Academic literature on the topic 'Volume of Fluid (VOF)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Volume of Fluid (VOF).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Volume of Fluid (VOF)"

1

KUMAR, BIPIN, MARTIN CRANE, and YAN DELAURÉ. "ON THE VOLUME OF FLUID METHOD FOR MULTIPHASE FLUID FLOW SIMULATION." International Journal of Modeling, Simulation, and Scientific Computing 04, no. 02 (June 2013): 1350002. http://dx.doi.org/10.1142/s1793962313500025.

Full text
Abstract:
Numerical study of multiphase fluid flows require mathematical methods for distinguishing interface between two fluids. The volume of fluid (VOF) method is one of such method which takes care of fluid shape in a local domain and reconstructs the interface from volume fraction of one fluid. Maintaining sharp interface during reconstruction is a challenging task and geometrical approach of VOF method better suits for incompressible fluids. This paper provides a complete mathematical discussion of extended form of VOF method using a approach known as piecewise linear interface calculation (PLIC). An analytical relation between volume fraction and interface position has been explored with the help of primitive geometrical shapes. The method with this analytical relation has been applied to multiphase fluid flow benchmark problems and found to be in good agreement.
APA, Harvard, Vancouver, ISO, and other styles
2

Ramamurthy, A. S., Junying Qu, and Diep Vo. "Volume of fluid model for an open channel flow problem." Canadian Journal of Civil Engineering 32, no. 5 (October 1, 2005): 996–1001. http://dx.doi.org/10.1139/l05-038.

Full text
Abstract:
In the past, the solutions to open flow problems were generally found on the basis of experimental data or through the development of theoretical expressions using simplified assumptions. The volume of fluid (VOF) turbulence model can be applied to obtain the flow parameters such as pressure head distributions, velocity distributions, and water surface profiles for flow in open channels. The free overfall in a rectangular open channel that serves as a discharge measuring structure is selected to apply to the VOF model. The predictions of the proposed VOF model are validated using existing experimental data for both subcritical and supercritical flow approach conditions. Based on the path followed by a fluid particle leaving the brink section, the equations for the nappe profiles in supercritical flows are obtained in terms of the end depth. The VOF turbulence model developed is used to predict the characteristics of a free overfall in a rectangular open channel.Key words: turbulence model, VOF model, numerical simulation, overfall characteristics, open channel flow.
APA, Harvard, Vancouver, ISO, and other styles
3

Ii, Satoshi, Xiaobo Gong, Kazuyasu Sugiyama, Jinbiao Wu, Huaxiong Huang, and Shu Takagi. "A Full Eulerian Fluid-Membrane Coupling Method with a Smoothed Volume-of-Fluid Approach." Communications in Computational Physics 12, no. 2 (August 2012): 544–76. http://dx.doi.org/10.4208/cicp.141210.110811s.

Full text
Abstract:
AbstractA novel full Eulerian fluid-elastic membrane coupling method on the fixed Cartesian coordinate mesh is proposed within the framework of the volume-of-fluid approach. The present method is based on a full Eulerian fluid-(bulk) structure coupling solver (Sugiyama et al., J. Comput. Phys., 230 (2011) 596-627), with the bulk structure replaced by elastic membranes. In this study, a closed membrane is consid-ered, and it is described by a volume-of-fluid or volume-fraction information generally called VOF function. A smoothed indicator (or characteristic) function is introduced as a phase indicator which results in a smoothed VOF function. This smoothed VOF function uses a smoothed delta function, and it enables a membrane singular force to be incorporated into a mixture momentum equation. In order to deal with a membrane deformation on the Eulerian mesh, a deformation tensor is introduced and updated within a compactly supported region near the interface. Both the neo-Hookean and the Skalak models are employed in the numerical simulations. A smoothed (and less dissipative) interface capturing method is employed for the advection of the VOF function and the quantities defined on the membrane. The stability restriction due to membrane stiffness is relaxed by using a quasi-implicit approach. The present method is validated by using the spherical membrane deformation problems, and is applied to a pressure-driven flow with the biconcave membrane capsules (red blood cells).
APA, Harvard, Vancouver, ISO, and other styles
4

Rossano, Viola, and Giuliano De Stefano. "Hybrid VOF–Lagrangian CFD Modeling of Droplet Aerobreakup." Applied Sciences 12, no. 16 (August 19, 2022): 8302. http://dx.doi.org/10.3390/app12168302.

Full text
Abstract:
A hybrid VOF–Lagrangian method for simulating the aerodynamic breakup of liquid droplets induced by a traveling shock wave is proposed and tested. The droplet deformation and fragmentation, together with the subsequent mist development, are predicted by using a fully three-dimensional computational fluid dynamics model following the unsteady Reynolds-averaged Navier–Stokes approach. The main characteristics of the aerobreakup process under the shear-induced entrainment regime are effectively reproduced by employing the scale-adaptive simulation method for unsteady turbulent flows. The hybrid two-phase method combines the volume-of-fluid technique for tracking the transient gas–liquid interface on the finite volume grid and the discrete phase model for following the dynamics of the smallest liquid fragments. The proposed computational approach for fluids engineering applications is demonstrated by making a comparison with reference experiments and high-fidelity numerical simulations, achieving acceptably accurate results without being computationally expensive.
APA, Harvard, Vancouver, ISO, and other styles
5

Cheng, Hongping. "Application of Motion Interface Tracking CVOFLS Method to Zalesak Disk Problem." Highlights in Science, Engineering and Technology 35 (April 11, 2023): 105–8. http://dx.doi.org/10.54097/hset.v35i.7041.

Full text
Abstract:
The interface curvature calculation is not accurate in VOF method and the interface mass is not conserved in Level Set method, A new interface tracking method CVOFLS is proposed (Coupled Volume of Fluid and Level Set method). This method combines the advantages of VOF and Level Set, The VOF and Level Set functions are simultaneously solved according to the fluid velocity, The interface obtained by the VOF function is used to correct the fluid quality, The Level Set function is used to calculate the interface norma, The Level Set function reinitialization process is omitted, Thus, the deficiencies of the two methods are overcome effectively. An example of interface tracking numerical simulation shows that, this method can guarantee high precision of free interface tracking and good mass conservation, and it can improve the calculation efficiency.
APA, Harvard, Vancouver, ISO, and other styles
6

Shang, Zhi, Jing Lou, and Hongying Li. "Simulations of Flow Transitions in a Vertical Pipe Using Coupled Level Set and VOF Method." International Journal of Computational Methods 14, no. 02 (February 22, 2017): 1750013. http://dx.doi.org/10.1142/s021987621750013x.

Full text
Abstract:
The level set (LS) and volume-of-fluid (VOF) methods are usually employed to simulate the two-phase flow. However every single method of them will face the mass conservative or accurate issues during the simulation. The coupled level set and volume-of-fluid (CLSVOF) method was not only able to conquer the shortages of the LS and VOF methods but also simultaneously keep the merits of both of the methods. In CLSVOF method the geometry reconstruction technology was employed to realize the coupling between LS and VOF. After the validation of single bubble rising cases, the CLSVOF method was used to simulate the complex transitional two-phase flows in a vertical pipe and the simulation results were compared to experiments.
APA, Harvard, Vancouver, ISO, and other styles
7

Ketabdari, M. J., and H. Saghi. "A Novel Algorithm of Advection Procedure in Volume of Fluid Method to Model Free Surface Flows." ISRN Applied Mathematics 2012 (April 3, 2012): 1–16. http://dx.doi.org/10.5402/2012/521012.

Full text
Abstract:
In this study, the developed procedure of advection in volume of fluid (VOF) method is presented for free surface modeling. The fluid is assumed to be incompressible and viscous and therefore, Navier-Stokes and continuity are considered as governing equations. Applying Youngs’ algorithm in staggered grids, it is assumed that fluid particles in the cell have the same velocity of the cell faces. Therefore, fluxes to neighboring cells are estimated based on cell face velocities. However, these particles can show different velocities between two adjacent cell faces. In developed model, the velocity in mass center of fluid cell is evaluated to calculate fluxes from cell faces. The performance of the model is evaluated using some alternative schemes such as translation, rotation, shear test, and dam break test. These tests showed that the developed procedure improves the results when using coarse grids. Therefore, the Modified Youngs-VOF (MYV) method is suggested as a new VOF algorithm which models the free surface problems more accurately.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Gujun, Qiangqiang Wang, and Shengping He. "Assessment of an Eulerian multi-fluid VOF model for simulation of multiphase flow in an industrial Ruhrstahl–Heraeus degasser." Metallurgical Research & Technology 116, no. 6 (2019): 617. http://dx.doi.org/10.1051/metal/2019049.

Full text
Abstract:
An Eulerian multi-fluid VOF model, the coupling of the Eulerian model and the “VOF” interface tracking method, offered by ANSYS Fluent has been first applied to investigate the complex multiphase flow in an industrial Ruhrstahl–Heraeus (RH) degasser. The idea of this study is to use the Eulerian model in the regions of the domain where the argon bubbles are dispersed in molten steel; in the regions of the domain where the sharp interfaces between the steel and slag or argon are of interest, the “VOF” method is adopted. The calculated flow characteristic, mixing time and circulation flow rate of molten steel in the RH degasser agree well with the observations reported in literature. Compared with the widely accepted Eulerian method and the discrete phase model–volume of fluid (DPM–VOF) coupled method, the Eulerian multi-fluid VOF model demonstrates the suitability for modeling the multiphase flow in the RH degasser where both dispersed and sharp interfaces are present.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Zheng Fu, Jun Wei Wang, and Feng Bao. "Numerical Simulation of the Nozzle with Self-Oscillating Flow Using the VOF Model." Advanced Materials Research 479-481 (February 2012): 2380–82. http://dx.doi.org/10.4028/www.scientific.net/amr.479-481.2380.

Full text
Abstract:
The jet water shape of the nozzle will become a self-oscillating shape, if the triangle and U shape models are made into the normal nozzle. Using the VOF model , the jet shape of the nozzle will be simulated through a commercial CFD software 'FLUENT'. The VOF model (Volume of Fluid) is a surface-tracking technique applied to a fixed Eulerian mesh. It is designed for two or more immiscible fluids where the position of the interface between the fluids is of interest. The CFD simulation results shows that the jet shape of the nozzle is oscillate in a fixed period.
APA, Harvard, Vancouver, ISO, and other styles
10

Qiu, Ruofan, Anlin Wang, Qiwei Gong, and Tao Jiang. "Simulation of two-phase fluid mixture flow in rectangular two-inlet cavity using lattice Boltzmann method." International Journal of Modern Physics C 25, no. 04 (March 6, 2014): 1450004. http://dx.doi.org/10.1142/s0129183114500041.

Full text
Abstract:
In this paper, two-phase fluid mixture flow in rectangular two-inlet cavity is studied using lattice Boltzmann method (LBM). To simulate two-phase fluids with large viscosity difference, the pseudo-potential model is improved. The improved model is verified for surface tension through Laplace's law and shown much better performance in simulating fluids with large viscosity difference than pseudo-potential model. The multiple-relaxation-time (MRT) scheme is used to enhance numerical stability. Then the two-phase fluid mixture flow with same and different viscosity in two-inlet cavity is simulated by present lattice Boltzmann (LB) model, pseudo-potential LB model and volume-of-fluid (VOF) method, respectively. The comparison of these numerical results shows that LB model is more suitable for such kind of flow than VOF method, since it can reflect repulsive forces and transitional region of two-phase fluids in dynamic process. Moreover, it also shows that present LB model has better dynamic stability than pseudo-potential model. Furthermore, simulations of the two-phase fluid mixture flow with different fluid viscosities, inlet velocities, inlet heights and outlet positions using present LB model are presented, exhibiting their effect to contact area of fluids.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Volume of Fluid (VOF)"

1

Drumright-Clarke, Mary Ann. "Numerical simulations that characterize the effects of surfactant on droplets in shear flow." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/26895.

Full text
Abstract:
Numerical simulations utilizing the code SURFER++ with the incorporation of an insoluble surfactant in the VOF scheme were conducted to characterize the effects of surfactant on a drop in shear flow. The drop is suspended in a matrix liquid. A parameter called reduction, which specifically relates to a percentage decrease in effective surface tension, is used to measure the surfactant amount on the interface. In a model system where reduction = 0.1, viscosity ratio = 1 and density ratio = 1, it was found that stable drops tend to be more elongated and less inclined to the primary flow direction than drops unexposed to surfactant. This can be explained by the location of surfactant at the interface as the drop evolves. Breaking drops also show a flattened angle, but exhibit shorter necks and faster time to break than similar drops without surfactant. As reduction increases, various physical characteristics of the drops change across Reynolds number.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
2

Schmidtke, Martin. "Untersuchung der Dynamik fluider Partikel auf Basis der Volume of Fluid Methode." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-27925.

Full text
Abstract:
Die in dieser Arbeit vorgestellten Simulationen aufsteigender fluider Partikel wurden mit dem CFD-Programm FS3D durchgeführt, welches auf der Volume-of-Fluid (VoF) Methode basiert. Die Validierung des Codes erfolgt durch Vergleich der numerischen Lösungen für schleichende Strömungen mit analytischen Lösungen, wobei eine gute Übereinstimmung festgestellt wird. Im ersten Teil der Dissertation werden Simulationen für den freien Aufstieg von Öltropfen in Wasser mit experimentellen Beobachtungen hinsichtlich der Aufstiegsgeschwindigkeit, der Tropfenform und der Bewegungsbahn verglichen. Die Aufstiegsgeschwindigkeiten und Widerstandsbeiwerte sind vergleichbar, die simulierten Tropfen sind jedoch deutlich flacher. Dieser Unterschied kann durch Verunreinigungen der Grenzfläche im Experiment verursacht sein. Der Übergang von einem gradlinigen Aufstieg zu zickzack-förmigen Aufstiegsbahnen kann mit Hilfe der Simulationen auf Instabilitäten im Nachlauf der Blasen zurückgeführt werden, die zu einer periodischen Wirbelablösung führen. Im zweiten Teil der Dissertation wird der Aufstieg von Blasen in linearen Scherströmungen untersucht. Steigen die Blasen in einer vertikalen Scherströmung auf, so beobachtet man eine seitliche Migration. Diese seitliche Migration der Blasen wird durch die sogenannte Liftkraft verursacht, deren Vorzeichen und Betrag von der Blasengröße und den Stoffeigenschaften der Flüssigkeit abhängt. Die Simulationen zeigen, daß das Vorzeichen der Liftkraft für eher sphärische Blasen durch den Bernoulli-Effekt erklärt werden kann. An stark deformierten Blasen hingegen wirkt die Liftkraft in umgekehrter Richtung. Dieses Phänomen tritt auch in den Simulationen auf. Verschiedene Hypothesen für die Ursache dieses Phänomens werden überprüft. Die bekannteste experimentelle Korrelation für die Liftkraft von Tomiyama u.a. (2002) wird durch Simulation von realen Flüssigkeiten mit bekannten Stoffeigenschaften wie auch von Modellfluiden mit willkürlichen Stoffeigenschaften validiert und weitgehend bestätigt. Die Lift-Korrelation hat demnach hinsichtlich der Stoffeigenschaften der Flüssigkeit einen größeren Geltungsbereich, als bisher experimentell überprüft wurde. The simulations presented in this thesis were performed with the CFD code FS3D which is based on the Volume of Fluid method. The code is validated using analytical solutions for creeping flows and a good agreement is observed between simulation and analytical solution. In the first part of the thesis, the free rise of oil drops in water is simulated and compared with experimental observations. The results show that the rising velocities and the drag coefficients are similar in both cases, but the simulated drops are flatter (more oblate). This difference may be caused by impurities of the particle surface (surfactants) in the experiments. The simulations show that the transition from rectilinear to periodic trajectories is caused by instabilities in the wake, which lead to a periodic vortex shedding. In the second part of the thesis, the rise of bubbles in linear shear flows is investigated. If bubbles rise in a vertical shear flow, a lateral migration can be observed. This migration is caused by the so called lift force. Sign and magnitude of the lift force depend on the size of the bubble and the material properties of the liquid. The simulation results show that the sign of the lift force on spherical bubbles can be explained by the Bernoulli effect. However, the lift force on more distorted bubbles acts in the opposite direction. This phenomenon can also be observed in the simulation. In this work several hypotheses for the reason of this phenomenon are checked. Furthermore, most common correlation for the lift force (developed by Tomiyama et al. in 2002) is validated for fluids of known material and model fluids with arbitrary material data. The correlation is valid in a wider range of fluid material properties than proved experimentally up to now.
APA, Harvard, Vancouver, ISO, and other styles
3

Schmidtke, Martin. "Untersuchung der Dynamik fluider Partikel auf Basis der Volume of Fluid Methode." Forschungszentrum Dresden-Rossendorf, 2008. https://hzdr.qucosa.de/id/qucosa%3A21619.

Full text
Abstract:
Die in dieser Arbeit vorgestellten Simulationen aufsteigender fluider Partikel wurden mit dem CFD-Programm FS3D durchgeführt, welches auf der Volume-of-Fluid (VoF) Methode basiert. Die Validierung des Codes erfolgt durch Vergleich der numerischen Lösungen für schleichende Strömungen mit analytischen Lösungen, wobei eine gute Übereinstimmung festgestellt wird. Im ersten Teil der Dissertation werden Simulationen für den freien Aufstieg von Öltropfen in Wasser mit experimentellen Beobachtungen hinsichtlich der Aufstiegsgeschwindigkeit, der Tropfenform und der Bewegungsbahn verglichen. Die Aufstiegsgeschwindigkeiten und Widerstandsbeiwerte sind vergleichbar, die simulierten Tropfen sind jedoch deutlich flacher. Dieser Unterschied kann durch Verunreinigungen der Grenzfläche im Experiment verursacht sein. Der Übergang von einem gradlinigen Aufstieg zu zickzack-förmigen Aufstiegsbahnen kann mit Hilfe der Simulationen auf Instabilitäten im Nachlauf der Blasen zurückgeführt werden, die zu einer periodischen Wirbelablösung führen. Im zweiten Teil der Dissertation wird der Aufstieg von Blasen in linearen Scherströmungen untersucht. Steigen die Blasen in einer vertikalen Scherströmung auf, so beobachtet man eine seitliche Migration. Diese seitliche Migration der Blasen wird durch die sogenannte Liftkraft verursacht, deren Vorzeichen und Betrag von der Blasengröße und den Stoffeigenschaften der Flüssigkeit abhängt. Die Simulationen zeigen, daß das Vorzeichen der Liftkraft für eher sphärische Blasen durch den Bernoulli-Effekt erklärt werden kann. An stark deformierten Blasen hingegen wirkt die Liftkraft in umgekehrter Richtung. Dieses Phänomen tritt auch in den Simulationen auf. Verschiedene Hypothesen für die Ursache dieses Phänomens werden überprüft. Die bekannteste experimentelle Korrelation für die Liftkraft von Tomiyama u.a. (2002) wird durch Simulation von realen Flüssigkeiten mit bekannten Stoffeigenschaften wie auch von Modellfluiden mit willkürlichen Stoffeigenschaften validiert und weitgehend bestätigt. Die Lift-Korrelation hat demnach hinsichtlich der Stoffeigenschaften der Flüssigkeit einen größeren Geltungsbereich, als bisher experimentell überprüft wurde. The simulations presented in this thesis were performed with the CFD code FS3D which is based on the Volume of Fluid method. The code is validated using analytical solutions for creeping flows and a good agreement is observed between simulation and analytical solution. In the first part of the thesis, the free rise of oil drops in water is simulated and compared with experimental observations. The results show that the rising velocities and the drag coefficients are similar in both cases, but the simulated drops are flatter (more oblate). This difference may be caused by impurities of the particle surface (surfactants) in the experiments. The simulations show that the transition from rectilinear to periodic trajectories is caused by instabilities in the wake, which lead to a periodic vortex shedding. In the second part of the thesis, the rise of bubbles in linear shear flows is investigated. If bubbles rise in a vertical shear flow, a lateral migration can be observed. This migration is caused by the so called lift force. Sign and magnitude of the lift force depend on the size of the bubble and the material properties of the liquid. The simulation results show that the sign of the lift force on spherical bubbles can be explained by the Bernoulli effect. However, the lift force on more distorted bubbles acts in the opposite direction. This phenomenon can also be observed in the simulation. In this work several hypotheses for the reason of this phenomenon are checked. Furthermore, most common correlation for the lift force (developed by Tomiyama et al. in 2002) is validated for fluids of known material and model fluids with arbitrary material data. The correlation is valid in a wider range of fluid material properties than proved experimentally up to now.
APA, Harvard, Vancouver, ISO, and other styles
4

Oomar, Muhammad Yusufali. "A Volume of Fluid (VoF) based all-mach HLLC Solver for Multi-Phase Compressible Flow with Surface-Tension." Master's thesis, Faculty of Engineering and the Built Environment, 2021. http://hdl.handle.net/11427/33935.

Full text
Abstract:
This work presents an all-Mach method for two-phase inviscid flow in the presence of surface tension. A modified version of the Hartens, Lax, Leer and Contact (HLLC) approximate Riemann solver based on Garrick et al. [1] is developed and combined with the popular Volume of Fluid (VoF) method: Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM). This novel combination yields a scheme with both HLLC shock capturing as well as accurate liquid-gas interface tracking characteristics. To ensure compatibility with VoF, the Monotone Upstream-centred Scheme for Conservation Laws (MUSCL) [2] is applied to non-conservative (primitive) variables, which yields both robustness and accuracy. Liquid-gas interface curvature is computed via both height functions [3, 4] and the convolution method [5]. This is in the interest of applicability to both cartesian and arbitrary meshes. The author emphasizes the use of VoF in the interest of surface tension modelling accuracy. The method is validated using a range of test-cases available in literature. The results show flow features that are in agreement with experimental and benchmark data. In particular, the use of the HLLC-VoF combination leads to a sharp volume fraction and energy field with improved accuracy (up to secondorder).
APA, Harvard, Vancouver, ISO, and other styles
5

Koebe, Mario. "Numerische Simulation aufsteigender Blasen mit und ohne Stoffaustausch mittels der volume of fluid (VOF) Methode." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973222484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maini, Deepak. "VOF Based Multiphase Lattice Boltzmann Method Using Explicit Kinematic Boundary Conditons at the Interface." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16240.

Full text
Abstract:
A VOF based multiphase Lattice Boltzmann method that explicitly prescribes kinematic boundary conditions at the interface is developed. The advantage of the method is the direct control over the surface tension value. The details of the numerical method are presented. The Saffman instability, Taylor instability, and flow of deformable suspensions in a channel are used as example-problems to demonstrate the accuracy of the method. The method allows for relatively large viscosity and density ratios.
APA, Harvard, Vancouver, ISO, and other styles
7

Ramasetti, E. K. (Eshwar Kumar). "Modelling of open-eye formation and mixing phenomena in a gas-stirred ladle for different operating parameters." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526223568.

Full text
Abstract:
Abstract In ladle metallurgy, gas stirring and the behaviour of the slag layer are very important for alloying and the homogenization of the steel. When gas is injected through a nozzle located at the bottom of the ladle into the metal bath, the gas jet exiting the nozzle breaks up into gas bubbles. The rising bubbles break the slag layer and create an open-eye. The size of the open-eye is very important as the efficiency of the metal-slag reactions depend on the interaction between the slag and steel created during the stirring process, and information about the position and size of the open-eye is important for effective alloying practice. Moreover, the open-eye has an effect on the energy balance since it increases heat losses. In this study, experimental measurements and numerical simulations were performed to study the effect of different operating parameters on the formation of the open-eye and mixing time in a water model and industrial ladle. Experimental measurements were performed to study the effect of the gas flow rate, slag layer thickness, slag layer densities and number of porous plugs in a 1/5 scale water model and in a 150-ton steelmaking ladle. For numerical modelling, a multi-phase volume of fluid (VOF) model was used to simulate the system including the behaviour of the slag layer. The numerical simulation of the open-eye size and mixing time was found to be in good agreement with the experimental data obtained from the water model and data obtained from the industrial measurements
Tiivistelmä Senkkametallurgiassa kaasuhuuhtelu ja kuonakerroksen käyttäytyminen ovat tärkeitä teräksen seostamisen ja homogenisoinnin näkökulmasta. Senkan pohjalla sijaitsevasta suuttimesta puhallettava kaasu hajoaa kupliksi, jotka rikkovat kuonakerroksen ja muodostavat avoimen silmäkkeen. Avoimen silmäkkeen koko on yhteydessä voimakkaampaan kuonan emulgoitumiseen, joka tehostaa metallisulan ja kuonan välisiä reaktioita. Tietoa avoimen silmäkkeen paikasta ja koosta tarvitaan myös tehokkaaseen seostuspraktiikkaan. Avoin silmäke vaikuttaa lisäksi prosessin energiataseeseen lisäten sen lämpöhäviöitä. Tässä tutkimuksessa tutkittiin kokeellisesti ja laskennallisesti erilaisten operointiparametrien vaikutusta avoimen silmäkkeen muodostumiseen vesimallissa ja terässenkassateollisessa senkassa. Kokeellisia mittauksia tehtiin kaasuhuuhtelun, kuonakerroksen paksuuden, ja suuttimien määrän vaikutuksen tutkimiseksi 1/5-mittakaavan vesimallissa ja 150 tonnin terässenkassa. Numeerisessa mallinnuksessa systeemin ja siihen lukeutuvan kuonakerroksen käyttäytymisen simuloimiseen käytettiin volume of fluid (VOF) –monifaasimenetelmää. Avoimen silmäkkeen kokoon ja sekoittumisaikaan liittyvien numeeristen simulointien havaittiin vastaavan hyvin vesimallista ja teollisista mittauksista saatua kokeellista aineistoa
APA, Harvard, Vancouver, ISO, and other styles
8

Gunnesby, Michael. "On Flow Predictions in Fuel Filler Pipe Design - Physical Testing vs Computational Fluid Dynamics." Thesis, Linköpings universitet, Mekanisk värmeteori och strömningslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-117534.

Full text
Abstract:
The development of a fuel filler pipe is based solely on experience and physical experiment. The challenge lies in designing the pipe to fulfill the customer needs. In other words designing the pipe such as the fuel flow does not splash back on the fuel dispenser causing a premature shut off. To improve this “trial-and-error” based development a computational fluid dynamics (CFD) model of the refueling process is investigated. In this thesis a CFD model has been developed that can predict the fuel flow in the filler pipe. Worst case scenario of the refueling process is during the first second when the tank is partially filled. The most critical fluid is diesel due to the commercially high volume flow of 55 l/min. Due to limitations of computational resources the simulations are focused on the first second of the refueling process. The challenge in this project is creating a CFD model that is time efficient, thus require the least amount of computational resources necessary to provide useful information. A multiphase model is required to simulate the refueling process. In this project the implicit volume of fluid (VOF) has been used which has previously proven to be a suitable choice for refueling simulations. The project is divided into two parts. Part one starts with experiments and simulations of a simplified fuel system with water as acting liquid with a Reynolds number of 90 000. A short comparison between three different turbulence models has been investigated (LES, DES and URANS) where the most promising turbulence model is URANS, specifically the SST k-ω model. A sensitivity analysis was performed on the chosen turbulence model. Between the chosen mesh and the densest mesh the difference of streamwise velocity in the boundary layer was 2.6 %. The chosen mesh with 1.9 M cells and a time step of 1e-4 s was found to be the best correlating model with respect to the experiments. In part two a real fuel filling system was investigated both with experiments and simulations with the same computational model as the chosen one from part one. The change of fluid and geometry resulted in a lower Reynolds number of 12 000. Two different versions of the fuel system was investigated; with a bypass pipe and without a bypass pipe. Because of a larger volumetric region the resulting mesh had 3.7 M cells. The finished model takes about 230 h on a local workstation with 11 cores. On a cluster with 200 cores the same simulation takes 30 h. The resulting model suffered from interpolation errors at the inlet which resulted in a volume flow of 50 l/min as opposed to 55 l/min in the experiments. Despite the difference the model could capture the key flow characteristics. With the developed model a new filler pipe can be easily implemented and provide results in shorter time than a prototype filler pipe can be ordered. This will increase the chances of ordering one single prototype that fulfills all requirements. While the simulation model cannot completely replace verification by experiments it provides information that transforms the development of the filler pipe to knowledge based development.
APA, Harvard, Vancouver, ISO, and other styles
9

Peña, Monferrer Carlos. "Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90493.

Full text
Abstract:
The study and modelling of two-phase flow, even the simplest ones such as the bubbly flow, remains a challenge that requires exploring the physical phenomena from different spatial and temporal resolution levels. CFD (Computational Fluid Dynamics) is a widespread and promising tool for modelling, but nowadays, there is no single approach or method to predict the dynamics of these systems at the different resolution levels providing enough precision of the results. The inherent difficulties of the events occurring in this flow, mainly those related with the interface between phases, makes that low or intermediate resolution level approaches as system codes (RELAP, TRACE, ...) or 3D TFM (Two-Fluid Model) have significant issues to reproduce acceptable results, unless well-known scenarios and global values are considered. Instead, methods based on high resolution level such as Interfacial Tracking Method (ITM) or Volume Of Fluid (VOF) require a high computational effort that makes unfeasible its use in complex systems. In this thesis, an open-source simulation framework has been designed and developed using the OpenFOAM library to analyze the cases from microescale to macroscale levels. The different approaches and the information that is required in each one of them have been studied for bubbly flow. In the first part, the dynamics of single bubbles at a high resolution level have been examined through VOF. This technique has allowed to obtain accurate results related to the bubble formation, terminal velocity, path, wake and instabilities produced by the wake. However, this approach has been impractical for real scenarios with more than dozens of bubbles. Alternatively, this thesis proposes a CFD Discrete Element Method (CFD-DEM) technique, where each bubble is represented discretely. A novel solver for bubbly flow has been developed in this thesis. This includes a large number of improvements necessary to reproduce the bubble-bubble and bubble-wall interactions, turbulence, velocity seen by the bubbles, momentum and mass exchange term over the cells or bubble expansion, among others. But also new implementations as an algorithm to seed the bubbles in the system have been incorporated. As a result, this new solver gives more accurate results as the provided up to date. Following the decrease on resolution level, and therefore the required computational resources, a 3D TFM have been developed with a population balance equation solved with an implementation of the Quadrature Method Of Moments (QMOM). The solver is implemented with the same closure models as the CFD-DEM to analyze the effects involved with the lost of information due to the averaging of the instantaneous Navier-Stokes equation. The analysis of the results with CFD-DEM reveals the discrepancies found by considering averaged values and homogeneous flow in the models of the classical TFM formulation. Finally, for the lowest resolution level approach, the system code RELAP5/MOD3 is used for modelling the bubbly flow regime. The code has been modified to reproduce properly the two-phase flow characteristics in vertical pipes, comparing the performance of the calculation of the drag term based on drift-velocity and drag coefficient approaches.
El estudio y modelado de flujos bifásicos, incluso los más simples como el bubbly flow, sigue siendo un reto que conlleva aproximarse a los fenómenos físicos que lo rigen desde diferentes niveles de resolución espacial y temporal. El uso de códigos CFD (Computational Fluid Dynamics) como herramienta de modelado está muy extendida y resulta prometedora, pero hoy por hoy, no existe una única aproximación o técnica de resolución que permita predecir la dinámica de estos sistemas en los diferentes niveles de resolución, y que ofrezca suficiente precisión en sus resultados. La dificultad intrínseca de los fenómenos que allí ocurren, sobre todo los ligados a la interfase entre ambas fases, hace que los códigos de bajo o medio nivel de resolución, como pueden ser los códigos de sistema (RELAP, TRACE, etc.) o los basados en aproximaciones 3D TFM (Two-Fluid Model) tengan serios problemas para ofrecer resultados aceptables, a no ser que se trate de escenarios muy conocidos y se busquen resultados globales. En cambio, códigos basados en alto nivel de resolución, como los que utilizan VOF (Volume Of Fluid), requirieren de un esfuerzo computacional tan elevado que no pueden ser aplicados a sistemas complejos. En esta tesis, mediante el uso de la librería OpenFOAM se ha creado un marco de simulación de código abierto para analizar los escenarios desde niveles de resolución de microescala a macroescala, analizando las diferentes aproximaciones, así como la información que es necesaria aportar en cada una de ellas, para el estudio del régimen de bubbly flow. En la primera parte se estudia la dinámica de burbujas individuales a un alto nivel de resolución mediante el uso del método VOF (Volume Of Fluid). Esta técnica ha permitido obtener resultados precisos como la formación de la burbuja, velocidad terminal, camino recorrido, estela producida por la burbuja e inestabilidades que produce en su camino. Pero esta aproximación resulta inviable para entornos reales con la participación de más de unas pocas decenas de burbujas. Como alternativa, se propone el uso de técnicas CFD-DEM (Discrete Element Methods) en la que se representa a las burbujas como partículas discretas. En esta tesis se ha desarrollado un nuevo solver para bubbly flow en el que se han añadido un gran número de nuevos modelos, como los necesarios para contemplar los choques entre burbujas o con las paredes, la turbulencia, la velocidad vista por las burbujas, la distribución del intercambio de momento y masas con el fluido en las diferentes celdas por cada una de las burbujas o la expansión de la fase gaseosa entre otros. Pero también se han tenido que incluir nuevos algoritmos como el necesario para inyectar de forma adecuada la fase gaseosa en el sistema. Este nuevo solver ofrece resultados con un nivel de resolución superior a los desarrollados hasta la fecha. Siguiendo con la reducción del nivel de resolución, y por tanto los recursos computacionales necesarios, se efectúa el desarrollo de un solver tridimensional de TFM en el que se ha implementado el método QMOM (Quadrature Method Of Moments) para resolver la ecuación de balance poblacional. El solver se desarrolla con los mismos modelos de cierre que el CFD-DEM para analizar los efectos relacionados con la pérdida de información debido al promediado de las ecuaciones instantáneas de Navier-Stokes. El análisis de resultados de CFD-DEM permite determinar las discrepancias encontradas por considerar los valores promediados y el flujo homogéneo de los modelos clásicos de TFM. Por último, como aproximación de nivel de resolución más bajo, se investiga el uso uso de códigos de sistema, utilizando el código RELAP5/MOD3 para analizar el modelado del flujo en condiciones de bubbly flow. El código es modificado para reproducir correctamente el flujo bifásico en tuberías verticales, comparando el comportamiento de aproximaciones para el cálculo del término d
L'estudi i modelatge de fluxos bifàsics, fins i tot els més simples com bubbly flow, segueix sent un repte que comporta aproximar-se als fenòmens físics que ho regeixen des de diferents nivells de resolució espacial i temporal. L'ús de codis CFD (Computational Fluid Dynamics) com a eina de modelatge està molt estesa i resulta prometedora, però ara per ara, no existeix una única aproximació o tècnica de resolució que permeta predir la dinàmica d'aquests sistemes en els diferents nivells de resolució, i que oferisca suficient precisió en els seus resultats. Les dificultat intrínseques dels fenòmens que allí ocorren, sobre tots els lligats a la interfase entre les dues fases, fa que els codis de baix o mig nivell de resolució, com poden ser els codis de sistema (RELAP,TRACE, etc.) o els basats en aproximacions 3D TFM (Two-Fluid Model) tinguen seriosos problemes per a oferir resultats acceptables , llevat que es tracte d'escenaris molt coneguts i se persegueixen resultats globals. En canvi, codis basats en alt nivell de resolució, com els que utilitzen VOF (Volume Of Fluid), requereixen d'un esforç computacional tan elevat que no poden ser aplicats a sistemes complexos. En aquesta tesi, mitjançant l'ús de la llibreria OpenFOAM s'ha creat un marc de simulació de codi obert per a analitzar els escenaris des de nivells de resolució de microescala a macroescala, analitzant les diferents aproximacions, així com la informació que és necessària aportar en cadascuna d'elles, per a l'estudi del règim de bubbly flow. En la primera part s'estudia la dinàmica de bambolles individuals a un alt nivell de resolució mitjançant l'ús del mètode VOF. Aquesta tècnica ha permès obtenir resultats precisos com la formació de la bambolla, velocitat terminal, camí recorregut, estela produida per la bambolla i inestabilitats que produeix en el seu camí. Però aquesta aproximació resulta inviable per a entorns reals amb la participació de més d'unes poques desenes de bambolles. Com a alternativa en aqueix cas es proposa l'ús de tècniques CFD-DEM (Discrete Element Methods) en la qual es representa a les bambolles com a partícules discretes. En aquesta tesi s'ha desenvolupat un nou solver per a bubbly flow en el qual s'han afegit un gran nombre de nous models, com els necessaris per a contemplar els xocs entre bambolles o amb les parets, la turbulència, la velocitat vista per les bambolles, la distribució de l'intercanvi de moment i masses amb el fluid en les diferents cel·les per cadascuna de les bambolles o els models d'expansió de la fase gasosa entre uns altres. Però també s'ha hagut d'incloure nous algoritmes com el necessari per a injectar de forma adequada la fase gasosa en el sistema. Aquest nou solver ofereix resultats amb un nivell de resolució superior als desenvolupat fins la data. Seguint amb la reducció del nivell de resolució, i per tant els recursos computacionals necessaris, s'efectua el desenvolupament d'un solver tridimensional de TFM en el qual s'ha implementat el mètode QMOM (Quadrature Method Of Moments) per a resoldre l'equació de balanç poblacional. El solver es desenvolupa amb els mateixos models de tancament que el CFD-DEM per a analitzar els efectes relacionats amb la pèrdua d'informació a causa del promitjat de les equacions instantànies de Navier-Stokes. L'anàlisi de resultats de CFD-DEM permet determinar les discrepàncies ocasionades per considerar els valors promitjats i el flux homogeni dels models clàssics de TFM. Finalment, com a aproximació de nivell de resolució més baix, s'analitza l'ús de codis de sistema, utilitzant el codi RELAP5/MOD3 per a analitzar el modelatge del fluxos en règim de bubbly flow. El codi és modificat per a reproduir correctament les característiques del flux bifàsic en canonades verticals, comparant el comportament d'aproximacions per al càlcul del terme de drag basades en velocitat de drift flux model i de les basades en coe
Peña Monferrer, C. (2017). Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90493
TESIS
APA, Harvard, Vancouver, ISO, and other styles
10

Alrahmani, Mosab. "A numerical study on the effects of surface and geometry design on water behaviour in PEM fuel cell gas channels." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16245.

Full text
Abstract:
Water management is a serious issue that affects the performance and durability of PEM fuel cells. It is known, from previous experimental investigations, that surface wettability has influence on water behaviour and fuel cell performance. This finding has lead researchers to develop numerical tools for further investigation of the liquid water behaviour in gas channels. The Volume-of-Fluid (VOF) method has been used in a wide range of studies for its advantage of showing the multi-phase interface in a Computational Fluid Dynamics (CFD) simulation to understand liquid water behaviour in gas channels. In this thesis, numerical study has been carried out to examine the behaviour of liquid water in gas channels. The dynamic movement of the liquid water in the channel and the associated pressure drop, water saturation and water coverage of the GDL have been investigated. Firstly, flow diffusion into the GDL was examined to determine its effect on liquid droplet behaviour in a small section of a gas channel. Furthermore, the effects of the percentage of flow diffusion, GDL wettability, pore size, and water inlet velocity were investigated. Fluid diffusion into GDL found to have insignificant impact on liquid water behaviour so further investigations has been carried with a solid GDL surface. Secondly, gas channel geometry effect on liquid water behaviour was studied. Square, semicircle, triangle, trapezoid with a long base and trapezoid with a short base were compared to find suitable cross section geometry to carry wall wettability investigations. Among the examined geometries, the square cross section showed reasonable results for both scenarios of geometry design, fixed Reynolds number and fixed GDL interface. The effect of wall wettability was assessed by comparing nine different wall/GDL wettability combinations for straight and bend channels. Wall wettability found to have an impact on liquid water behaviour but not as much as GDL wettability. It affects liquid water saturation in the channel by a great deal by accumulating water in the channel edges affecting water behaviour. This was also proven in the last test case of a long channel where water accumulation was investigated by running the calculation until the percentage of water saturation is stabilized. It is also concluded that changing wall wettability from hydrophobic to hydrophilic doubles the percentage of channel occupied by liquid water and increases the time to reach steady state.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Volume of Fluid (VOF)"

1

Robert, R. Raber, ed. Fluid Filtration: Gas Volume I. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1986. http://dx.doi.org/10.1520/stp975-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moukalled, F., L. Mangani, and M. Darwish. The Finite Volume Method in Computational Fluid Dynamics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16874-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zuckerwar, Allan J. New constitutive equation for the volume viscosity in fluids. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rossow, Cord-Christian. Berechnung von Strömungsfeldern durch Lösung der Euler-Gleichungen mit einer erweiterten Finite-Volumen Diskretisierungsmethode. Köln: Deutsche Forschungsanstalt für Luft- und Raumfahrt, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. National Aeronautics and Space Administration., ed. Control-volume based Navier-Stokes equation solver valid at all flow velocities. [Washington, DC]: National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Atomization simulations using an Eulerian-VOF-Lagrangian method. [Washington, DC: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Experimental Thermodynamics Volume IX Vol. IX: Advances in Transport Properties of Fluids. Royal Society of Chemistry, The, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Verdonck, P. Intra and Extracorporeal Cardiovascular Fluid Dynamics: Volume 1, General Principles in Application (Advances in Fluid Mechanics Vol 22). WIT Press (UK), 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Unknown. The Finite Element Method, Sixth Edition: Volume 3: Fluid Dynamics (Vol 3). Butterworth-Heinemann, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blake, William K. Mechanics of Flow-Induced Sound and Vibration, Volume 2 Vol. 2: Complex Flow-Structure Interactions. Elsevier Science & Technology Books, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Volume of Fluid (VOF)"

1

Ito, Kei, Tomoaki Kunugi, and Hiroyuki Ohshima. "High-Precision Reconstruction of Gas-Liquid Interface in PLIC-VOF Framework on Unstructured Mesh." In Computational Fluid Dynamics 2010, 563–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17884-9_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Whelan, J. R., M. R. Davis, and D. S. Holloway. "Micro-VOF: An Improved Free Surface Tracking Algorithm for Unsteady Free Surface Flow Problems." In Computational Fluid Dynamics 2002, 791–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Breil, Jérôme, and Jean Paul Caltagirone. "Three Dimensional Computer Simulation of Mould Filling with N Fluids by VOF PLIC and Projection Methods." In Computational Fluid Dynamics 2000, 743–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56535-9_113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sultanian, Bijay K. "Control Volume Analysis." In Fluid Mechanics and Turbomachinery, 19–48. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003053996-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moore, Thomas R. "Abnormal Amniotic Fluid Volume." In Protocols for High-Risk Pregnancies, 399–413. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444323870.ch49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Todreas, Neil E., and Mujid S. Kazimi. "Single-Phase Fluid Mechanics." In Nuclear Systems Volume I, 397–480. Third edition. | Boca Raton : CRC Press, 2021- |: CRC Press, 2021. http://dx.doi.org/10.1201/9781351030502-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guerra, David V. "Fluid Dynamics." In Introductory Physics for the Life Sciences: Mechanics (Volume One), 161–83. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003308065-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reddi, Alluru S. "Disorders of ECF Volume: Volume Contraction." In Fluid, Electrolyte and Acid-Base Disorders, 85–90. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9083-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reddi, Alluru S. "Disorders of ECF Volume: Volume Contraction." In Fluid, Electrolyte and Acid-Base Disorders, 91–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60167-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reddi, Alluru S. "Disorders of ECF Volume: Volume Contraction." In Fluid, Electrolyte and Acid-Base Disorders, 103–8. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25810-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Volume of Fluid (VOF)"

1

Furuya, M. "Experiments and volume-of-fluid (VOF) simulations of a three-fluid dam-break." In HEAT TRANSFER 2014, edited by Y. Oka, M. Satoh, S. Lo, and T. Arai. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/ht140321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vishnoi, A. K., D. K. Chandraker, and P. K. Vijayan. "Analysis of Fluid Flow and Heat Transfer in a Falling Film Using Volume of Fluid Method." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89572.

Full text
Abstract:
This paper deals with the applicability of VOF method for interface tracking with heat transfer and validation of the VOF approach using experimental data. A vertical channel flow problem in which the liquid is falling inside a vertical channel along one of the walls from the top is analysed and liquid–air interface is tracked. In the same problem analysis of heat transfer from the wall has been incorporated. This approach has a potential to predict liquid film thickness in a heated tube/subchannel which will lead to the evaluation of critical power (power corresponding to critical heat flux).
APA, Harvard, Vancouver, ISO, and other styles
3

Balachandran, S., N. H. Shuaib, H. Hasini, and M. Z. Yusoff. "Verification of Volume-of-Fluid (VOF) simulation for thin liquid film applications." In 2009 3rd International Conference on Energy and Environment (ICEE). IEEE, 2009. http://dx.doi.org/10.1109/iceenviron.2009.5398607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mathews, Hans-Christian, Hervé Morvan, Davide Peduto, Yi Wang, Colin Young, and Hans-Jörg Bauer. "Modelling of Hydraulic Seals Using an Axisymmetric Volume of Fluid Method (VOF)." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95070.

Full text
Abstract:
Hydraulic seals are used in aero engines because of their excellent sealing properties. Sealing of oil inside bearing chambers is extremely important as leakage of oil into internal spaces of the engine increases the oil consumption and can result in undesirable effects, ranging from cosmetic to mechanical. A robust dimensioning of the seal is therefore essential. However, the maximum pressure capacity of the hydraulic seal is not always determined accurately enough with many of the existing design approaches, so a high safety factor must be used. It is desirable to keep improving the accuracy of these methods, in particular to handle ever larger pressure differences. A new dimensionless design method is therefore introduced here to improve the determination of the maximum pressure capacity. This paper reports on a numerical CFD investigation using an axisymmetric Volume-of-Fluid (VOF) method building on the work of Young and Chew [1]. The numerical results are validated with the results of a two-shaft test rig, alongside analytical calculation results. Additionally, a parametric study based on CFD simulations is performed to identify dominant influence quantities. The parameters include the fluid properties of oil, the shaft speeds and the geometry parameters of the seal. Employing a data reduction approach, a new dimensionless number is introduced which allows the presentation of experimental and numerical results of the hydraulic seal in a dimensionless form. Based on this representation, a correlation is proposed, which shows a very promising trend. This validated CFD investigation and subsequent correlation introduced here show significant potential for the dimensionless description of hydraulic seals and their maximum pressure capacity.
APA, Harvard, Vancouver, ISO, and other styles
5

Han, Jaehoon, and Ales Alajbegovic. "Simulation of Multiphase Flows in Complex Geometry Using a Hybrid Method Combining the Multi-Fluid and the Volume-of-Fluid (VOF) Approaches." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31153.

Full text
Abstract:
A computational method combining the multi-fluid and the Volume-of-Fluid (VOF) approaches is presented to simulate industrial multiphase flows in complex geometry. This method is particularly applicable for flows where well-defined interfaces between different phases/fluids co-exist with small-scale multiphase structures. The interfaces in relatively large scales (that can be accurately resolved on a computational mesh with a practical size) are tracked by the VOF method, whereas the small scale multiphase flow structures (that are too computationally expensive to be explicitly tracked by the VOF method) are accounted for by using the multi-fluid approach. In order to provide more computational flexibility, any two of the phases tracked by the multi-fluid approach can either have different velocities (two-fluid model) or share the same velocities (equilibrium model). The hybrid method presented here enables efficient simulation of complex flows with multiple phases/fluids on arbitrary-shaped unstructured meshes. It is fully implemented in the commercial CFD software, AVL FIRE/SWIFT. The governing equations are discretized based on a finite volume method (FVM) and the pressure field is obtained using the SIMPLE algorithm. The effect of surface tension is also included for the phases tracked by the VOF method using a Continuum Surface Force (CSF) model. Application to a well-established example of multiphase flow—a Taylor bubble rising inside a stagnant liquid—is presented to demonstrate the capability of the method.
APA, Harvard, Vancouver, ISO, and other styles
6

Liovic, Petar. "Towards 3D Volume-of-Fluid Methods Featuring Subgrid-Scale Capturing of Interface Curvature." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21968.

Full text
Abstract:
A new interface reconstruction method for Volume of Fluid (VOF) interface tracking is presented here, based on subgrid-scale planar interface segment reconstruction (SGS-PISR). In the SGS-PISR method implemented here, the centroid of the initial single-surface interface reconstruction is shifted along that normal to enclose the correct volume. An additional step then moves the SGS plane segments laterally outwards, to ameliorate the SGS curvature by blunting the protrusion of the centroid. The SGS-PISR method results in promising tendency towards second-order accuracy and more importantly reduced interface reconstruction errors across a range of mesh resolutions, and is targeted at improving VOF performance in resolving small grid-scale details of the interface topologies in interfacial flow CFD computations.
APA, Harvard, Vancouver, ISO, and other styles
7

Quan, Shaoping, Peter Kelly Senecal, Eric Pomraning, Qingluan Xue, Bing Hu, Divakar Rajamohan, John M. Deur, and Sibendu Som. "A One-Way Coupled Volume of Fluid and Eulerian-Lagrangian Method for Simulating Sprays." In ASME 2016 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icef2016-9390.

Full text
Abstract:
Volume of Fluid (VOF) and Eulerian-Lagrangian (EL)/Discrete Droplet Methods (DDM) are two of the most widely used methods in spray simulations. It is well known that these two methods have their pros and cons. VOF is good at capturing the transient detailed flow physics, while it is usually very expensive. EL is very efficient; however, to inject spray parcels, some experimental/pre-computed information is needed, such as rate of injection, and/or the parcel radius distributions, etc. It is often the case, the detailed fluid flow information at the nozzle exit, which is essential for downstream droplet breakup and coalescence, cannot be accounted in the EL method. In this paper, we developed a one-way coupled approach, in which VOF is employed to compute the detailed fluid field in the injector and this fluid information is then utilized by EL for the injection of parcels at the nozzle exit. The one-way coupled approach is used to calculate some ECN (Engine Combustion Network) spray cases, such as Spray A and Spray H. The simulated results are compared to the experimental data, and satisfactory agreement is obtained.
APA, Harvard, Vancouver, ISO, and other styles
8

Law, Deify, and Thomas G. Shepard. "Three-Dimensional Volume of Fluid Simulations of Air Bubble Dynamics in a Converging Nozzle." In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83180.

Full text
Abstract:
The present work relates to the dynamics of single bubbles accelerating through a converging nozzle. There are two main aspects to this study. First, this expands upon a previously used two-dimensional model [1] by providing three-dimensional volume of fluid (VOF) simulations that show better agreement with experiments. The VOF model is employed to perform simulations using the commercial computational fluid dynamics (CFD) code ANSYS FLUENT. Second, the present work uses experimental high-speed camera results in conjunction with simulation results to demonstrate bubble time trace and velocity information. Time series of the average liquid velocity at the atomizer exit orifice when the bubble exits as determined via simulation are reported. The passing of a bubble through the nozzle is found to cause a significant fluctuation in the exit velocity that is coupled to the liquid and gas dynamics upstream of the exit.
APA, Harvard, Vancouver, ISO, and other styles
9

Rezaeimoghaddam, Mohammad, Hossein Moin, M. R. Modarres Razavi, Mohammad Pasandideh-Fard, and Rasool Elahi. "Optimization of a High Pressure Swirl Injector by Using Volume-of-Fluid (VOF) Method." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24614.

Full text
Abstract:
In this paper, the effects of various geometric parameters of a high pressure swirl Gasoline Direct Injector (GDI) on the injection flow quality are investigated. The two-dimensional axisymmetric Navier-Stokes equations coupled with the Volume-of-Fluid (VOF) method were employed for simulation of the formation mechanism of the liquid film inside the swirl chamber and the orifice hole of the pressure swirl atomizer. To validate the model, results for base injector were compared in the steady state operation with those of available experiments in the literature. Good agreements were obtained for discharge coefficient (Cd) and cone angle (θ) with experimental data. The effects of five characteristic geometric parameters of swirl injectors such as orifice ratio (orifice length to orifice diameter), angle of swirl chamber, orifice diameter, needle lift and needle head angle (assumed to be cone) were investigated. The results show that increasing the swirl chamber angle leads to an increase in mass flow rate and a decrease of the cone angle of liquid sheet. Through extensive simulations, geometric parameters of an optimum injector were obtained.
APA, Harvard, Vancouver, ISO, and other styles
10

Le, Anh Dinh, and Biao Zhou. "3-D Volume of Fluid Model for Proton Exchange Membrane Fuel Cells With Phase Change Effects." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33056.

Full text
Abstract:
In this study, a 3-D Volume of Fluid (VOF) model has been developed to simulate the liquid water formation and transport with phase-change effects in real-time operation of a Proton Exchange Membrane Fuel Cell (PEMFC). By applying mass-transfer process incorporated with interface tracking algorithm of VOF method, this model provides the numerical visualization of formation, deformation, and removal processes of liquid water in the channels and porous media of PEMFC. The simulation results indicate that liquid water can be formed in certain regions in both the channel and porous media. The water amounts due to condensation/evaporation are quantitatively determined by the phase change rate among other factors. This approach and its results show that a real-time operation of a PEMFC can be numerically simulated along with experimental visualization.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Volume of Fluid (VOF)"

1

VOLD, ERIK L., and TONY J. SCANNAPIECO. A SUB-GRID VOLUME-OF-FLUIDS (VOF) MODEL FOR MIXING IN RESOLVED SCALE AND IN UNRESOLVED SCALE COMPUTATIONS. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/1000754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Seume, J., G. Friedman, and T. W. Simon. Fluid mechanics experiments in oscillatory flow. Volume 1. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10181069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Manne, A. D., J. Wolcott, P. A. Schenewerk, and W. C. Kimbrell. [Fluid relationships in recovering attic oil]. Volume 2: Laboratory research. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/661379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Henneges, G., and S. Kleinheins. AFDM: An advanced fluid-dynamics model. Volume 6: EOS-AFDM interface. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10140789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

HABCHI, S. D., S. G. Rock, G. S. Hufford, V. J. Parsatharsay, and A. J. Przekwas. Computational Fluid Dynamics Tools for Escape Systems Aerodynamic Analysis. Volume 2 of 2. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada353755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

HABCHI, S. D., S. G. Rock, G. S. Hufford, V. J. Parsatharsay, and A. J. Przekwas. Computational Fluid Dynamics Tools for Escape Systems Aerodynamic Analysis. Volume 1 of 2. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada353756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nichols, B. D., C. Mueller, G. A. Necker, J. R. Travis, J. W. Spore, K. L. Lam, P. Royl, and T. L. Wilson. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/1222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Müller, C., E. D. Hughes, G. F. Niederauer, H. Wilkening, J. R. Travis, J. W. Spore, P. Royl, and W. Baumann. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/1223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nichols, B. D., C. Mueller, G. A. Necker, J. R. Travis, J. W. Spore, K. L. Lam, P. Royl, R. Redlinger, and T. L. Wilson. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 1: Theory and Computational Model. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/1218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Celik, I., and M. Chattree. Computational fluid dynamics assessment: Volume 2, Isothermal simulations of the METC bench-scale coal-water slurry combustor: Final report. Office of Scientific and Technical Information (OSTI), September 1988. http://dx.doi.org/10.2172/5971334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography