating frequencies of converts for different operating modes are presented to determine the suitable converters for inductive and resistive loads. The drawbacks of converters are discussed. Finally, the mode of operation of different converts with different grid power sources and its stability and reliability issues are highlighted. In addition, the significance of the converter’s size and cost-effectiveness when choosing various PV source applications are discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Sarala, P., S. F. Kodad, and B. Sarvesh. "Power Factor Correction with Current Controlled Buck Converter for BLDC Motor Drive." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 2 (June 1, 2017): 730. http://dx.doi.org/10.11591/ijpeds.v8.i2.pp730-738.

Full text
Abstract:
Brushless DC motor is a synchronous machine that makes use of electronic commutation instead of mechanical commutator. Brushless DC motors makes use of inverter encompassing static switches for its operation. A simple bridge converter when used for BLDC drive as front end converter makes input source power factor to get reduced which is unacceptable in the power system. To avoid the distortions in the source voltage and source currents, Buck converter which was used as power factor correction (PFC) converter in this paper to improve the power factor. Presence of power electronic converters deteriorates system power factor effecting overall system performance. This paper presents buck converter for power factor correction in brushless DC motor drive system. Buck converter is operated with current control strategy rather to conventional voltage follower control. Simulation model was obtained using MATLAB/SIMULINK software and the brushless DC motor performance characteristics were shown for conditions with different DC link voltages and step variation in DC link voltage. Total harmonic distortion in source current was also presented.
APA, Harvard, Vancouver, ISO, and other styles
11

Sattianadan, D., G. R. Prudhvi Kumar, R. Sridhar, Kuthuru Vishwas Reddy, Bhumireddy Sai Uday Reddy, and Panga Mamatha. "Investigation of low voltage DC microgrid using sliding mode control." International Journal of Power Electronics and Drive Systems (IJPEDS) 11, no. 4 (December 1, 2020): 2030. http://dx.doi.org/10.11591/ijpeds.v11.i4.pp2030-2037.

Full text
Abstract:
As the requirement of power increases, the use of renewable energy resources has become prominent. The power collected from these energy resources needs to be converted using AC-DC or DC-DC converters. The control of DC-DC converters is a complex task due to its non-linearity in the converter introduced by the external changes such as source voltage, cable resistance and load variations. Converters are to be designed to obtain a well stabilized output voltage and load current for variable source voltages and load changes. Droop control method is the most abundantly used technique in controlling the parallel converters. The major limitations of the conventional droop control technique are circulating current issues and improper load sharing. The proposed work is to resolve these issues by integrating Sliding Mode Controller (SMC) with the converter in order to enhance the performance of DC microgrid. The entire control system was designed by taking the output voltage error as the control variables. Similarly, droop control with PI and PID were also performed and all these techniques were simulated and compared using MATLAB/Simulink. The experimental results show that the proposed sliding mode controller technique provides good overall performance and is suitable against variable voltage and load changes.
APA, Harvard, Vancouver, ISO, and other styles
12

Gadalla, Brwene Salah, Erik Schaltz, Yam Siwakoti, and Frede Blaabjerg. "Analysis of loss distribution of Conventional Boost, Z-source and Y-source Converters for wide power and voltage range." Transactions on Environment and Electrical Engineering 2, no. 1 (January 1, 2017): 1. http://dx.doi.org/10.22149/teee.v2i1.68.

Full text
Abstract:
Boost converters are needed in many applications which require the output voltage to be higher than the input voltage. Recently, boost type converters have been applied for industrial applications, and hence it has become an interesting topic of research. Many researchers proposed different impedance source converters with their unique advantages as having a high voltage gain in a small range of duty cycle ratio. However, the thermal behaviour of the semiconductor devices and passive elements in the impedance source converter is an important issue from a reliability point of view and it has not been investigated yet. Therefore, this paper presents a comparison between the conventional boost, the Z-source, and the Y-source converters based on a thermal evaluation of the semiconductors. In addition, the three topologies are also compared with respect to their efficiency. In this study the results show that the boost converter has higher efficiency than the Zsource and Y-source converter for these specific voltage gain of 2 and 4. The operational principle, mathematical derivations, simulation results and final comparisons are presented in this paper.
APA, Harvard, Vancouver, ISO, and other styles
13

Teixeira, Carlos Coelho, and Helder Leite. "Integration of Voltage Source Converters in Steady-State RMS Short-Circuit Analysis." Energies 14, no. 12 (June 17, 2021): 3610. http://dx.doi.org/10.3390/en14123610.

Full text
Abstract:
Voltage source converters (VSCs) are self-commutated converters able to generate AC voltages with or without the support of an AC connecting grid. VSCs allow fast control of active and reactive powers in an independent way. VSCs also have black start capability. Their use in high-voltage direct current (HVDC) systems, comparative to the more mature current source converter (CSC)-based HVDC, offers faster active power flow control. In addition, VSCs provide flexible reactive power control, independent at each converter terminal. It is also useful when connecting DC sources to weak AC grids. Steady-state RMS analysis techniques are commonly used for early-stage analysis, for design purposes and for relaying. Sources interfaced through DC/AC or AC/DC/AC converters, opposite to conventional generators, are not well represented by electromotive forces (E) behind impedance models. A methodology to include voltage source converters (VSCs) in conventional RMS short-circuit analysis techniques is advanced in this work. It represents an iterative procedure inside general calculation techniques and can even be used by those with only basic power electronics knowledge. Results are compared to those of the commercial software package PSS®CAPE to demonstrate the validity of the proposed rmsVSC algorithm.
APA, Harvard, Vancouver, ISO, and other styles
14

Putra, Tri Yogi, and Muldi Yuhendri. "Implementasi Hysterisis Current Control Pulse Witdh Modulation (HCCPWM) Untuk Inverter 3 Fasa." JTEIN: Jurnal Teknik Elektro Indonesia 2, no. 1 (March 23, 2021): 91–97. http://dx.doi.org/10.24036/jtein.v2i1.127.

Full text
Abstract:
Based on the source used, there are several types of converters, one of which is a voltage source converter (VSC). In this study, using a converter that can work as an inverter. In industry, an inverter is useful for supplying the AC voltage source from industrial plants with DC sources, by varying the voltage and output frequency of the inverter. The method used is the HCCPWM generation method or Hysterisis Current Control Pulse Witdh Modulation. This method was chosen because it has several advantages which are good stability, very fast transient response and good accuracy. To activate HCCPWM, a 3 phase reference current signal is first made in the Matlab Simulink, this reference current is then compared with the actual current from the current sensor, then the error is controlled with the hysteresis band. In Arduino mega2560, the pulses generated by HCCPWM in the Matlab Simulink are converted into a duty cycle. The modulated pulse generated by the Arduino PWM pin will be increased using a gate drive circuit, so that the voltage is obtained according to the voltage required by the Mosfet to activate the switch. The results of the tests that have been done show that the voltage source converter (VSC) designed in this study has worked well as intended. This can be seen from the actual current from the current sensor which has been compared with the reference voltage using the HCCPWM method which is included in the Simulink Matlab program.
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Qin, Yuan Xu, and Lan Xiao. "Single-Primary-Winding Voltage-Fed Double-Input Push-Pull Converter." Advanced Materials Research 461 (February 2012): 241–45. http://dx.doi.org/10.4028/www.scientific.net/amr.461.241.

Full text
Abstract:
Multi-input push-pull converter with multiple-primary-winding is suitable in low and medium-power applications. However, with the increase of input sources, the number of the primary windings and switches increases as well. Based on Pulsating Voltage Source Cells (PVSCs) combination principle, this paper replaces the input voltage source of the single-input push-pull converter with the series or parallel-connected non-isolated pulsating voltage source cells (PVSCs). Thus a family of single-primary-winding (SPW) voltage-fed multi-input push-pull converters can be proposed. Compared with traditional multi-input converters, they have a form of single-Primary-Winding, and therefore we could greatly reduce the size and cost. Since the configuration of a double-input Buck dc/dc converter is very simple, it is chosen as an example in this paper to analysis this MIC. The operation principle and control strategy are illustrated. Finally, simulation and experimental results are presented to verify the correctness of theoretical analysis
APA, Harvard, Vancouver, ISO, and other styles
16

G, Ramya, and Ramaprabha R. "A Review on Designand Control Methods of Modular Multilevel Converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 7, no. 3 (September 1, 2016): 863. http://dx.doi.org/10.11591/ijpeds.v7.i3.pp863-871.

Full text
Abstract:
Modular multilevel converters (MMC) are an emerging voltage source converter topology suitable for many applications. Due to abundant utilization of HVDC power transmission, the modular multilevel converter has become popular converter type to be used in high voltage applications. Other applications include interfacing renewable energy power sources to the grid and motor drives. Modular multilevel converters are beneficial for high voltage and high power motor drives because of the properties of this converter topology, such as, low distortion, high efficiency, etc. For the past few years significant research has been carried out to address the technical challenges associated with operation and voltage balancing of MMC. In this paper, a detailed technical review on the control strategies is presented for ready reference.
APA, Harvard, Vancouver, ISO, and other styles
17

Tseng, Sheng-Yu, Jun-Hao Fan, and Hong-Kai Huang. "Hybrid Converter with Multiple Sources for Lithium Battery Charger Applications." Electronics 11, no. 4 (February 16, 2022): 616. http://dx.doi.org/10.3390/electronics11040616.

Full text
Abstract:
This paper proposes a hybrid converter with multiple sources for lithium battery charger applications. Since the output voltage of a lithium battery charger is very low, its charger needs a higher step-down voltage for a utility line source or a step-down voltage for PV arrays. In order to implement the battery charger with utility line and PV arrays sources to simultaneously supply power to battery, a flyback converter is selected for utility line sources, and a buck converter is adopted for PV arrays source. Due to leakage inductor of transformer in flyback converter, an active clamp circuit is introduced into flyback converter to recover the energy stored in leakage inductor. In addition, flyback and buck converters can adopt switch integration techniques to simplify circuit structure. With this approach, the proposed hybrid converter has less components, is lighter weight and has smaller size and higher conversion efficiency. Finally, a prototype of the proposed hybrid converter with output voltage of 5 V~8.4 V and output maximum current of 12 A has been implement to verify its feasibility. It is suitable for the lithium battery charger applications.
APA, Harvard, Vancouver, ISO, and other styles
18

Thayumanavan, Porselvi, Deepa Kaliyaperumal, Umashankar Subramaniam, Mahajan Sagar Bhaskar, Sanjeevikumar Padmanaban, Zbigniew Leonowicz, and Massimo Mitolo. "Combined Harmonic Reduction and DC Voltage Regulation of A Single DC Source Five-Level Multilevel Inverter for Wind Electric System." Electronics 9, no. 6 (June 12, 2020): 979. http://dx.doi.org/10.3390/electronics9060979.

Full text
Abstract:
Wind power generation has increased in the past twenty years due to the development of power electronic converters. Power generation through wind has advantages over other renewable sources, such as having more efficiency, being pollution-free, and its abundant availability. Power electronic converters play a vital role in the wind energy conversion system. This paper presents a wind-electric system with a permanent magnet synchronous generator, diode rectifier, DC-DC converter (buck-Boost or Cuk converter), and a three-phase five-level inverter. The five-level inverter is a modified form of a cascaded H-bridge inverter that uses a single DC source as an input irrespective of several levels and phases. As the wind speed changes, the Permanent Magnet Synchronous Generator (PMSG) voltage and frequency changes, but for practical applications, these changes should not be allowed; hence, a voltage controller is used that maintains the output voltage of a DC converter, andthus a constant AC output is obtained. The DClink voltage is maintained at the desired voltage by a Proportional plus Integral (PI)-based voltage controller. The DC link voltage fed to the multilevel inverter (MLI) is converted to AC to feed the load. The MLI is controlled with a new Selected Harmonic Elimination (SHE), which decreases the total harmonic distortion (THD). The system is simulated with an Resistive plus Inductive (RL) load and is tested experimentally with the same load;the results prove that the Cuk converter has a better efficiency compared to the Buck-Boost converter, and the system has less THD when compared with the conventional SHE Pulse Width Modulation (PWM) technique.
APA, Harvard, Vancouver, ISO, and other styles
19

N, Kanagaraj, Morteza Mollajafari, Farzam Mohammadiazar, Ehsan Akbari, Ebrahim Sheykhi, and Hicham Chaoui. "A New Voltage-Multiplier-Based Power Converter Configuration Suitable for Renewable Energy Sources and Sustainability Applications." Sustainability 14, no. 24 (December 13, 2022): 16698. http://dx.doi.org/10.3390/su142416698.

Full text
Abstract:
The sustainability of new-generation energy sources has become one of the most critical challenges in recent years as renewable energy sources (RESs) rapidly replace old fossil sources. Integration between RESs and the grid should be completed through power electronics converters and optimized control techniques. RESs have many advantages, such as having increased reliability and sustainability, being environmentally friendly, and having cheaper maintenance costs and more reasonable energy prices. Photovoltaic (PV) panels are among the most popular RESs. A PV array’s generated voltage level is unsuitable for direct load or grid connection and has to be enhanced via a DC-DC boost converter. After that, an inverter should be used to change the generated DC voltage to AC voltage for the grid or loads. In order to reach higher voltage gains, different structures have been proposed in the literature, such as cascaded converters, non-isolated converters (including transformers), and positive- and negative-voltage-lift Luo converters. These converters have some disadvantages, such as including a large number of semiconductor devices and inductors, heavy and bulky structures, and the need for intermediate converters to convert DC to AC voltage and vice versa. Besides the efficiency and high DC voltage gain feature, to achieve more reliability and sustainability and a longer lifetime of the PV source, the current drawn from these sources should be as ripple-free as possible. This study considers all these details by presenting a novel DC-DC power boost converter. The steady-state analysis, simulation, and test results are presented. The most important features of the proposed converter include the lack of need for a transformer, intermediate inverter, rectifier converters, and bulky and heavy components, while still ensuring that high voltage gains and high efficiencies are possible. Simulation results showed that for duty ratios from D = 0.05 to D = 0.15 for the switch S3, the gain of the converter was 22, 35, and 70 times greater than the input voltage, respectively. The desired 200 VDC and 400 VDC voltages for the output nodes were obtained using 12 VDC as the input voltage with and without the switched-capacitor cell, respectively. A limited number of the voltages between −47 and 12 V dropped across the inductors, and a reversed voltage from −12 to −48 V was reported for the power diodes. Additionally, an efficiency close to 96.88% was obtained for the proposed converter. According to the experimental results, a voltage close to 198 VDC was obtained with a 12 VDC input voltage source without using the switched-capacitor cell. A current with a maximum of 7 A was reported for the output diode, and more than 96% efficiency was reported. The results showed that the primary source of the power losses was the semiconductors, and the switching losses made up around 69% and 88% of the total losses for the switches and diodes, respectively. The present topology has three power switches. Two of the switches are activated and deactivated simultaneously. The third switch is activated or deactivated in reverse with the other switches. The results showed that for short-duty ratios such as 0.5 for switches S1 and S2 and 0.35 for switch S3, DC voltage gains close to 35 were obtained theoretically. The generated voltage could be doubled by applying fourth and fifth power switches by making a switched-capacitor-based topology. All of these details are illustrated in this study in detail. The proposed circuit was set up and tested in a laboratory environment. The test results confirm the simulation and theoretical analysis.
APA, Harvard, Vancouver, ISO, and other styles
20

Mulolani, Francis, Matthew Armstrong, Mohammed Elgendy, and Ahmed Althobaiti. "Positive-sequence virtual-flux control of grid-connected converter during unsymmetrical voltage dips." Indonesian Journal of Electrical Engineering and Computer Science 28, no. 2 (November 1, 2022): 700. http://dx.doi.org/10.11591/ijeecs.v28.i2.pp700-709.

Full text
Abstract:
One of the major problems in direct power-controlled grid-connected voltage source converters is that during voltage dips, the converter current increases to compensate for the reduced grid voltage. The most common voltage dips are unsymmetrical, and they cause unbalance and distortion in the converter current. This paper introduces a new, simple but effective algorithm which limits the current in a direct power-controlled grid-connected voltage source converter during voltage dips. A positive-sequence virtual-flux based control scheme is employed and this makes the current balanced and sinusoidal during unsymmetrical voltage dips. The proposed control clearly demonstrates the performance which is illustrated through various simulations and experimental work. The current during unsymmetrical voltage dips is limited in magnitude and is balanced, with low distortion. The Implementation of this control scheme will enable voltage source converters to stay connected to the grid during voltage dips as required by most grid codes.
APA, Harvard, Vancouver, ISO, and other styles
21

Jaroenkiattrai, Jedsada, and Viboon Chunkag. "Voltage Ripple Reduction in Voltage Loop of Voltage Source Converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 2 (June 1, 2017): 869. http://dx.doi.org/10.11591/ijpeds.v8.i2.pp869-881.

Full text
Abstract:
In order to achieve a good dynamical response of a full-bridge AC-DC voltage source converters (VSC). The bandwidth of PI controller must be relatively wide. This leads to the voltage ripple produced in the control signal, as known that its ripple frequency has twice of the line frequency and cause the 3rd harmonic of an input current. A Ripple Voltage Estimator (RVE) algorithm and Feed-Forward Compensation (FFC) algorithm are proposed and added to the conventional control. The RVE algorithm estimated the ripple signal to subtract it occurring in the voltage loop. As a result, the 3rd harmonic of the input current can be reduced, and hence the Total Harmonic Distortion of input current (THDi) are improved. In addition, the FFC algorithm will offer a better dynamical response of output voltage. The performance evaluation was conducted through the simulation and experiment at 110Vrms/50Hz of the input voltage, with a 600 W load and 250 V<sub>dc</sub> output voltage. The overall system performances are obtained as follows: the power factor at the full load is higher 0.98, the harmonic distortion at AC input power source of the converter is under control in IEC61000-3-2 class A limit, and the overall efficiency is greater than 85%.
APA, Harvard, Vancouver, ISO, and other styles
22

Kumar, A. Suresh, R. K. Pongiannan, C. Bharatiraja, Adedayo Yusuff, and N. Yadaiah. "Non isolated coupled converter tied voltage source inverter drive." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 2 (June 1, 2019): 645. http://dx.doi.org/10.11591/ijpeds.v10.i2.pp645-652.

Full text
Abstract:
<span>The voltage source inverters (VSI) are ever required section in the AC motor drive and power system interface. The electrical drive segment, the VSI based drives are unavoidable and they are closely operated with induction motor, permanent magnate synchronous motor and BLDC motor. These drives are normally needed high torque-power characters. Hence, the input DC-link side voltage is increased with help of increasing input AC in the rectifier input. However, this causes the power quality disturbance in the AC main and DC-link. In order to go for a increasing the AC voltage, the rectifier out is connected with DC to DC boost converter and they are increasing the DC voltage to meet out the drive DC-link voltage demand. With this aim, the paper proposes the idea to connect high step non-isolated high gain coupled DC to DC converter with three phase VSI for drives applications. The proposed converter has an ability to increase the voltage five times and the counter winding arrangement ratio of the converter is help for the further increase of gain. Inn this interface the front end DC to DC converters inductors are charged by making the short circuit with inverter switching. The converter voltage gain is controlled by shoot through of the VSI switch (converter gain directly proportional to inverter shoot through). The proposed converter has a higher degree of freedom in their values of winding and output voltage. Hence, the DC-link voltage of the inverter can be extended in any level. The operation principle and modes of the proposed DC to DC Source tied VSI is analyzed and simulated using MATLAB-Simulink software simulation. The laboratory based small scale power circuit is developed with help of control algorithm. The entire implementation is done through PIC microcontroller platform. The deign Investigation, system simulation and experimentation confirming the proposed DC to DC converter tied VSI drive system.</span>
APA, Harvard, Vancouver, ISO, and other styles
23

Kumar, Rahul, Ramani Kannan, Nursyarizal Bin Mohd Nor, and Apel Mahmud. "A High Step-Up Switched Z-Source Converter (HS-SZC) with Minimal Components Count for Enhancing Voltage Gain." Electronics 10, no. 8 (April 13, 2021): 924. http://dx.doi.org/10.3390/electronics10080924.

Full text
Abstract:
Some applications such as fuel cells or photovoltaic panels offer low output voltage, and it is essential to boost this voltage before connecting to the grid through an inverter. The Z-network converter can be used for the DC-DC conversion to enhance the output voltage of renewable energy sources. However, boosting capabilities of traditional Z-network boost converters are limited, and the utilization of higher parts count makes it bulky and expensive. In this paper, an efficient, high step-up, switched Z-source DC-DC boost converter (HS-SZC) is presented, which offers a higher boost factor at a smaller duty ratio and avoids the instability due to the saturation of inductors. In the proposed converter, the higher voltage gain is achieved by using one inductor and switch at the back end of the conventional Z-source DC-DC converter (ZSC). The idea is to utilize the output capacitor for filtering and charging and discharging loops. Moreover, the proposed converter offers a wider range of load capacity, thus minimizing the power losses and enhancing efficiency. This study simplifies the structure of conventional Z-source converters through the deployment of fewer components, and hence making it more cost-effective and highly efficient, compared to other DC-DC boost converters. Furthermore, a comparison based on the boosting capability and number of components is provided, and the performance of the proposed design is analyzed with non-ideal elements. Finally, simulation and experimental studies are carried out to evaluate and validate the performance of the proposed converter.
APA, Harvard, Vancouver, ISO, and other styles
24

Islam, Md Tariqul, Md Ahsanul Alam, Molla Shahadat Hossain Lipu, Kamrul Hasan, Sheikh Tanzim Meraj, Hasan Masrur, and Md Fayzur Rahman. "A Single DC Source Five-Level Switched Capacitor Inverter for Grid-Integrated Solar Photovoltaic System: Modeling and Performance Investigation." Sustainability 15, no. 10 (May 22, 2023): 8405. http://dx.doi.org/10.3390/su15108405.

Full text
Abstract:
Boost converters and multilevel inverters (MLI) are frequently included in low-voltage solar photovoltaic (PV) systems for grid integration. However, the use of an inductor-based boost converter makes the system bulky and increases control complexity. Therefore, the switched-capacitor-based MLI emerges as an efficient DC/AC voltage convertor with boosting capability. To make classical topologies more efficient and cost-effective for sustainable power generation, newer topologies and control techniques are continually evolving. This paper proposes a reduced-component-count five-level inverter design for generating stable AC voltages for sustainable grid-integrated solar photovoltaic applications. The proposed topology uses seven switching devices of lower total standing voltage (TSV), three diodes, and two DC-link capacitors to generate five-level outputs. By charging and discharging cycles, the DC capacitor voltages are automatically balanced. Thus, no additional sensors or control circuitry is required. It has inherent voltage-boosting capability without any input boost converter. A low-frequency-based half-height (HH) modulation technique is employed in the standalone system for better voltage quality. Extensive simulations are performed in a MATLAB/Simulink environment to estimate the performance of the proposed topology, and 17.58% THDs are obtained in the phase voltages. Using a small inductor in series or an inductive load, the current THD reduces to 8.23%. Better dynamic performance is also observed with different loading conditions. A miniature five-level single-phase laboratory prototype is developed to verify the accuracy of the simulation results and the viability of the proposed topology.
APA, Harvard, Vancouver, ISO, and other styles
25

Senthilnathan, Karthikrajan, and K. Iyswarya Annapoorani. "A Review on Back-to-Back Converters in Permanent Magnet Synchronous Generator based Wind Energy Conversion System." Indonesian Journal of Electrical Engineering and Computer Science 2, no. 3 (June 1, 2016): 583. http://dx.doi.org/10.11591/ijeecs.v2.i3.pp583-591.

Full text
Abstract:
This paper presents a review on the application of back-to-back converters in the field of Permanent Magnet Synchronous Generator (PMSG) based Wind Energy Conversion Systems (WECS). The wide applications of the back-to-back converters are power conditioning devices, micro grid, High Voltage Direct Current (HVDC), Renewable energy systems. The intention is to present an overview about the design considerations taken by various researchers in back-to-back converters in the field of Wind Energy Conversion Systems (WECS) and recent developments on it. Generally the configuration of back-to-back converters used are 12 pulse Voltage Source Converters (VSC), 12 pulse Current Source Converter (CSC), 9 Pulse Voltage Source Converter<em>.</em>
APA, Harvard, Vancouver, ISO, and other styles
26

Krylov, Denis, and Olga Kholod. "Improving of the vector control system structure of the active controlled rectifier." Bulletin of the National Technical University «KhPI» Series: New solutions in modern technologies, no. 4 (10) (December 30, 2021): 43–48. http://dx.doi.org/10.20998/2413-4295.2021.04.06.

Full text
Abstract:
The vast majority of electricity is used by industrial facilities in a converted form. At the same time, the use of semiconductor converters to obtain the required load parameters is intensively increasing. Current trends in the development and improvement of semiconductor converters are aimed at energy saving by improving their quality of work and reducing the impact on the power supply, load, and related consumers. Frequency converter with DC insert has become widespread and widely used. Its scheme is mainly based on an uncontrolled diode rectifier and an autonomous voltage inverter. Uncontrolled rectifiers are simple and reliable, but have two main disadvantages: the impossibility to recover electricity to the supply network and distortions of the source current shape. We can get rid of these disadvantages by using an active rectifier made according to the voltage source scheme instead of an uncontrolled rectifier. The operation of an active rectifier significantly depends on the type of its control system structure. This article aims to to improve the structure of the switches control system of the active rectifier scheme – voltage source built using a vector calculation algorithm; creation of a MatLab model of a three-phase active-controlled rectifier operating with a fixed modulation frequency and analysis of the influence of the input inductance value on the quality of its operation. The simulation results confirm that the improved structure of the vector control system proposed by the authors ensures high-quality operation of the active rectifier and electromagnetic compatibility of the frequency converter with the power supply network at the level allowed by the standards; simplification of the representation mathematical apparatus of the generalized vectors of currents and voltages at the construction of a vector control system of the active rectifier – voltage source practically did not influence qualitative indicators of the converter work in any way; a network filter must be used to eliminate the final distortions introduced into the source voltage by an additional nonlinear load.
APA, Harvard, Vancouver, ISO, and other styles
27

Priya, E. Catherine Amala, and G. T. Sundar Rajan. "An improved model of hybrid multi converter used for grid connected applications." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 2 (June 1, 2019): 860. http://dx.doi.org/10.11591/ijpeds.v10.i2.pp860-867.

Full text
Abstract:
A Hybrid multi converter topology is proposed in this paper, which supplies simultaneous voltage’s for various levels from Renewable energy source. The proposed topology is realized by replacing Multi cuk- buck converter topology. The resultant hybrid multi converter requires less number of switches to operate, as well as various output voltages of different levels without interruption with increased stability. This type of hybrid multi converter with high reliability and high stability are well implemented for loads utilizing various levels of DC voltage. Converter, proposed in this paper is called Hybrid Multi converter topology (HMCT). A study is made on the steady state of the HMCT and a comparative study has been made with the conventional designs. A PI controller based feedback controller is designed to stabilize the various output voltages. A simulated model for the proposed HMCT is used to simulate various output voltages of dissimilar values from mono DC- input. The performance of the converter is demonstrated using simulation model. The proposed design can be protracted to voltage source inverter, multilevel inverter to produce AC output.
APA, Harvard, Vancouver, ISO, and other styles
28

Beriber, D., A. Talha, and M. Boucherit. "Stabilization of multi DC bus link voltages of multilevel NPC VSI. Application to double stator induction motors." Archives of Control Sciences 22, no. 1 (January 1, 2012): 107–20. http://dx.doi.org/10.2478/v10170-011-0015-1.

Full text
Abstract:
Stabilization of multi DC bus link voltages of multilevel NPC VSI. Application to double stator induction motors Voltage source multilevel inverters have become very attractive for power industries in power electronics applications during last years. The main purposes of studying multilevel inverters are the generation of output voltage signals with low harmonic distortion and reduction of switching frequency. An important issue of the multilevel inverter is the capacitor voltage-balancing problem. The unbalance of different DC voltage sources of multilevel neutral point clamped (NPC) voltage source inverter (VSI) constitutes the major limitation for the use of this new power converter. In this paper, we present study on the stability problem of the input DC voltages of the three-level Neutral Point Clamping (NPC) voltage source inverter (VSI). This inverter is useful for application in high voltage and high power area. In the first part, we remind the model of double stator induction motors (DSIM). Then, we develop control models of this inverter using the connection functions of the semi-conductors. We propose a Pulse Width Modulation (PWM) strategy to control this converter. The inverter is fed by constant input DC voltages. In the last part, we study the stability problem of the input DC voltages of the inverter. A cascade constituted by two three-level PWM rectifiers - two three-level NPC VSI - DSIM is discussed. The results obtained show that the input DC voltages of the inverters are not stable. To solve this problem, we propose to use a half clamping bridge. This solution is very promising in order to stabilize the input DC voltages of this converters.
APA, Harvard, Vancouver, ISO, and other styles
29

Ado, Muhammad, Awang Jusoh, Tole Sutikno, Mohd Hanipah Muda, and Zeeshan Ahmad Arfeen. "Dual output DC-DC quasi impedance source converter." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 4 (August 1, 2020): 3988. http://dx.doi.org/10.11591/ijece.v10i4.pp3988-3998.

Full text
Abstract:
A double output port DC-DC quasi impedance source converter (q-ZSC) is proposed. Each of the outputs has a different voltage gain. One of the outputs is capable of bidirectional (four-quadrant) operation by only varying the duty ratio. The second output has the gain of traditional two-switch buck-boost converter. Operation of the converter was verified by simulating its responses for different input voltages and duty ratios using MATLAB SIMULINK software. Its average steady-state output current and voltage values were determined and used to determine the ripples that existed. These ripples are less than 5% of the average steady-state values for all the input voltage and duty ratio ranges considered.
APA, Harvard, Vancouver, ISO, and other styles
30

Radomski, G. "Control and modulation methods of voltage source converter." Bulletin of the Polish Academy of Sciences: Technical Sciences 57, no. 4 (December 1, 2009): 323–36. http://dx.doi.org/10.2478/v10175-010-0135-y.

Full text
Abstract:
Control and modulation methods of voltage source converterControl and modulation methods of Voltage Source Converter (VSC) have been presented in the paper. Model of VSC with three value transistor branch state function is introduced to describe operation of VSC. Predictive-corrective control method of VSC system is presented. Two variants of Space Vector PWM methods for VSC system are developed. Algorithm of cancelation of negative influence of dead time on the AC voltages is implemented in the proposed modulation methods. Correctness of introduced method is validated by simulation and experiment investigations.
APA, Harvard, Vancouver, ISO, and other styles
31

Salyam, Radhika, and Vijaya Margaret. "Source-load-variable voltage regulated cascaded DC/DC converter for a DC microgrid system." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 1 (February 1, 2023): 107. http://dx.doi.org/10.11591/ijece.v13i1.pp107-115.

Full text
Abstract:
<span lang="EN-US">Solar energy is available abundantly, the utilization of solar energy is developing rapidly and the photovoltaic based direct current (</span><span lang="EN-US">DC) microgrid system design is under demand but the stability of the DC voltage is of most important issue, as the variation of the output DC voltage is a common problem when the load or source voltage varies, hence a regulated DC output voltage converter is proposed. This paper presents source-load-variable (SLV) voltage regulated cascaded DC/DC converter which is used to obtain regulated output voltage of 203.1 V DC at 0.4 duty ratio with ±2% voltage fluctuations for the variation in the input source voltage and ±1.5% voltage fluctuations for the variation in load resistance of the nominal value with lower output voltage ripple and without use of sub circuits. A simulation model of SLV voltage regulated cascaded DC/DC converter in LTspice XVII software environment for the assessment of converter performance at different input source voltages and load resistances are verified.</span>
APA, Harvard, Vancouver, ISO, and other styles
32

Suryadi, Aris, Purwandito Tulus Asmoro, and Agus Sofwan. "Design and Simulation Converter with Buck-boost Converter as The Voltage Stabilizer." International Journal of Electrical, Energy and Power System Engineering 3, no. 3 (October 12, 2020): 77–81. http://dx.doi.org/10.31258/ijeepse.3.3.77-81.

Full text
Abstract:
Buck-boost Converter is the device with the function to convert DC Voltage input to the setpoint DC Voltage output. Buck-boost converter can be used for regulating unstable voltage became a stable voltage by the user’s needs. Using a Buck-boost Converter in the research is about how to apply a Buck-boost Converter of the AC to AC Converter device, AC to AC Converter is the device to convert AC voltage to AC Voltage where the voltage can be modified. In the research, the input Voltage of AC to AC Converter is unstable, so that the output Voltage is unstable too in the range of 190 V to 250 V. To solve this problem, that the Buck-boost can be installed to AC to AC Converter, it is useful to keep output Voltage stable even though the input Voltage is unstable. The AC to AC Converter device in this research consist of Rectifier, Buck-boost Converter, and Inverter. The experiment result of this research show that unstable AC input Voltage, 190 V to 250 V from the source after passing a Rectifier, became an unstable DC input Voltage, then be regulated by Buck-boost Converter became a stable DC Voltage, and then after passing the Inverter, a stable DC Voltage is converted became a stable AC Voltage, corresponding with the set point. For further development, AC to AC Converter combined with Buck-boost Converter can be applied to maintain a standard of Voltage 220 V AC from the sources to keep it stable.
APA, Harvard, Vancouver, ISO, and other styles
33

Dhawale, Achal, Ram Ghaturkar, Sarvesh Giri, Avesoddin Kaji, Hemant Gedam, and Prof Ashutosh Joshi. "Design and Analysis of Dual Input Z-Source Matrix Converter." International Journal for Research in Applied Science and Engineering Technology 10, no. 10 (October 31, 2022): 610–13. http://dx.doi.org/10.22214/ijraset.2022.47026.

Full text
Abstract:
Abstract: Series Z-Source community, connecting in helping vast o preferred concept of Z-supply dc hyperlink, changed into initially projected for boosting the output voltage of strength digital inverters. Throughout this paper, that idea is prolonged on a three-section oblique matrix converter. The converter relies upon at the ultra-sparse matrix topology characterised via way of means of the minimal vary of semiconductor switches. The collection Z-supply community is positioned among the three-transfer enter rectifier level and moreover the six-transfer output electric converter level, in both the wonderful or terrible rail. A short shoot-via nation produces the voltage raise. Associate in Nursing optimum pulse breadth modulation approach is advanced for better boosting capability of the converter and decrease of transfer losses. A evaluation is made among the matrix converters mistreatment collection and standard cascade Zsource networks. The inpouring modern-day and Z-supply capacitor’s voltage are decreased in the collection Z-supply matrix converter.
APA, Harvard, Vancouver, ISO, and other styles
34

Zakir Ullah, Zeeshan Umar, Muhammad Awais, Asif Nawaz, Aamir Naeem Khan, Sheeraz Ahmed, and Mohsin Tahir. "Design and Analysis of Novel Cascaded Topology with LD Cell for Micro-source Grids." Journal of Computing & Biomedical Informatics 4, no. 01 (December 29, 2022): 185–96. http://dx.doi.org/10.56979/401/2022/112.

Full text
Abstract:
This paper focus on DC-DC converter called Novel Cascaded topology. This converter lies in the category of Non-Isolated DC-DC boost converters with upgraded voltage gain based on conventional topology with LD cell for micro-source grids. The proposed novel cascaded topology increases the voltage boost ability. There are some merits of our proposed topology that includes small voltages stresses across the switch, as well as upgraded gain. We prefered to use switch having small voltage rating as well as small resistance in ON-mode (RDS-ON), it leads to provide high efficiency. In our cascaded topology with LD cell,we did not use large duty cycle, coupling inductors as well as transformer.We will utilize the Continuous Conduction Mode (CCM) for the analysis of proposed novel cascaded topology. This topology is designed to operated on 12V supplying voltage, 55% duty cycle, 265W output power and frequency of 12KHz. The continous conduction mode (CCM) has been analyzed theoretically as well as practically based derived equations. The novel cascaded converter has been simulated in PSIM as well as MATLAB/SIMULINK, while explanations of the overall results are provided based on PSIM.
APA, Harvard, Vancouver, ISO, and other styles
35

Azhar, Hamzah Maulana. "Optimasi Battery Charging pada Pendingin Minuman dengan Sumber Solar Cell untuk Beban Peltier Menggunakan Buckboost Converter." Journal of Applied Smart Electrical Network and Systems 2, no. 01 (June 30, 2021): 1–7. http://dx.doi.org/10.52158/jasens.v2i01.197.

Full text
Abstract:
Currently, many electronic devices use the energy source from the solar cell which is stored in a battery. The battery is a portable, rechargeable power source. Solar energy is very suitable when converted to electrical energy because the amount of sunlight is infinite even though there is a period of time between sunrise and sunset. Converting solar energy to electrical energy requires a solar cell. One method that can be done is using the buck boost converter method with solar cell sources to create a battery charging control system. The Buck Boost Converter method was chosen because it can stabilize the output voltage from the solar cell when the weather is uncertain. If the light intensity of the sunlight is dim, the output voltage of the panel will also be low, then the converter will be in boost mode to increase the voltage level, on the other hand, if the light intensity of the panel output voltage will also be high, the converter will be in buck mode to lower the voltage level. The output voltage of this control system is maintained according to the battery charging voltage standard, which is 14 volts DC.
APA, Harvard, Vancouver, ISO, and other styles
36

Dehnavi, Saeed Daneshvar, and Ehsan Shayani. "Compensation of Voltage disturbances in hybrid AC/DC Microgrids using series converter." Ciência e Natura 37 (December 19, 2015): 349. http://dx.doi.org/10.5902/2179460x20794.

Full text
Abstract:
In this paper a series power electronic converter is proposed to improve power quality of AC/DC hybrid microgrids. An injection transformer which is series with AC microgrid is used beside the series converter to inject voltage for the purpose of voltage disturbances compensation. The series converter by using a simple and effective control system in stationary reference framework of d-q-0 is proposed to compensate voltage sag and swell, source unbalanced voltages, voltage harmonics of the utility. In these types of micrigrids a lot of voltage disturbances have occurred due to large number of converters. Moreover, it is not required to use a storage energy system like battery; the required power is supplied by DC microgird, so the proposed system is very efficient. Simulation results in the MATLAB/Simulink environment have verified the appropriate performance of the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Shaoru, Huixian Li, Shuchun Duan, Xiuju Du, Shengli Liu, Pingjun Wang, and Jielu Zhang. "A High-Gain DC-DC Converter with a Wide Range of Output Voltage." Electronics 12, no. 16 (August 18, 2023): 3498. http://dx.doi.org/10.3390/electronics12163498.

Full text
Abstract:
In fuel-cell-powered electric vehicles, the output characteristics of the fuel cell are relatively soft, and the output voltage is unstable. Therefore, a DC-DC converter is required between the fuel cell and the inverter to transform the output voltage of the fuel cell into a suitable voltage for the motor drive. Existing non-isolated DC-DC converters cannot meet the requirements of high voltage gain, high efficiency and a wide range of output voltage simultaneously. To improve these performances, a high-gain DC-DC converter with a wide range of output voltage, based on a switched capacitor structure, is proposed in this paper. The converter supplies power to the load by connecting multiple capacitors with the input source in series in switch-on states, while the input source charges the capacitors through a series connection with an inductor in switch-off states. In comparison to existing converters, the proposed converter maintains high voltage gain at lower duty ratios and offers a wide range of output voltage. The operating principles, key waveforms and parameter design of the topology in Continuous Conduction Mode (CCM) are described and analyzed in detail, and the voltage gain of the proposed converter is compared with some other DC-DC converters. Finally, the results of simulations using Simulink and hardware experiments that were conducted to validate the theoretical analysis are described.
APA, Harvard, Vancouver, ISO, and other styles
38

Pavithra, K., H. Pooja, D. Tamilselvan, and T. D. Sudhakar. "Solar power based positive output super-lift Luo converter using fuzzy logic controller." Journal of Physics: Conference Series 2040, no. 1 (October 1, 2021): 012034. http://dx.doi.org/10.1088/1742-6596/2040/1/012034.

Full text
Abstract:
Abstract Photovoltaic (PV) power generation is employed to meet the increasing demand for energy and of cleaner form. Though renewable and high energy using PV can be produced, they have certain disadvantages. PV cells have a low voltage (approx. 0.5V) rating and they have to be connected in series when higher voltage is required. These cells when connected in series should have identical electrical characteristics to avoid ripples in the output voltage and current, but it is not possible practically. To avoid this miss-match, converter circuits are employed. The major drawbacks in most power converters are reduced voltage gain and their tendency to generate harmonics in the supply system and the load circuit. To overcome these limitations, a positive output super-lift Luo converter is designed. A Positive Output Super Lift Luo converter (POSLC) is a powerful DC-DC converter where the voltage is converted from positive source voltage to positive load voltage as it produces positive voltages of comparatively higher ranges than those of conventional types. The super-lift technique also overcomes the effect of parasitic elements and thus minimizing the ripples in the output voltage and current. In addition to this, the voltage build-up can be achieved by implementing the super-lift technique where the output voltage rises in geometric progression with increased voltage transfer gain and high power density. In this paper fuzzy control is used to produce better-controlled voltage and a more refined output. The performance of POSLC with and without implementation of fuzzy control has been successfully simulated and verified using MATLAB/SIMULINK as well simulation model also developed and analyzed with Proteus package.
APA, Harvard, Vancouver, ISO, and other styles
39

Aleinikov, Edgard. "MINIMIZING LOSS IN VOLTAGE CONVERTERS AND DESIGNING A VOLTAGE CONVERTER BASED ON A HYBRID ARCHITECTURE." Mokslas - Lietuvos ateitis 12 (January 20, 2020): 1–5. http://dx.doi.org/10.3846/mla.2020.11470.

Full text
Abstract:
There are several different architectures of voltage converters, that are widely used to change the source voltage of an electronic device. Each architecture has its advantages and disadvantages. The hybrid architecture has the major advantage because of the hybrid interconnection of two other architectures. After analyzing the different architectures and energy losses in converters we designed a hybrid architecture voltage converter and provided several solutions for increasing the efficiency of this voltage converter and reducing the cost of production.
APA, Harvard, Vancouver, ISO, and other styles
40

Chetry, Bharat, Adriano Carvalho, and Rui Brito. "Voltage source converter in a microgrid." International Journal of System Assurance Engineering and Management 9, no. 5 (August 7, 2018): 1206–16. http://dx.doi.org/10.1007/s13198-018-0741-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, Chongru, Jiahui Xi, Qi Hao, Jufeng Li, Jinyuan Wang, Haoyun Dong, and Chenbo Su. "Grid-Forming Converter Overcurrent Limiting Strategy Based on Additional Current Loop." Electronics 12, no. 5 (February 24, 2023): 1112. http://dx.doi.org/10.3390/electronics12051112.

Full text
Abstract:
Compared with current source converters, voltage source converters (grid-forming converters) have better frequency support capabilities, voltage support capabilities, and regulation performance, thus they have broad application prospects. However, the grid-forming (GFM) converter has insufficient current control ability, and it easily causes problems such as overcurrent issues when a fault occurs. Thus, this insufficiency is one of the most important challenges the GFM converter is faced with. Aiming to solve the problems mentioned above, this paper proposes a control method of a GFM converter achieved with a low-pass filter structure and an additional current loop. The additional current loop controls the dq-axis current components by acting on the outer loop to generate appropriate phase and voltage amplitude reference. The low-pass filter structure is used to solve the system frequency stability problem caused by the inclusion of the additional current loop. On the premise of ensuring that the system frequency meets the grid-connection requirements, the proposed strategy rapidly limits the output current within the allowable range and guarantees expected voltage source characteristics of the converter during the fault period. Finally, the effectiveness and superiority of the proposed control strategy are verified by MATLAB/Simulink simulations.
APA, Harvard, Vancouver, ISO, and other styles
42

Kalirasu, A. "A Novel Single Source Multiple Output Converter Integrating Buck-Boost and Fly Back Yopology for SMPS Applications." Indonesian Journal of Electrical Engineering and Computer Science 8, no. 3 (December 1, 2017): 733. http://dx.doi.org/10.11591/ijeecs.v8.i3.pp733-736.

Full text
Abstract:
<p>This paper presents a novel single DC input source and multiple DC output suitable for switched mode power supply (SMPS) applications integrating interleaved boost and sepic converter with fly back topology. The proposed converter can be remodeled for any required output voltage power supply without changing hardware structure because wide range of output voltage can be obtained using sepic and boost converters by changing duty cycle command by implementing a simple voltage input pi controller. Conventional fly back topology is added to interleaved circuit to produce desired dc output voltage this voltage can be controlled by choosing turns ratio of fly back transformer. The proposed multi output DC converter is simulated in MATLAB/Simulink environment and results are presented for verifying merits of the converter.</p>
APA, Harvard, Vancouver, ISO, and other styles
43

John, Malte, and Axel Mertens. "HARMONIC DOMAIN MODEL OF AN OPEN-LOOP CONTROLLED PWM CONVERTER." Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska 8, no. 2 (May 30, 2018): 25–29. http://dx.doi.org/10.5604/01.3001.0012.0699.

Full text
Abstract:
An harmonic domain model is developed for open-loop controlled voltage source inverters, which provides the steady-state solution for integer multiples of the fundamental frequency. The convolution of the switching function spectrum with the converter currents and voltages is used to describe the coupling of the AC side and the DC side. The modeling is based on a single phase leg and is extended to a single-phase and a three-phase voltage source inverter, which results in a non-linear algebraic equation system. For open-loop control the switching function is independent of the converter currents and voltages and the model is simplified to a linear equation system. This straightforward and fast model is verified by time domain simulations and experimental results. The modeling can be adapted to systems of coupled converters, which is presented for a back-to-back converter system showing the harmonic interaction of the connected subsystems.
APA, Harvard, Vancouver, ISO, and other styles
44

Sreedhar, Jadapalli, and B. Basavaraja. "Plan and analysis of synchronous buck converter for UPS application." International Journal of Engineering & Technology 7, no. 1.1 (December 21, 2017): 679. http://dx.doi.org/10.14419/ijet.v7i1.1.10827.

Full text
Abstract:
DC-DC converters occupies very significant role in the field of industries or daily life applications. To charge batteries of low voltage connected to uninterrupted power supply (UPS), DC-DC converters are needed. Batteries requires low voltage and the available voltage at the source is to be step-down to the required level of voltage at the point of utility (PoU). While designing DC-DC converters, efficiency and simplicity of the circuit is very much important. Simply for the UPS applications, Buck converter can deliver the voltage at required level which is very simple in operation but the increased losses in diode can be addresses by using a synchronous Buck converter. By using synchronous Buck converter, the diode conduction losses in Buck converter can be minimized, thus improving the efficiency of the converter. In this paper, Synchronous Buck converter is used to charge the batteries of UPS. In this paper Design, modeling of synchronous Buck converter for UPS application was done and its results were obtained by using Matlab/Simulink. A hardware prototype was also developed and the hardware results were also shown.
APA, Harvard, Vancouver, ISO, and other styles
45

Karaca, Hulusi, and Ramazan Akkaya. "A Novel Hybrid Compensation Method Reducing the Effects of Distorted Input Voltages in Matrix Converters." Elektronika ir Elektrotechnika 25, no. 6 (December 6, 2019): 15–21. http://dx.doi.org/10.5755/j01.eie.25.6.24830.

Full text
Abstract:
Matrix converters have the most compact and efficient AC-AC converter structure due to the lack of the DC intermediate components. The matrix converter makes a single-stage conversion directly connecting any terminal of voltage source to any terminal of load. This outstanding feature leads to some problems that must be overcome under the distorted input voltage conditions. A matrix converter has low immunity to power source disturbances, because it has no DC intermediate circuit. Any disturbance in the power source creates a negative effect on the load of the matrix converter and on the current drawn from the source. In this study, a novel compensation method, which provides immunity against input voltage disturbances, is suggested for the matrix converter. The suggested method has a hybrid structure, which includes both feedforward and fuzzy logic controller based feedback methods. The effectiveness and accuracy of the suggested new hybrid compensation approach are proved by the various results obtained.
APA, Harvard, Vancouver, ISO, and other styles
46

Priyadarshi, Neeraj, Mahajan Sagar Bhaskar, Farooque Azam, Mayank Singh, Dheeraj Kumar Dhaked, Ibrahim B. M. Taha, and Mohamed G. Hussien. "Performance Evaluation of Solar-PV-Based Non-Isolated Switched-Inductor and Switched-Capacitor High-Step-Up Cuk Converter." Electronics 11, no. 9 (April 26, 2022): 1381. http://dx.doi.org/10.3390/electronics11091381.

Full text
Abstract:
Solar photovoltaic (PV) is the most promising renewable energy source available on Earth. Three topologies based on a switched-inductor capacitor and non-isolated high-step-up Cuk converter have been proposed for solar PV. These topologies of the Cuk converter have higher boosting ability than conventional Cuk and boost converters and can reduce the voltage stress of the main switch. A small voltage rating and on-state resistance can give higher efficiency of the converter. The voltage boosting ability of all three topologies was compared to each other and with a conventional Cuk converter. The boosting capability of the third converter was 11 times at 0.75 duty cycle with a solar PV source. These converters do not use a coupled inductor and transformer, which leads to less volume, reducing coupling/core saturation loss, and thus the cost of the converter. A solar PV system of 12 volts was used for boosting with these converters for analysis of the feasibility of use with renewables. The three topologies of the switched-inductor and switched-capacitor (SLSC) Cuk converter were designed and simulated in MATLAB/Simulink to evaluate their effectiveness.
APA, Harvard, Vancouver, ISO, and other styles
47

Priyadarshi, Neeraj, Mahajan Sagar Bhaskar, Farooque Azam, Mayank Singh, Dheeraj Kumar Dhaked, Ibrahim B. M. Taha, and Mohamed G. Hussien. "Performance Evaluation of Solar-PV-Based Non-Isolated Switched-Inductor and Switched-Capacitor High-Step-Up Cuk Converter." Electronics 11, no. 9 (April 26, 2022): 1381. http://dx.doi.org/10.3390/electronics11091381.

Full text
Abstract:
Solar photovoltaic (PV) is the most promising renewable energy source available on Earth. Three topologies based on a switched-inductor capacitor and non-isolated high-step-up Cuk converter have been proposed for solar PV. These topologies of the Cuk converter have higher boosting ability than conventional Cuk and boost converters and can reduce the voltage stress of the main switch. A small voltage rating and on-state resistance can give higher efficiency of the converter. The voltage boosting ability of all three topologies was compared to each other and with a conventional Cuk converter. The boosting capability of the third converter was 11 times at 0.75 duty cycle with a solar PV source. These converters do not use a coupled inductor and transformer, which leads to less volume, reducing coupling/core saturation loss, and thus the cost of the converter. A solar PV system of 12 volts was used for boosting with these converters for analysis of the feasibility of use with renewables. The three topologies of the switched-inductor and switched-capacitor (SLSC) Cuk converter were designed and simulated in MATLAB/Simulink to evaluate their effectiveness.
APA, Harvard, Vancouver, ISO, and other styles
48

Lim, Jeong-Woo, and Chong-Eun Kim. "Drain-Source Voltage-Controllable Three-Switch Active-Clamp Forward Converter for Wide Input/Output Voltage Applications." Micromachines 14, no. 1 (December 23, 2022): 35. http://dx.doi.org/10.3390/mi14010035.

Full text
Abstract:
Active-clamp forward converters are applied to various medium-capacity power systems because they have a relatively simple structure and are capable of zero-voltage switching. In particular, there is the advantage that a stable output voltage can be obtained by controlling the duty ratio of the power semiconductor switch even in applications with wide input and output voltage ranges. However, the voltage stress on the power semiconductor switches due to the application of active clamp is higher than the input voltage, especially as the duty ratio increases. A three-switch active-clamp forward converter is proposed, which can overcome such shortcomings and can reduce the voltage stress of the power semiconductor switches, but it causes an increase in the DC bias of the magnetizing current and the additional conduction and switching losses. Therefore, in this paper, a voltage-stress-controllable three-switch active-clamp forward converter that can utilize both advantages of the conventional active-clamp forward converter and three-switch active clamp forward converter is proposed and verified through a prototype for 800 W battery charger.
APA, Harvard, Vancouver, ISO, and other styles
49

Wu, Haotian, Zhong Wei, and Shiwen Liu. "Optimal Control Strategy of Back-to-Back Converter Based on AC/DC Voltage Source Converter." Mobile Information Systems 2022 (July 15, 2022): 1–14. http://dx.doi.org/10.1155/2022/3104149.

Full text
Abstract:
The back-to-back converter is a converter system composed of two voltage source converters (VSC). Because VSC can regulate the output of active and reactive power, the back-to-back converter has a good dynamic and static performance. However, not all passive loads are three-phase symmetrical. The existing control strategy may lead to asymmetric output voltage when back-to-back converter is used to supply unbalance load. Usually, an inner loop d/q decoupling controller, a constant DC voltage controller of the rectifier side, and a constant AC voltage controller of the inverter side are established. In this article, in order to improve the rectifier side, fuzzy online self-tuning is used to increase PI parameters on the outer voltage loop. PI control is replaced by PR control on the inner current loop. The improved rectifier control can reduce the overshoot and the output of harmonics. For the inverter side, the three-phase voltage will be imbalanced. Therefore, using PR control, which can track a sinusoidal signal without steady-state error, the control strategy of inverter is changed into “outer loop constant voltage and PR control-inner loop current d/q decoupling control.” This strategy can solve the unbalance problem of three-phase AC output. The simulation results show that the control strategy can solve the problem of asymmetric output voltage of the inverter side effectively.
APA, Harvard, Vancouver, ISO, and other styles
50

Elrefaey, Mohamed S., Mohamed E. Ibrahim, Elsayed Tag Eldin, Hossam Youssef Hegazy, Elwy E. El-Kholy, and Samia Abdalfatah. "Multiple-Source Single-Output Buck-Boost DC–DC Converter with Increased Reliability for Photovoltaic (PV) Applications." Energies 16, no. 1 (December 25, 2022): 216. http://dx.doi.org/10.3390/en16010216.

Full text
Abstract:
This paper presents an improved topology for a DC–DC converter suitable for PV applications. The proposed converter has the ability to be energized from multiple DC sources. Hence, it can be energized from two, three or a higher number of sources according to the number of modules adopted in its design. The proposed converter can supply a single load with DC power at a voltage lower or higher than the summation of all excitation DC voltages with a non-reversed voltage polarity at its output. Moreover, it provides a more reliable operation compared to other DC–DC converters due to its ability for operation with partial failures in its exciting sources. In this paper, the theoretical discussion of the proposed converter is presented considering its construction and its principle of operation. The performance of the proposed converter is theoretically evaluated using simulation based on power simulation (PSIM) software at different conditions. The performance of the converter is theoretically evaluated using PSIM considering photovoltaic (PV) sources as input sources for the proposed converter to show its validity for renewable energy applications. For more evaluation, experimental work is carried out by building a prototype and testing it at different operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography