To see the other types of publications on this topic, follow the link: Voltage-to-current converter.

Journal articles on the topic 'Voltage-to-current converter'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Voltage-to-current converter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fotouhi, B. "All-MOS voltage-to-current converter." IEEE Journal of Solid-State Circuits 36, no. 1 (2001): 147–51. http://dx.doi.org/10.1109/4.896241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Motamed, A., C. Hwang, and M. Ismail. "CMOS exponential current-to-voltage converter." Electronics Letters 33, no. 12 (1997): 998. http://dx.doi.org/10.1049/el:19970704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hassen, Néjib, Houda Bdiri Gabbouj, and Kamel Besbes. "Low-voltage high-performance current mirrors: Application to linear voltage-to-current converter." International Journal of Circuit Theory and Applications 39, no. 1 (January 2011): 47–60. http://dx.doi.org/10.1002/cta.618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abdelfattah, Khaled M., and Ahmed M. Soliman. "A Novel Exponential Voltage-to-Current Converter." Circuits, Systems & Signal Processing 21, no. 5 (October 2002): 473–83. http://dx.doi.org/10.1007/s00034-002-0717-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Roger Yubtzuan, Seng-Fong Lin, and Ming-Shian Wu. "A Linear CMOS Voltage-to-Current Converter." Circuits, Systems & Signal Processing 25, no. 4 (August 2006): 497–509. http://dx.doi.org/10.1007/s00034-005-0802-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Zhengxin, Jiuyu Du, and Boyang Yu. "Design Method of Double-Boost DC/DC Converter with High Voltage Gain for Electric Vehicles." World Electric Vehicle Journal 11, no. 4 (October 7, 2020): 64. http://dx.doi.org/10.3390/wevj11040064.

Full text
Abstract:
Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.
APA, Harvard, Vancouver, ISO, and other styles
7

Khaledian, Amir, Babak Abdi, Javad Shokrollahi Moghani, and Mehrdad Abedi. "An Overview to Soft Switching Converters with High Voltage Gain." Advanced Materials Research 462 (February 2012): 353–57. http://dx.doi.org/10.4028/www.scientific.net/amr.462.353.

Full text
Abstract:
A comparison is made in this paper between three high voltage gain converters. The first one is a boost converter with an additional level including a coupling inductor for increasing the voltage gain. The second is a converter that is capable to be extended to N parallel converter and the third one uses a clamp circuit to increase gain with a coupled inductor. Three converters are compared in voltage and current peak value and utilization coefficient of active switch and output diode, their ZVS and ZCS condition in the ON and OFF time and voltage gain. Finally the first converter circuit is simulated in PSpice with the two other converters input voltages and the results are compared.
APA, Harvard, Vancouver, ISO, and other styles
8

Mu, Ye, Tianli Hu, He Gong, Lijun Wang, and Shijun Li. "A dual-stage low-power converter driving for piezoelectric actuator applied in micro robot." International Journal of Advanced Robotic Systems 16, no. 1 (January 1, 2019): 172988141982684. http://dx.doi.org/10.1177/1729881419826849.

Full text
Abstract:
In this article, a dual-stage converter driving for a piezoelectric actuator based on flyback circuit was designed and implemented, which could be applied in a micro robot. A low-voltage direct current could be converted to a high-voltage alternating current through flyback circuit and direct current/alternating current circuit in low-power condition. In the direct current/direct current stage, the charging and discharging process was realized to generate a high voltage bias from a low voltage directly supplied by battery. Then, the high voltage was converted into alternating waveform by an energy recovery circuit in direct current/alternating current stage. Experiments were conducted to verify the ability of the proposed converter to drive a 100-V-input piezoelectric bimorph actuator using a prototype 108 mg (excluding printed circuit board mass), 169 (13 × 13) mm2, and 500-mW converter. According to the experimental results, this converter could be used for driving piezoelectric actuator applied in micro robot.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Hailong, Yafei Chen, Sung-Jun Park, and Dong-Hee Kim. "A Family of Bidirectional DC–DC Converters for Battery Storage System with High Voltage Gain." Energies 12, no. 7 (April 3, 2019): 1289. http://dx.doi.org/10.3390/en12071289.

Full text
Abstract:
In low power energy storage systems, to match the voltage levels of the low-voltage battery side and high-voltage direct current (DC) bus, a high voltage gain converter with bidirectional operation is required. In this system, the cost effectiveness of the design is a critical factor; therefore, the system should be designed using a small number of components. This paper proposes a set of bidirectional converters with high voltage gain range based on the integration of the boost converter with a Ćuk converter, single ended primary inductor converter (Sepic), and buck-boost converter. The proposed converters consist of a small number of components with a high voltage gain ratio. Detailed comparisons are made with respect to the operating mode, number of components, voltage, and current ripple and efficiency. The efficiency of proposed converters are higher than the conventional converters in entire power range, and 6% higher efficiency can be achieved in large duty cycle by calculating loss analysis. To verify performances of the proposed converters, three 200-W prototypes of the converters are developed under the same experimental conditions. The results revealed that converter I exhibits the highest efficiency in the boost mode (92%) and buck mode (92.2%). The experimental results are shown to verify the feasibility and performances of the set of converters.
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Weihsing, Shen-Iuan Liu, and Shui-Ken Wei. "CMOS Differential-Mode Exponential Voltage-To-Current Converter." Analog Integrated Circuits and Signal Processing 45, no. 2 (November 2005): 163–68. http://dx.doi.org/10.1007/s10470-005-4009-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

KUMWACHARA, K., W. SURAKAMPONTORN, V. RIEWRUJA, and C. SURAWATPUNYA. "An accurate CMOS differential voltage-to-current converter." International Journal of Electronics 77, no. 6 (December 1994): 1025–33. http://dx.doi.org/10.1080/00207219408926126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mathew, M., K. Hayatleh, and B. L. Hart. "A High-Transconductance Voltage-to-Current Converter Design." Circuits, Systems and Signal Processing 29, no. 6 (April 29, 2010): 1123–40. http://dx.doi.org/10.1007/s00034-010-9193-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rajaei, Amirhossein, Mahdi Shahparasti, Ali Nabinejad, and Mehdi Savaghebi. "A High Step-Up Partial Power Processing DC/DC T-Source Converter for UPS Application." Sustainability 12, no. 24 (December 14, 2020): 10464. http://dx.doi.org/10.3390/su122410464.

Full text
Abstract:
In this paper, a new modified structure of a DC/DC T-source converter is proposed. Since the proposed converter provides high voltage gain, it is suitable for photovoltaic integration into uninterruptible power supply (UPS) systems. The proposed structure employs partial power processing technique to increase the output voltage as well as efficiency without requiring new hardware. Partial power converters (PPCs) process only a fraction of flowing power while the remaining power directly flows through output. This generally causes an improvement in efficiency and output voltage. A total of two structures are presented: conventional partial power T-source converters and improved partial power T-source converters. The key advantage of the improved partial power converter is a higher voltage gain. Furthermore, it reduces the voltage and the current stresses on switches and diodes. The steady-state operation principles are described for both converters and the governed rules and equations are derived. The PPCs and full power converter are compared in terms of efficiency, voltage gain, voltage stress, and current stress of converter elements. The converter performance is evaluated through experimental and simulation studies. The presented results show good consistency with the theoretical analysis.
APA, Harvard, Vancouver, ISO, and other styles
14

Rashag, Hassan Farahan. "Optimization of efficiency for power system using three phase AC to AC matrix converter with the algorithm of fuzzy controller." International Journal of Applied Power Engineering (IJAPE) 8, no. 2 (August 1, 2019): 129. http://dx.doi.org/10.11591/ijape.v8.i2.pp129-133.

Full text
Abstract:
This paper suggested a new contribution of three phase AC to AC matrix converter MC via fuzzy logic controller FLC to enhance the whole system. However, the weakness of matrix converter is that the input- output voltage transfer is control to 87% for input and output waveform. Also, matrix converter is more sensitive to the trouble of input voltage which deteriorates the system performance. To overcome these problems, and to improve the efficiency of system, FLC with matrix converter is proposed to minimize the sensitivity to the load, and to increase voltage transfer. In this paper the currents a,b,c are converted to alpha and beta current via Clarke transformation . In this method two FLC are used. The error (between alpha current and reference current) (e) and the change of this error (de) will apply to first FLC. The output of FLC is actual alpha current. In the other hand, the error of beta current and the change of error are also passes through the second FLC to produce the actual beta current. The actual alpha and beta current is converted to direct and quadrature d-q current by park transformation. The d-q current is converted to (a, b, c) out currents by inverse park transformation, the results of this method express that the matrix converter with FLC is more capable, high accuracy with better efficiency as compared with conventional matrix converter system.
APA, Harvard, Vancouver, ISO, and other styles
15

Choi, Z. H., C. L. Toh, and M. H. Z. Hilmi. "Comparative study of two potential recuperating converters in DC railway electrification system for harmonic mitigation." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 3 (September 1, 2019): 1157. http://dx.doi.org/10.11591/ijpeds.v10.i3.pp1157-1166.

Full text
Abstract:
<span>The regenerative braking energy produced by Light-Rail-Transit (LRT) train is commonly transferred back to power grid via a conventional three-phase inverter (recuperating converter). Although this is a cost saving solution but the ac grid current and voltage waveforms were distorted. Hence passive filters are integrated to mitigate the harmonics. This paper proposed to replace the conventional inverter system with a multilevel converter. Cascaded H-Bridge (CHB) converter and Modular Multilevel Converter (MMC) are selected to be evaluated in this paper due to their modularity structures. The aim of this study is to determine the most potential multilevel converter to be implemented without additional passive filters. Nine-level CHB and nine-level MMC converters are modeled with MATLAB/Simulink simulation tool. Both converters are modulated with Level-Shifted Pulse Width Modulation technique. The output voltage and current waveforms generated by CHB and MMC are presented with full analysis. It is concluded that MMC converter is more suitable to be used as a recuperating converter. It produces a clean voltage and current waveforms. The voltage and current Total Harmonic Distortion (THD) indexes are found approximate to 8% and 3%.</span>
APA, Harvard, Vancouver, ISO, and other styles
16

Senthilnathan, Karthikrajan, and K. Iyswarya Annapoorani. "A Review on Back-to-Back Converters in Permanent Magnet Synchronous Generator based Wind Energy Conversion System." Indonesian Journal of Electrical Engineering and Computer Science 2, no. 3 (June 1, 2016): 583. http://dx.doi.org/10.11591/ijeecs.v2.i3.pp583-591.

Full text
Abstract:
This paper presents a review on the application of back-to-back converters in the field of Permanent Magnet Synchronous Generator (PMSG) based Wind Energy Conversion Systems (WECS). The wide applications of the back-to-back converters are power conditioning devices, micro grid, High Voltage Direct Current (HVDC), Renewable energy systems. The intention is to present an overview about the design considerations taken by various researchers in back-to-back converters in the field of Wind Energy Conversion Systems (WECS) and recent developments on it. Generally the configuration of back-to-back converters used are 12 pulse Voltage Source Converters (VSC), 12 pulse Current Source Converter (CSC), 9 Pulse Voltage Source Converter<em>.</em>
APA, Harvard, Vancouver, ISO, and other styles
17

Putra, Tri Yogi, and Muldi Yuhendri. "Implementasi Hysterisis Current Control Pulse Witdh Modulation (HCCPWM) Untuk Inverter 3 Fasa." JTEIN: Jurnal Teknik Elektro Indonesia 2, no. 1 (March 23, 2021): 91–97. http://dx.doi.org/10.24036/jtein.v2i1.127.

Full text
Abstract:
Based on the source used, there are several types of converters, one of which is a voltage source converter (VSC). In this study, using a converter that can work as an inverter. In industry, an inverter is useful for supplying the AC voltage source from industrial plants with DC sources, by varying the voltage and output frequency of the inverter. The method used is the HCCPWM generation method or Hysterisis Current Control Pulse Witdh Modulation. This method was chosen because it has several advantages which are good stability, very fast transient response and good accuracy. To activate HCCPWM, a 3 phase reference current signal is first made in the Matlab Simulink, this reference current is then compared with the actual current from the current sensor, then the error is controlled with the hysteresis band. In Arduino mega2560, the pulses generated by HCCPWM in the Matlab Simulink are converted into a duty cycle. The modulated pulse generated by the Arduino PWM pin will be increased using a gate drive circuit, so that the voltage is obtained according to the voltage required by the Mosfet to activate the switch. The results of the tests that have been done show that the voltage source converter (VSC) designed in this study has worked well as intended. This can be seen from the actual current from the current sensor which has been compared with the reference voltage using the HCCPWM method which is included in the Simulink Matlab program.
APA, Harvard, Vancouver, ISO, and other styles
18

Naik, Jeevan. "Design and Control for the Buck-Boost Converter Combining 1-Plus-D Converter and Synchronous Rectified Buck Converters." International Journal of Power Electronics and Drive Systems (IJPEDS) 6, no. 2 (June 1, 2015): 305. http://dx.doi.org/10.11591/ijpeds.v6.i2.pp305-317.

Full text
Abstract:
<span>In this paper, a design and control for the buck-boost converter, i.e., 1-plus-D converter with a positive output voltage, is presented, which combines the 1-plus-D converter and the synchronous rectified (SR) buck converter. By doing so, the problem in voltage bucking of the 1-plus-D converter can be solved, thereby increasing the application capability of the 1-plus-D converter. Since such a converter operates in continuous conduction mode inherently, it possesses the nonpulsating output current, thereby not only decreasing the current stress on the output capacitor but also reducing the output voltage ripple. Above all, both the 1-plus-D converter and the SR buck converter, combined into a buck–boost converter with no right-half plane zero, use the same power switches, thereby causing the required circuit to be compact and the corresponding cost to be down. Furthermore, during the magnetization period, the input voltage of the 1-plus-D converter comes from the input voltage source, whereas during the demagnetization period, the input voltage of the 1-plus-D converter comes from the output voltage of the SR buck converter.</span>
APA, Harvard, Vancouver, ISO, and other styles
19

Onah, Aniagboso John. "Analysis of Controlled Single-phase Full-Wave Rectifier with RL Load." European Journal of Engineering Research and Science 3, no. 12 (December 7, 2018): 25–31. http://dx.doi.org/10.24018/ejers.2018.3.12.981.

Full text
Abstract:
Diodes are popularly used in rectifiers, which convert an ac signal into a unidirectional signal. They produce a fixed output voltage only. However, controlled switches such as thyristors are used to vary the output voltage of a converter by adjusting the delay or firing angle α of the thyristors. Phase-controlled converters are simple, efficient and less expensive. There are both single-phase and three-phase converters depending on the input supply. We also have half-wave and full-wave converters. The half-wave converter has only one polarity of output voltage and current, while for the full converter, the polarity of the output voltage can be either positive or negative. The purpose of this paper is to investigate the operation of the Single-phase full-wave rectifier. Load current for the controlled full-wave rectifier with R-L load can be either discontinuous or continuous. The paper shows how the rectifier transits from discontinuous current operation to continuous current operation.
APA, Harvard, Vancouver, ISO, and other styles
20

Karthikeyan, M., R. Elavarasu, P. Ramesh, C. Bharatiraja, P. Sanjeevikumar, Lucian Mihet-Popa, and Massimo Mitolo. "A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility." Energies 13, no. 9 (May 6, 2020): 2312. http://dx.doi.org/10.3390/en13092312.

Full text
Abstract:
In the current era, the desire for high boost DC-to-DC converter development has increased. Notably, there has been voltage gain improvement without adding extra power switches, and a large number of passive components have advanced. Magnetically coupled isolated converters are suggested for the higher voltage gain. These converters use large size inductors, and thus the non-isolated traditional boost, Cuk and Sepic converters are modified to increase their gain by adding an extra switch, inductors and capacitors. These converters increase circuit complexity and become bulky. In this paper, we present a hybrid high voltage gain non-isolated single switch converter for photovoltaic applications. The proposed converter connects the standard conventional Cuk and boost converter in parallel for providing continuous current mode operation with the help of a single power switch, which gives less voltage stress on controlled switch and diodes. The proposed hybrid topology uses a single switch with a lower component-count and provides a higher voltage gain than non-isolated traditional converters. The converter circuit mode of operation, operating performance, mathematical derivations and steady-state exploration and circuit parameters design procedures are deliberated in detail. The proposed hybrid converter circuit components, voltage gain and performance, were compared with other topologies in the literature. The MATLAB/Simulink simulation study and microcontroller-based experimental laboratory prototype of 150 W were implemented. The simulation study and experimentation results were confirmed to be a satisfactory agreement with the theoretical analysis. This topology produced non-inverting output in continuous input current mode using a single switch with high voltage gain (≈5.116 gain) with a maximum efficiency of 92.2% under full load.
APA, Harvard, Vancouver, ISO, and other styles
21

Harimon, M. A., A. Ponniran, A. N. Kasiran, and H. H. Hamzah. "A Study on 3-phase Interleaved DC-DC Boost Converter Structure and Operation for Input Current Stress Reduction." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 4 (December 1, 2017): 1948. http://dx.doi.org/10.11591/ijpeds.v8.i4.pp1948-1953.

Full text
Abstract:
This paper analyses a 3-phase interleaved DC-DC boost converter for the conversion of low input voltage with high input current to higher DC output voltage. The operation of the 3-phase interleaved DC-DC boost converter with multi-parallel of boost converters is controlled by interleaved of switching signals with 120 degrees phase-shifted. Therefore, with this circuit configuraion, high input current is evenly shared among the parallel units and consequently the current stress is reduced on the circuit and semiconductor devices and contributes reduction of overall losses. The simulation and hardware results show that the current stress and the semiconductor conduction losses were reduced approximately 33% and 32%, respectively in the 3-phase interleaved DC-DC boost converter compared to the conventional DC-DC boost converters. Furthermore, the use of interleaving technique with continuous conduction mode on DC-DC boost converters is reducing input current and output voltage ripples to increase reliability and efficiency of boost converters.
APA, Harvard, Vancouver, ISO, and other styles
22

Wan, Meilin, Wang Liao, Kui Dai, and Xuecheng Zou. "A Nonlinearity-Compensated All-MOS Voltage-to-Current Converter." IEEE Transactions on Circuits and Systems II: Express Briefs 63, no. 2 (February 2016): 156–60. http://dx.doi.org/10.1109/tcsii.2015.2468912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

SURAKAMPONTORN, WANLOP, and KIATTISAK KUMWACHARA. "A class AB CMOS tunable voltage-to-current converter." International Journal of Electronics 80, no. 3 (March 1996): 461–69. http://dx.doi.org/10.1080/002072196137309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dürig, U., L. Novotny, B. Michel, and A. Stalder. "Logarithmic current-to-voltage converter for local probe microscopy." Review of Scientific Instruments 68, no. 10 (October 1997): 3814–16. http://dx.doi.org/10.1063/1.1148005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Surakampontorn, W., V. Riewruja, K. Kumwachara, C. Surawatpunya, and K. Anuntahirunrat. "Temperature-insensitive voltage-to-current converter and its applications." IEEE Transactions on Instrumentation and Measurement 48, no. 6 (1999): 1270–77. http://dx.doi.org/10.1109/19.816147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lin, Xiang, Faqiang Wang, and Herbert H. C. Iu. "A New Bridgeless High Step-up Voltage Gain PFC Converter with Reduced Conduction Losses and Low Voltage Stress." Energies 11, no. 10 (October 2, 2018): 2640. http://dx.doi.org/10.3390/en11102640.

Full text
Abstract:
Bridgeless power factor correction (PFC) converters have a reduced number of semiconductors in the current flowing path, contributing to low conduction losses. In this paper, a new bridgeless high step-up voltage gain PFC converter is proposed, analyzed and validated for high voltage applications. Compared to its conventional counterpart, the input rectifier bridge in the proposed bridgeless PFC converter is completely eliminated. As a result, its conduction losses are reduced. Also, the current flowing through the power switches in the proposed bridgeless PFC converter is only half of the current flowing through the rectifier diodes in its conventional counterpart, therefore, the conduction losses can be further improved. Moreover, in the proposed bridgeless PFC converter, not only the voltage stress of power switches is lower than the output voltage, but the voltage stress of the output diodes is lower than the conventional counterpart. In addition, this proposed bridgeless PFC converter features a simple circuit structure and high PFC performance. Finally, the proposed bridgeless PFC converter is analyzed and designed in the discontinuous conduction mode (DCM). The simulation results are presented to verify the effectiveness of the proposed bridgeless PFC converter.
APA, Harvard, Vancouver, ISO, and other styles
27

Yadav, Nandakishor, Youngbae Kim, Mahmoud Alashi, and Kyuwon Ken Choi. "Sensitive, Linear, Robust Current-To-Time Converter Circuit for Vehicle Automation Application." Electronics 9, no. 3 (March 16, 2020): 490. http://dx.doi.org/10.3390/electronics9030490.

Full text
Abstract:
Voltage-to-time and current-to-time converters have been used in many recent works as a voltage-to-digital converter for artificial intelligence applications. In general, most of the previous designs use the current-starved technique or a capacitor-based delay unit, which is non-linear, expensive, and requires a large area. In this paper, we propose a highly linear current-to-digital converter. An optimization method is also proposed to generate the optimal converter design containing the smallest number of PMOS and sensitive circuits such as a differential amplifier. This enabled our design to be more stable and robust toward negative bias temperature instability (NBTI) and process variation. The proposed converter circuit implements the point-wise conversion from current-to-time, and it can be used directly for a variety of applications, such as analog-to-digital converters (ADC), used in built-in computational random access (C-RAM) memory. The conversion gain of the proposed circuit is 3.86 ms/A, which is 52 times greater than the conversion gains of state-of-the-art designs. Further, various time-to-digital converter (TDC) circuits are reviewed for the proposed current-to-time converter, and we recommend one circuit for a complete ADC design.
APA, Harvard, Vancouver, ISO, and other styles
28

Uma Maheswari, S., and K. V. Kandasamy. "Development of Zeta Converter for Permanent Magnet Brushless Direct Current Motor." Applied Mechanics and Materials 573 (June 2014): 102–7. http://dx.doi.org/10.4028/www.scientific.net/amm.573.102.

Full text
Abstract:
Converter plays a vital role in modern transferable electronic devices and systems. In the battery operated transferable devices, the battery supplies an input voltage to the converter which in turn converts into the desired voltage. Buck-boost, Cuk, SEPIC and Zeta converter are meeting the operational requirements of DC-DC converters. The DC-DC converters are used in both buck function as well as boost function. But the advantage of Zeta converter is that, it does not suffer the polarity reversal problem. The aim of the proposed work is to design a Zeta converter which can be used to drive the Permanent Magnet Brushless Direct Current Motor. The proposed Zeta converter is suggested to control the speed of the Permanent Magnet Brushless Direct Current Motor, according to the generated switching sequence. The proposed work is generally used for low power applications and occasionally used for medium power applications.
APA, Harvard, Vancouver, ISO, and other styles
29

Zheng, Hong, Yue Lei Shi, and Hang Hui Zhang. "Continuous PWM Modulation Strategy for NPC/H and H Bridge Hybrid Multilevel Converter." Advanced Materials Research 748 (August 2013): 510–13. http://dx.doi.org/10.4028/www.scientific.net/amr.748.510.

Full text
Abstract:
f the ratio of NPC/H and H bridge hybrid multilevel converters DC supply voltage changed, the output voltage PWM waveform will be discontinuous. Thus an improved topology and control strategy is proposed. In new method, master converter operates at the fundamental frequency based on command voltage, slave converter adopts carrier phase shifted PWM technology (CPS-SPWM) at a higher frequency to enhance the quality of output voltage waveform. The amplitude of command voltage is higher than output voltage amplitude of the master converter at any time, to ensure that output voltage variation of both converters keeps in the same direction without any current flow backwards. Matlab simulation results demonstrate the effectiveness of the proposed control strategy and topology.
APA, Harvard, Vancouver, ISO, and other styles
30

Siddharthan, Niranjana, and Baskaran Balasubramanian. "Performance evaluation of SEPIC, Luo and ZETA converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 1 (March 1, 2019): 374. http://dx.doi.org/10.11591/ijpeds.v10.i1.pp374-380.

Full text
Abstract:
<p><span>DC-DC converters are devices which convert direct current (DC) from one voltage level to another by changing the duty cycle of the main switches in the circuits. These converters are widely used in switched mode power supplies and it is important to supply a constant output voltage, regardless of disturbances on the input voltage. In this work, the performance of three different converters such as Single-Ended Primary-Inductance Converter (SEPIC), Luo converter and ZETA converter have been analyzed. Further, the parameters values such as ripple voltage, switching losses and efficiency of the proposed three different converters were compared with each other. Also, the simulation work has been carried out using MATLAB/SIMULINK software. From the comparison of obtained results, it is observed that the ZETA converter has high significance than the SEPIC and Luo converter.</span></p>
APA, Harvard, Vancouver, ISO, and other styles
31

Lin, Bor-Ren, and Guan-Yi Wu. "Hybrid DC Converter with Current Sharing and Low Freewheeling Current Loss." Energies 13, no. 24 (December 15, 2020): 6631. http://dx.doi.org/10.3390/en13246631.

Full text
Abstract:
A new hybrid high-frequency link pulse-width modulation (PWM) converter using voltage balance capacitor and current balance magnetic coupling is proposed to realize low freewheeling current loss and wide load range of soft switching operation. Series-connected H-bridge converter is adopted for high voltage applications. In addition, a voltage balance capacitor and a current balance magnetic coupling core are employed for achieving voltage and current balance. To extend zero-voltage switching (ZVS) range of switches at lagging-leg of phase-shift PWM converter, soft switching LLC converter is linked to the lagging-leg of phase-shift PWM converter. Therefore, the wide ZVS load operation is realized in the presented hybrid converter. The other high freewheeling current disadvantage in conventional phase-shift PWM converter is improved by a snubber circuit used on low-voltage side. Thus, the primary current during the freewheeling state is decreased and close to zero. In addition, the conduction losses on primary-side components of studied converter are reduced. The secondary-sides of phase-shift PWM converter and LLC resonant converter are series-connected to achieve power transfer between input and output sides. Experimental results using a laboratory prototype are provided to demonstrate the effectiveness of the studied circuit and control algorithm.
APA, Harvard, Vancouver, ISO, and other styles
32

Sattianadan, D., G. R. Prudhvi Kumar, R. Sridhar, Kuthuru Vishwas Reddy, Bhumireddy Sai Uday Reddy, and Panga Mamatha. "Investigation of low voltage DC microgrid using sliding mode control." International Journal of Power Electronics and Drive Systems (IJPEDS) 11, no. 4 (December 1, 2020): 2030. http://dx.doi.org/10.11591/ijpeds.v11.i4.pp2030-2037.

Full text
Abstract:
As the requirement of power increases, the use of renewable energy resources has become prominent. The power collected from these energy resources needs to be converted using AC-DC or DC-DC converters. The control of DC-DC converters is a complex task due to its non-linearity in the converter introduced by the external changes such as source voltage, cable resistance and load variations. Converters are to be designed to obtain a well stabilized output voltage and load current for variable source voltages and load changes. Droop control method is the most abundantly used technique in controlling the parallel converters. The major limitations of the conventional droop control technique are circulating current issues and improper load sharing. The proposed work is to resolve these issues by integrating Sliding Mode Controller (SMC) with the converter in order to enhance the performance of DC microgrid. The entire control system was designed by taking the output voltage error as the control variables. Similarly, droop control with PI and PID were also performed and all these techniques were simulated and compared using MATLAB/Simulink. The experimental results show that the proposed sliding mode controller technique provides good overall performance and is suitable against variable voltage and load changes.
APA, Harvard, Vancouver, ISO, and other styles
33

Chang, Long-Yi, Kuei-Hsiang Chao, and Tsang-Chih Chang. "A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications." Scientific World Journal 2012 (2012): 1–11. http://dx.doi.org/10.1100/2012/896508.

Full text
Abstract:
This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.
APA, Harvard, Vancouver, ISO, and other styles
34

Haadi, Karim, Amirhossein Rajaei, Mahdi Shahparasti, and Akbar Rahideh. "Sensorless Voltage Observer for a Current-Fed High Step-Up DC-DC Converter Using Extended Kalman Filter." Electronics 9, no. 12 (December 4, 2020): 2066. http://dx.doi.org/10.3390/electronics9122066.

Full text
Abstract:
In high voltage applications, sensorless voltage control techniques can reduce the cost and increase the reliability of DC-DC converters. In this paper, a sensorless voltage observer for a current fed Cockcroft-Walton voltage multiplier is designed. The first step is to derive the converter model. Since any inaccuracy in the derived model can result in a discrepancy between the observed voltage and the actual output voltage, an accurate model is derived, which incorporates the influential elements. Then, two voltage observers based on the extended Kalman filter (EKF) are designed and used to estimate the output voltage, transformer magnetizing current and inductor current for two different configurations of the high step-up DC-DC converter. Experimental and simulation results of the system show the efficiency of the observers. The proposed observers represent good precision as the main parasitic parameters are considered in the converter model.
APA, Harvard, Vancouver, ISO, and other styles
35

Zhang, Hai Ming, and Xiao Zhong Liao. "A New Isolated Boost Converter with Coupling Inductors." Applied Mechanics and Materials 392 (September 2013): 394–97. http://dx.doi.org/10.4028/www.scientific.net/amm.392.394.

Full text
Abstract:
This paper proposes a new improved zero-voltage switching isolated boost converter with coupling inductors. With the traditional advantages of smaller input current ripple, low diode voltage rating, and low transformer turns ratio of boost half bridge topology [ being retained, the proposed converter makes it much easier to realize zero voltage switching of primary switches compared with conventional converters.
APA, Harvard, Vancouver, ISO, and other styles
36

Wiatr, P., and A. Kryński. "Model predictive control of multilevel cascaded converter with boosting capability – experimental results." Bulletin of the Polish Academy of Sciences Technical Sciences 65, no. 5 (October 1, 2017): 589–99. http://dx.doi.org/10.1515/bpasts-2017-0064.

Full text
Abstract:
Abstract The main goal of this paper is to present a five-level converter with the feature of output voltage boosting capability. Thanks to its modular construction and single DC source usage, 5LCHB converter becomes an important alternative for two-level converters operating with DC-DC converters that use bulky inductors. Furthermore, model predictive control (MPC) method is presented, which allows for boosting output voltage of presented converter while providing three-phase load current control and flying capacitor voltage stabilization. The last section describes a 5kVA laboratory model of five-level hybrid converter interfacing RL load and shows experimental results confirming theoretical analysis derived in previous sections.
APA, Harvard, Vancouver, ISO, and other styles
37

Muñoz, Juan-Guillermo, Guillermo Gallo, Fabiola Angulo, and Gustavo Osorio. "Slope Compensation Design for a Peak Current-Mode Controlled Boost-Flyback Converter." Energies 11, no. 11 (November 1, 2018): 3000. http://dx.doi.org/10.3390/en11113000.

Full text
Abstract:
Peak current-mode control is widely used in power converters and involves the use of an external compensation ramp to suppress undesired behaviors and to enhance the stability range of the Period-1 orbit. A boost converter uses an analytical expression to find a compensation ramp; however, other more complex converters do not use such an expression, and the corresponding compensation ramp must be computed using complex mechanisms. A boost-flyback converter is a power converter with coupled inductors. In addition to its high efficiency and high voltage gains, this converter reduces voltage stress acting on semiconductor devices and thus offers many benefits as a converter. This paper presents an analytical expression for computing the value of a compensation ramp for a peak current-mode controlled boost-flyback converter using its simplified model. Formula results are compared to analytical results based on a monodromy matrix with numerical results using bifurcations diagrams and with experimental results using a lab prototype of 100 W.
APA, Harvard, Vancouver, ISO, and other styles
38

Guo, Ke, Qiang Liu, Xinze Xi, Mingxuan Mao, Yihao Wan, and Hao Wu. "Coordinated Control Strategy of a Combined Converter in a Photovoltaic DC Boost Collection System under Partial Shading Conditions." Energies 13, no. 2 (January 18, 2020): 474. http://dx.doi.org/10.3390/en13020474.

Full text
Abstract:
Series–parallel module technology can meet a DC converter’s requirements of high-power, large-capacity, and high step-up ratio in photovoltaic a DC boost collection system. However, the cascaded structure has the problem of voltage and current sharing between modules, and due to the duty cycle limitation of converters, the combined converters in the PV-converter unit have an unbalanced voltage, which may also exceed the voltage range under partial shading conditions (PSCs). First, aiming at the problems of voltage sharing, current sharing, and low modularity in the combined converter, this paper proposes a distributed control strategy. Then, by adopting a coordinated control strategy based on the sub-module cutting in and out, the problem that the combined converter cannot normally boost under PSCs was solved. The paper not only takes the advantages of the cascade structure of the combined converter to increase the power and voltage, but also improves its modularity to solve the problem of abnormal operation under uneven irradiation. This dramatically improves the adaptability of combined converters in a photovoltaic DC collection system. Finally, a small power experiment was carried out, where the experimental results verified the effectiveness of the control strategy.
APA, Harvard, Vancouver, ISO, and other styles
39

Ashraf, Naveed, Tahir Izhar, Ghulam Abbas, Valentina E. Balas, Marius M. Balas, Tsung-Chih Lin, Muhammad Usman Asad, Umar Farooq, and Jason Gu. "A Single-Phase Buck and Boost AC-to-AC Converter with Bipolar Voltage Gain: Analysis, Design, and Implementation." Energies 12, no. 7 (April 10, 2019): 1376. http://dx.doi.org/10.3390/en12071376.

Full text
Abstract:
In this research, a new single-phase direct AC-to-AC converter, operating in buck and boost mode, with a bipolar voltage gain, is proposed. The operation is accomplished through high frequency direct and indirect PWM control of a single switch with low voltage stresses. This reduces, not only the control effort, but also the switching losses. The low voltage stresses across the high frequency switches, reduce the dv/dt problem significantly without any loss and bulky voltage snubber arrangement. The operation, in its all-operating modes, has a low inductor ripple current and switching current. The proposed converter may be employed as an AC voltage restorer in a power distribution system to cope with the voltage sag and swell issues. The detailed analysis of the proposed converter is carried out in order to compare its performance with the existing converters. The simulation results obtained using the MATLAB/Simulink environment are verified through experimental results.
APA, Harvard, Vancouver, ISO, and other styles
40

Zhao and Yang. "Parallel Control of Converters with Energy Storage Equipment in a Microgrid." Electronics 8, no. 10 (October 2, 2019): 1110. http://dx.doi.org/10.3390/electronics8101110.

Full text
Abstract:
The converter in a microgrid uses the active power and reactive power (PQ) control strategy when connected to the grid. In the case of failure of large power grid, the converters are required to be connected in parallel under the condition of island to provide power to the load. In this paper, a new control method for the parallel operation of converters based on V/F control is proposed. The V/F control is used to ensure the output voltages have the same amplitude and frequency, then the converters will only produce circulating current caused by phase angle inconsistency. The phase angle self-synchronization strategy is proposed to make sure the phase angle of output voltage of all converters in the system are consistent. First, a large inductor is added to the end of the converter to ignore the line reactance, through this, the measured voltage at the terminal of the converter roughly equals to the voltage of the load, thus, every converter has the same reference of phase angle. Using the proposed phase angle self-synchronization strategy allows the output voltage of every converter to have the same phase angle, so that there is no circulating current between converters, and the power is evenly distributed among the converters. The simulation verification was carried out on the Power Simulation (PSIM) simulation platform, and the experimental verification was implemented on the hardware experimental platform. Both results demonstrate the effectiveness of the proposed strategy. This method is highly reliable and easy to implement, and the circulating current can be reduced effectively.
APA, Harvard, Vancouver, ISO, and other styles
41

Uno, Masatoshi, Masahiko Inoue, Yusuke Sato, and Hikaru Nagata. "Bidirectional Interleaved PWM Converter with High Voltage-Conversion Ratio and Automatic Current Balancing Capability for Single-Cell Battery Power System in Small Scientific Satellites." Energies 11, no. 10 (October 11, 2018): 2702. http://dx.doi.org/10.3390/en11102702.

Full text
Abstract:
Single-cell battery power systems are a promising bus architecture for small scientific satellites. However, to bridge the huge voltage gap between a single-cell battery and power bus, bidirectional converters with a high voltage conversion ratio and a large current capability for the low-voltage side are necessary. This article proposes a bidirectional interleaved pulse width modulation (PWM) converter with a high voltage conversion ratio and an automatic current balancing capability. By adding capacitors to conventional interleaved PWM converters, not only are inductor currents automatically balanced without feedback control or current sensors, but also voltage conversion ratios at a given duty cycle can be enhanced. Furthermore, the added capacitors can reduce voltage stresses of switches and charged-discharged energies of inductors, realizing more efficient power conversion and reduced circuit volume in comparison with conventional converters. A 100-W prototype was built for experimental verification, and results demonstrated the fundamental characteristics and efficacy of the proposed converter.
APA, Harvard, Vancouver, ISO, and other styles
42

Lin, Bor-Ren. "Soft Switching DC Converter for Medium Voltage Applications." Electronics 7, no. 12 (December 18, 2018): 449. http://dx.doi.org/10.3390/electronics7120449.

Full text
Abstract:
A dc-dc converter with asymmetric pulse-width modulation is presented for medium voltage applications, such as three-phase ac-dc converters, dc microgrid systems, or dc traction systems. To overcome high voltage stress on primary side and high current rating on secondary side, three dc-dc circuits with primary-series secondary-parallel structure are employed in the proposed converter. Current doubler rectifiers are used on the secondary side to achieve low ripple current on output side. Asymmetric pulse-width modulation is adopted to realize soft switching operation for power switches for wide load current operation and achieve high circuit efficiency. Current balancing cells with magnetic component are used on the primary side to achieve current balance in each circuit cell. The voltage balance capacitors are also adopted on primary side to realize voltage balance of input split capacitors. Finally, the circuit performance is confirmed and verified from the experiments with a 1.44 kW prototype.
APA, Harvard, Vancouver, ISO, and other styles
43

Salehi, Navid, Herminio Martínez-García, and Guillermo Velasco-Quesada. "Modified Cascaded Z-Source High Step-Up Boost Converter." Electronics 9, no. 11 (November 17, 2020): 1932. http://dx.doi.org/10.3390/electronics9111932.

Full text
Abstract:
To improve the voltage gain of step-up converters, the cascaded technique is considered as a possible solution in this paper. By considering the concept of cascading two Z-source networks in a conventional boost converter, the proposed topology takes the advantages of both impedance source and cascaded converters. By applying some modifications, the proposed converter provides high voltage gain while the voltage stress of the switch and diodes is still low. Moreover, the low input current ripple of the converter makes it absolutely appropriate for photovoltaic applications in expanding the lifetime of PV panels. After analyzing the operation principles of the proposed converter, we present the simulation and experimental results of a 100 W prototype to verify the proposed converter performance.
APA, Harvard, Vancouver, ISO, and other styles
44

Memon, Ahsanullah, Mohd Wazir Mustafa, Muhammad Naveed Aman, Abdul Hafeez, and Mukhtar Ullah. "Improving Transient Behavior of a Brushless Doubly Fed Induction Generator through Reactive Current Control of Grid-Side Converter." Electronics 10, no. 12 (June 11, 2021): 1413. http://dx.doi.org/10.3390/electronics10121413.

Full text
Abstract:
Brushless doubly-fed induction generators have higher reliability, making them an attractive choice for not only offshore applications but also for remote locations. These generators are composed of two back-to-back voltage source converters, a grid side converter and a rotor side converter. Existing techniques use the rotor side converter for reactive current control; however, it is more suitable for stabilizing steady state behavior. In order to stabilize the voltage fluctuations at the point of common coupling (PCC) due to sudden inductive load introduction, the grid side converter may be a better choice due to faster response and higher control bandwidth. Therefore, this paper proposes a control scheme for the grid side converter to suppress the PCC voltage fluctuations when a large inductive load is suddenly connected. The proposed technique is based on an analytical model of the transient behavior of the voltage drop at the PCC. The analysis shows that reactive current control using the grid side converter introduces a double fundamental frequency component to the PCC voltage. To block this harmonic, we designed a notch filter. The simulation results in Matlab/Simulink show that the proposed technique can not only significantly reduce the voltage drop but also results in an 82% reduction in voltage distortion at the PCC.
APA, Harvard, Vancouver, ISO, and other styles
45

Andreičiks, Aleksandrs, Kristaps Vitols, Oskars Krievs, and Ingars Steiks. "Current Fed Step-up DC/DC Converter for Fuel Cell Inverter Applications." Scientific Journal of Riga Technical University. Power and Electrical Engineering 25, no. 25 (January 1, 2009): 117–22. http://dx.doi.org/10.2478/v10144-009-0025-z.

Full text
Abstract:
Current Fed Step-up DC/DC Converter for Fuel Cell Inverter ApplicationsIn order to use hydrogen fuel cells in domestic applications either as main power supply or backup source, their low DC output voltage has to be matched to the level and frequency of the utility grid AC voltage. Such power converter systems usually consist of a DC-DC converter and a DC-AC inverter. Comparison of different current fed step-up DC/DC converters is done in this paper and a double inductor step-up push-pull converter investigated, presenting simulation and experimental results. The converter is elaborated for 1200 W power to match the rated power of the proton exchange membrane (PEM) fuel cell located in hydrogen fuel cell research laboratory of Riga Technical University.
APA, Harvard, Vancouver, ISO, and other styles
46

Kosenko, Roman, Liisa Liivik, Andrii Chub, and Oleksandr Velihorskyi. "Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters." Electrical, Control and Communication Engineering 8, no. 1 (July 1, 2015): 5–12. http://dx.doi.org/10.1515/ecce-2015-0001.

Full text
Abstract:
Abstract This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.
APA, Harvard, Vancouver, ISO, and other styles
47

Kim, Sung-Hun, Bum-Jun Kim, Jung-Min Park, and Chung-Yuen Won. "Decentralized Control Method of ISOP Converter for Input Voltage Sharing and Output Current Sharing in Current Control Loop." Energies 13, no. 5 (March 2, 2020): 1114. http://dx.doi.org/10.3390/en13051114.

Full text
Abstract:
Input-Series-Output-Parallel (ISOP) converters, a kind of modular converter, are used in high-input voltage and high-output current applications. In ISOP converters, Input Voltage Sharing (IVS) and Output Current Sharing (OCS) should be implemented for stable operation. In order to solve this problem, this paper proposes a decentralized control method. In the proposed control, output current reference is changed according to the decentralized control characteristic in individual current control loops. In this way, the proposed control method is able to implement IVS and OCS without communication. Also, this method can be easily used in current control loops and has high reliability compared to conventional control methods that require communication. In this paper, the operation principle is described to elucidate the proposed control and a small signal model of an ISOP converter is also implemented. Based on the small signal model, IVS stability analysis is performed using pole-zero maps with varying coefficients and control gains. In addition, the current control loop is designed in a stable region. In order to demonstrate the proposed control method, a prototype ISOP converter is configured using full-bridge converters. The performance of IVS and OCS in an ISOP converter is verified by experimental result.
APA, Harvard, Vancouver, ISO, and other styles
48

Krajam, Kumkrong, and Sakorn Po-Ngam. "The Double Forward Converter with Synchronous Rectification." Applied Mechanics and Materials 781 (August 2015): 431–34. http://dx.doi.org/10.4028/www.scientific.net/amm.781.431.

Full text
Abstract:
In many switching power supply converters, diode rectifiers are used to obtain the DC output voltage. The conduction loss of these diodes rectifier contributes significantly to the overall power loss, especially for low-voltage, high-current converter applications. The conduction loss of rectifying diode is given by the product of its forward-voltage drop and forward conduction current. By replacing the diode rectifiers with a MOSFET operating as a synchronous rectifier (SR), the equivalent forward-voltage drop can be lowered and, consequently, the conduction loss can be reduced because the switching power supply converter need high efficiency. The double forward converter with synchronous rectification is proposed in this paper. The circuit’s guidelines of the double forward controller in the double forward converter and the synchronous rectifier controller in the synchronous rectification are also presented. Validity of the proposed double forward converter with synchronous is confirmed by simulations.
APA, Harvard, Vancouver, ISO, and other styles
49

Sivapriyan, R., and D. Elangovan. "Impedance-Source DC-to-AC/DC Converter." Electronics 8, no. 4 (April 16, 2019): 438. http://dx.doi.org/10.3390/electronics8040438.

Full text
Abstract:
This article presents a novel impedance-source-based direct current (DC)-to-alternating current (AC)/DC converter (Z-Source DAD Converter). The Z-Source DAD converter converts the input DC voltage into AC or DC with buck or boost in the load voltage. This Z-Source DAD conversion circuit is a single-stage power conversion system. This converter circuit converts the input DC voltage into variable-magnitude output DC voltage or converts the DC voltage into a variable-magnitude output AC voltage. The higher voltage magnitude in boost mode can be controlled by controlling the shoot-through (ST) state timing of the converter. MATLAB-Simulink simulation and microcontroller-based hardware circuit results are presented to demonstrate power conversion with the buck and boost features of the Z-Source DAD converter for both types of output voltages. The simulation and experimental results show that the Z-Source DAD converter converts the given DC supply into AC or DC with buck or boost in the output load voltage.
APA, Harvard, Vancouver, ISO, and other styles
50

Lin, Bor-Ren, and Yi-Kuan Lin. "Hybrid DC-DC Converter with Low Switching Loss, Low Primary Current and Wide Voltage Operation." Energies 14, no. 9 (April 28, 2021): 2536. http://dx.doi.org/10.3390/en14092536.

Full text
Abstract:
A full-bridge converter with an additional resonant circuit and variable secondary turns is presented and achieved to have soft-switching operation on active devices, wide voltage input operation and low freewheeling current loss. The resonant tank is linked to the lagging-leg of the full bridge pulse-width modulation converter to realize zero-voltage switching (ZVS) characteristic on the power switches. Therefore, the wide ZVS operation can be accomplished in the presented circuit over the whole input voltage range and output load. To overcome the wide voltage variation on renewable energy applications such as DC wind power and solar power conversion, two winding sets are used on the output-side of the proposed converter to obtain the different voltage gains. Therefore, the wide voltage input from 90 to 450 V (Vin,max = 5Vin,min) is implemented in the presented circuit. To further improve the freewheeling current loss issue in the conventional phase-shift pulse-width modulation converter, an auxiliary DC voltage generated from the resonant circuit is adopted to reduce this freewheeling current loss. Compared to the multi-stage DC converters with wide input voltage range operation, the proposed circuit has a low freewheeling current loss, low switching loss and a simple control algorithm. The studied circuit is tested and the experimental results are demonstrated to testify the performance of the resented circuit.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography