Academic literature on the topic 'Volvocales'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Volvocales.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Volvocales"

1

NOZAKI, Hisayoshi. "Phylogeny of the colonial Volvocales." PLANT MORPHOLOGY 7, no. 1 (1995): 19–27. http://dx.doi.org/10.5685/plmorphol.7.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

NAKADA, TAKASHI, HISAYOSHI NOZAKI, and MASARU TOMITA. "Another Origin of Coloniality in Volvocaleans: The Phylogenetic Position of Pyrobotrys Arnoldi (Spondylomoraceae, Volvocales)." Journal of Eukaryotic Microbiology 57, no. 4 (June 10, 2010): 379–82. http://dx.doi.org/10.1111/j.1550-7408.2010.00488.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gromov, Boris V., and Kira A. Mamkaeva. "Flagellar orientation in Pandorina morum (Chlorophyceae, Volvocales)." Algological Studies/Archiv für Hydrobiologie, Supplement Volumes 88 (April 23, 1998): 135–39. http://dx.doi.org/10.1127/algol_stud/88/1998/135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Daniel, E. Wujek, Timpano Peter, and Rufus H. Thompson. "Cleavage pattern of Volvox aureus (Volvocales)." Transactions of the Kansas Academy of Science 109, no. 3 & 4 (September 2006): 139–48. http://dx.doi.org/10.1660/0022-8443(2006)109[139:cpovav]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dawson, James T., and Denny O. Harris. "Carbon Requirements of the GenusDysmorphococcus(Volvocales)." Archiv für Protistenkunde 131, no. 3-4 (January 1986): 249–56. http://dx.doi.org/10.1016/s0003-9365(86)80046-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Allewaert, Céline C., Pieter Vanormelingen, Thomas Pröschold, Patricia I. Gómez, Mariela A. González, Gust Bilcke, Sofie D'Hondt, and Wim Vyverman. "Species diversity in EuropeanHaematococcus pluvialis(Chlorophyceae, Volvocales)." Phycologia 54, no. 6 (November 2015): 583–98. http://dx.doi.org/10.2216/15-55.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nozaki, Hisayoshi. "Sexual reproduction in Gonium sociale (Chlorophyta, Volvocales)." Phycologia 25, no. 1 (March 1986): 29–35. http://dx.doi.org/10.2216/i0031-8884-25-1-29.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Koufopanou, Vassiliki. "The Evolution of Soma in the Volvocales." American Naturalist 143, no. 5 (May 1994): 907–31. http://dx.doi.org/10.1086/285639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nozaki, H. "Aplanogamous sexual reproduction inCarteria eugametos(Volvocales, Chlorophyta)." European Journal of Phycology 29, no. 3 (August 1994): 135–39. http://dx.doi.org/10.1080/09670269400650581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Triki, Anissa, Patrick Maillard, and Claude Gudin. "Gametogenesis in Haematococcus pluvialis Flotow (Volvocales, Chlorophyta)." Phycologia 36, no. 3 (May 1997): 190–94. http://dx.doi.org/10.2216/i0031-8884-36-3-190.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Volvocales"

1

Labarre, Aurélie. "Étude de la plasticité génomique des algues vertes de l'ordre Chlamydomonadales." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/27059.

Full text
Abstract:
Les récents progrès en génomique ont conforté la complexité de l’origine des algues; d’un point de vue de la phylogénie des hôtes de l’endosymbiose, les algues forment un groupe évolutif polyphylétique. Les algues vertes forment deux embranchements majeurs : les Streptophyta et les Chlorophyta. Les chlorophytes comprennent la majorité des algues vertes connues et se regroupent en quatre classes. La première, les Prasinophyceae, occupe la position la plus basale, tandis que l’ordre d’embranchement des trois autres classes (Ulvophyceae, Trebouxiophyceae et Chlorophyceae) demeure encore incertain. Pour clarifier les relations évolutives chez les Clorophyceae, huit génomes chloroplastiques appartenant à la lignée des Chlamydomonadales, lignée majeure des Chlorophyceae, ont été séquencés et analysés. Des études phylogénétiques ont confirmé les classifications préétablies et de nouveaux clades se sont vus formés. Les génomes de ces algues chlorophycéennes ont révélé une architecture conservée avec un certain nombre de caractères spécifiques à la classe des Chlamydomonadales. L’analyse de leurs caractères moléculaires a révélé des génomes marqués par la réduction ou le réarrangement de leur répertoire génomique comparativement aux génomes chloroplastiques des algues vertes plus ancestrales.
Recent advances in genome sequencing and analysis have reinforced the complexity of the origin of the green algae. From the point of view of a host endosymbiotic phylogeny, green algae form a polyphyletic evolutionary group. Green algae form two major branches : the Streptophyta and Chlorophyta. Chlorophytes include the majority of green algae known and they are grouped into four classes. The first, that of Prasinophyceae, occupies the most basal position, while the branching order of the other three classes (Ulvophyceae, Trebouxiophycea and Chlorophyceae) remain uncertain. To clarify the evolutionary relationships amongst Chlorophyceae, eight chloroplast genomes belonging to the lineage of Chlamydomonadales, a major clade of Chlorophyceae were sequenced and analyzed. Phylogenetic studies have confirmed the pre-established classifications and new clades were seen to be formed. The genomes of these chlorophyll algae were revealed to be conserved with a number of specific architectural characters of the Chlamydomonadales class. Analysis of their molecular characteristics revealed a genome marked by the reduction or rearrangement of their genomic repertory compared to chloroplast genomes of the ancestral green algae.
APA, Harvard, Vancouver, ISO, and other styles
2

Koufopanou, Vasso 1957. "Evolution and development in the flagellate green algae (Chlorophyta, Volvocales)." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74587.

Full text
Abstract:
This thesis is a study of the evolution and development of the flagellate green algae. The first part is a comparative study of the evolution of body size, multicellularity and segregated soma. The allometry of morphological characters, development, life history and the life cycle are also considered. The second part is an experimental test of the potential role of mutation as a determinant of the course of evolution. Mutation is directional for all the characters studied. The variances and covariances created by mutation are compared to those of 30 species of Volvocaceae; the correspondence between the two depends upon the characted examined. In the third part, the growth of germ cells grown with and without a soma is compared. The response to nutrient concentration of cells grown with an intact soma is steeper than that of cells grown without a soma. This result demonstrates a physiological advantage of soma in Volvox, attributable to a division of labour between 'source' and 'sink'.
APA, Harvard, Vancouver, ISO, and other styles
3

Herron, Jon C. "Genetic variation, thermal sensitivity, and thermal acclimation in Volvox aureus and Volvox globator /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/5115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berger, Christopher Michael. "The genetic basis of cooperative aggregation in the green alga Chlamydomonas reinhardtii." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35472.

Full text
Abstract:
Master of Science
Division of Biology
Bradley J. Olson
Unicellular organisms alter their behavior and morphology in response to environmental stresses, particularly in response to immediate threats to their survival. A common tactic of predator avoidance for unicellular green algae is to aggregate to form groups. We have found that the model unicellular green algae Chlamydomonas reinhardtii forms aggregates in response to the presence of the filter feeding zooplanktonic predator, Daphnia magna. Chalmydomonas is a member of the volvocine algae, a morphologically diverse group of closely related green algae that is often used to study multicellular development. We have characterized aggregation in Chlamydomonas reinhardtii and found that it is rapid, transient and induced by signals originating from the Daphnia predators. To understand the genetic basis of cooperative aggregation we used an RNA-seq approach. RNA-seq characterized the transcriptomic response by Chlamydomonas during aggregation, and we identified 131 genes are significantly differentially expressed between predated and unpredated cultures of Chlamydomonas. Several candidate genes were characterized based on existing annotations, evolutionary history and expression profile. Evolutionary relationships between candidate aggregation genes in Chlamydomonas and their orthologs in multicellular Volvocales suggest a possible role of aggregation genes in multicellular development. Our results demonstrate that Chlamydomonas dynamically alters its morphology based on its environment and identify several candidate genes for aggregation and multicellular development.
APA, Harvard, Vancouver, ISO, and other styles
5

Solari, Cristian Alejandro. "A HYDRODYNAMICS APPROACH TO THE EVOLUTION OF MULTICELLULARITY: FLAGELLAR MOTILITY AND THE EVOLUTION OF GERM-SOMA DIFFERENTIATION IN VOLVOCALEAN GREEN ALGAE." Diss., The University of Arizona, 2005. http://hdl.handle.net/10150/194798.

Full text
Abstract:
The fitness of any evolutionary unit can be understood in terms of its two basic components: fecundity and viability. The trade-offs between these fitness components drive the evolution of a variety of life-history traits in extant multicellular lineages. Here, I show evidence that the evolution of germ-soma separation and the emergence of individuality at a higher level during the unicellular-multicellular transition are also consequences of these trade-offs. The transition from unicellular to larger multicellular organisms has benefits, costs, and requirements. I argue that germ-soma separation evolved as a means to counteract the increasing costs and requirements of larger multicellular colonies. Volvocalean green algae are uniquely suited for studying this transition since they range from unicells to undifferentiated colonies, to multicellular individuals with complete germ-soma separation. In these flagellated organisms, the increase in cell specialization observed as colony size increases can be explained in terms of increased requirements for self-propulsion and to avoid sinking. The collective flagellar beating also serves to enhance molecular transport of nutrients and wastes. Standard hydrodynamic measurements and concepts are used to analyze motility (self-propulsion) and its consequences for different degrees of cell specialization in the Volvocales as colony size increases. This approach is used to calculate the physical hydrodynamic limits on motility to the spheroid colony design. To test the importance of collective flagellar beating on nutrient uptake, the effect of advective dynamics on the productivity of large colonies is quantified. I conclude first, that when colony size exceeds a threshold, a specialized and sterile soma must evolve, and the somatic to reproductive cell ratio must increase as colony size increases to keep colonies buoyant and motile. Second, larger colonies have higher motility capabilities with increased germ-soma specialization due to an enhancement of colony design. Third, advection has a significant effect on the productivity of large colonies. And fourth, there are clear trade-offs between investing in reproduction, increasing colony size (i.e. colony radius), and motility. This work shows that the evolution of cell specialization is the expected outcome of reducing the cost of reproduction in order to realize the benefits associated with increasing size.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Volvocales"

1

L, Kirk David. Volvox: Molecular-genetic origins of multicellularity and cellular differentiation. Cambridge, U.K: Cambridge University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Volvox: Molecular-genetic origins of multicellularity and cellular differentiation. Cambridge, U.K: Cambridge University Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lajos, Felföldy. A zöldalgák Phytomonadina csoportjának kishatározója. [Budapest]: Vízgazdálkodási Intézet, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

B, Stern David, and Witman George, eds. The Chlamydomonas sourcebook. 2nd ed. Amsterdam: Elsevier, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ben-Amotz, Ami. Alga Dunaliella. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ben-Amotz, Ami. Alga Dunaliella. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ben-Amotz, Ami. Alga Dunaliella. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ben-Amotz, Ami. Alga Dunaliella. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Volvocales"

1

Moulton, T. P., and M. A. Burford. "The mass culture of Dunaliella viridis (Volvocales, Chlorophyta) for oxygenated carotenoids: laboratory and pilot plant studies." In Thirteenth International Seaweed Symposium, 401–8. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2049-1_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shenbaga Devi, A., P. Santhanam, S. Jeyanthi, and N. Krishnaveni. "Isolation, Culture, and Application of Marine Microalga Dunaliella salina (Volvocales, Chlorophyceae) as an Aqua Feed Additive." In Basic and Applied Phytoplankton Biology, 123–61. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7938-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nozaki, Hisayoshi. "Origin of Female/Male Gender as Deduced by the Mating-Type Loci of the Colonial Volvocalean Greens." In Sexual Reproduction in Animals and Plants, 215–27. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54589-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"The Volvocales: Many Multicellular Innovations." In Volvox, 16–44. Cambridge University Press, 1997. http://dx.doi.org/10.1017/cbo9780511529740.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nedelcu, Aurora M., and Richard E. Michod. "Molecular mechanisms of life history trade-offs and the evolution of multicellular complexity in volvocalean green algae." In Mechanisms of Life History Evolution, 270–83. Oxford University Press, 2011. http://dx.doi.org/10.1093/acprof:oso/9780199568765.003.0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography