Journal articles on the topic 'Von Neumann bottleneck'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Von Neumann bottleneck.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kumbhar, Gaurang. "Synaptic AI: Bridging Neural Dynamics and Deep Learning for Next- Generation Computation." International Scientific Journal of Engineering and Management 04, no. 04 (2025): 1–7. https://doi.org/10.55041/isjem02829.
Full textLin, Zhiting, Zhongzhen Tong, Jin Zhang, et al. "A review on SRAM-based computing in-memory: Circuits, functions, and applications." Journal of Semiconductors 43, no. 3 (2022): 031401. http://dx.doi.org/10.1088/1674-4926/43/3/031401.
Full textKIM, Yonghun, Jung-Dae KWON, and Jongwon YOON. "2D Materials-based Neuromorphic Computing Electronic Device." Physics and High Technology 32, no. 11 (2023): 10–16. http://dx.doi.org/10.3938/phit.32.029.
Full textOu, Qiao-Feng, Bang-Shu Xiong, Lei Yu, Jing Wen, Lei Wang, and Yi Tong. "In-Memory Logic Operations and Neuromorphic Computing in Non-Volatile Random Access Memory." Materials 13, no. 16 (2020): 3532. http://dx.doi.org/10.3390/ma13163532.
Full textLu, Chun Hsien, Chih Sheng Lin, Hung Lin Chao, Jih g. Shen, and Pao Ann Hsiung. "Reconfigurable multi-core architecture - a plausible solution to the von Neumann performance bottleneck." International Journal of Adaptive and Innovative Systems 2, no. 3 (2015): 217. http://dx.doi.org/10.1504/ijais.2015.074399.
Full textSheng, Huayi, and Muhammad Shemyal Nisar. "Simulating an Integrated Photonic Image Classifier for Diffractive Neural Networks." Micromachines 15, no. 1 (2023): 50. http://dx.doi.org/10.3390/mi15010050.
Full textRingwood, G. A. "Metalogic machines: a retrospective rationale for the Japanese Fifth Generation." Knowledge Engineering Review 3, no. 4 (1988): 303–20. http://dx.doi.org/10.1017/s0269888900004604.
Full textWang, Yi Da. "Selection of Switching Layer Materials for Memristive Devices: from Traditional Oxide to 2D Materials." Materials Science Forum 1027 (April 2021): 107–14. http://dx.doi.org/10.4028/www.scientific.net/msf.1027.107.
Full textNiu, Xuezhong, Bobo Tian, Qiuxiang Zhu, Brahim Dkhil, and Chungang Duan. "Ferroelectric polymers for neuromorphic computing." Applied Physics Reviews 9, no. 2 (2022): 021309. http://dx.doi.org/10.1063/5.0073085.
Full textBlair, Enrique, and Craig Lent. "Clock Topologies for Molecular Quantum-Dot Cellular Automata." Journal of Low Power Electronics and Applications 8, no. 3 (2018): 31. http://dx.doi.org/10.3390/jlpea8030031.
Full textSong, Soonbum, and Youngmin Kim. "Novel In-Memory Computing Adder Using 8+T SRAM." Electronics 11, no. 6 (2022): 929. http://dx.doi.org/10.3390/electronics11060929.
Full textLarrabee, Allan R. "The P4 Parallel Programming System, the Linda Environment, and Some Experiences with Parallel Computation." Scientific Programming 2, no. 3 (1993): 23–35. http://dx.doi.org/10.1155/1993/817634.
Full textIm, Jisung, Sangyeon Pak, Sung-Yun Woo, Wonjun Shin, and Sung-Tae Lee. "Flash Memory for Synaptic Plasticity in Neuromorphic Computing: A Review." Biomimetics 10, no. 2 (2025): 121. https://doi.org/10.3390/biomimetics10020121.
Full textZanotti, Tommaso, Paolo Pavan, and Francesco Maria Puglisi. "Multi-Input Logic-in-Memory for Ultra-Low Power Non-Von Neumann Computing." Micromachines 12, no. 10 (2021): 1243. http://dx.doi.org/10.3390/mi12101243.
Full textJha, Rashmi, Vamshi Kiran Kiran Gogi, and Siddharth Barve. "(Invited) Novel Neuromorphic Computing Paradigms Enabled By Emerging Memory Devices." ECS Meeting Abstracts MA2024-01, no. 57 (2024): 3011. http://dx.doi.org/10.1149/ma2024-01573011mtgabs.
Full textJafari, Atousa, Christopher Münch, and Mehdi Tahoori. "A Spintronic 2M/7T Computation-in-Memory Cell." Journal of Low Power Electronics and Applications 12, no. 4 (2022): 63. http://dx.doi.org/10.3390/jlpea12040063.
Full textReuben, John. "Binary Addition in Resistance Switching Memory Array by Sensing Majority." Micromachines 11, no. 5 (2020): 496. http://dx.doi.org/10.3390/mi11050496.
Full textJo, Yooyeon, Dae Kyu Lee, and Joon Young Kwak. "Recent Progress in Development of Artificial Neuromorphic Devices Based on Emerging Materials." Ceramist 25, no. 4 (2022): 454–74. http://dx.doi.org/10.31613/ceramist.2022.25.4.08.
Full textHaj-Ali, Ameer, Rotem Ben-Hur, Nimrod Wald, Ronny Ronen, and Shahar Kvatinsky. "IMAGING-In-Memory AlGorithms for Image processiNG." IEEE Transactions on Circuits and Systems I: Regular Papers 65, no. 12 (2018): 4258–71. https://doi.org/10.1109/TCSI.2018.2846699.
Full textKim, Gyeongpyo, Seoyoung Park, and Sungjun Kim. "Quantum Dots for Resistive Switching Memory and Artificial Synapse." Nanomaterials 14, no. 19 (2024): 1575. http://dx.doi.org/10.3390/nano14191575.
Full textZhou, Jun. "Recent Progress of Memristor-based Neuromorphic Computing." Transactions on Computer Science and Intelligent Systems Research 5 (August 12, 2024): 1655–61. http://dx.doi.org/10.62051/1kany131.
Full textSaxena, Vishal, Xinyu Wu, Ira Srivastava, and Kehan Zhu. "Towards Neuromorphic Learning Machines Using Emerging Memory Devices with Brain-Like Energy Efficiency." Journal of Low Power Electronics and Applications 8, no. 4 (2018): 34. http://dx.doi.org/10.3390/jlpea8040034.
Full textFeng, Yang, Zhaohui Sun, Yueran Qi, et al. "Optimized operation scheme of flash-memory-based neural network online training with ultra-high endurance." Journal of Semiconductors 45, no. 1 (2024): 012301. http://dx.doi.org/10.1088/1674-4926/45/1/012301.
Full textWang, Shuiyuan, Xiang Hou, Lan Liu, et al. "A Photoelectric-Stimulated MoS2 Transistor for Neuromorphic Engineering." Research 2019 (November 11, 2019): 1–10. http://dx.doi.org/10.34133/2019/1618798.
Full textV, Mr Sampath Kumar, Apar Agarwal, and Km Nidhi Chaurasia. "Design and Analysis of XNOR-SRAM for In-Memory Computing." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (2023): 3904–9. http://dx.doi.org/10.22214/ijraset.2023.52189.
Full textHuang, Wen, Huixing Zhang, Zhengjian Lin, Pengjie Hang, and Xing’ao Li. "Transistor-Based Synaptic Devices for Neuromorphic Computing." Crystals 14, no. 1 (2024): 69. http://dx.doi.org/10.3390/cryst14010069.
Full textWang, Ziling, Li Luo, Jie Li, Lidan Wang, and Shukai Duan. "Reconfigurable nonvolatile Boolean logic with one-transistor-two-memristor for in-memory computing." Semiconductor Science and Technology 36, no. 12 (2021): 125023. http://dx.doi.org/10.1088/1361-6641/ac363b.
Full textSlavova, Angela, and Ventsislav Ignatov. "Edge of Chaos in Memristor Cellular Nonlinear Networks." Mathematics 10, no. 8 (2022): 1288. http://dx.doi.org/10.3390/math10081288.
Full textBoldman, Walker L., Cheng Zhang, Thomas Z. Ward, et al. "Programmable Electrofluidics for Ionic Liquid Based Neuromorphic Platform." Micromachines 10, no. 7 (2019): 478. http://dx.doi.org/10.3390/mi10070478.
Full textNie, Yiling, Pengshan Xie, Xu Chen, et al. "Hybrid C8-BTBT/InGaAs nanowire heterojunction for artificial photosynaptic transistors." Journal of Semiconductors 43, no. 11 (2022): 112201. http://dx.doi.org/10.1088/1674-4926/43/11/112201.
Full textRue Yie Lim, Dr. Muhammad Afiq Nurudin Bin Hamzah, N. Ezaila Alias, Michael Loong Peng Tan, and Izam Kamisian. "Implementation of 10 Transistor SRAM Computing-in-Memory for Binarized Multiply Accumulate Unit." ELEKTRIKA- Journal of Electrical Engineering 24, no. 1 (2025): 47–52. https://doi.org/10.11113/elektrika.v24n1.632.
Full textKao, Hsu-Yu, Liang-Ying Su, Shih-Hsu Huang, and Wei-Kai Cheng. "A Neural Network Compiler for Efficient Data Storage Optimization in ReRAM-Based DNN Accelerators." Electronics 14, no. 12 (2025): 2352. https://doi.org/10.3390/electronics14122352.
Full textBlachowicz, Tomasz, and Andrea Ehrmann. "Magnetic Elements for Neuromorphic Computing." Molecules 25, no. 11 (2020): 2550. http://dx.doi.org/10.3390/molecules25112550.
Full textYing, Jiajie, Yan Liang, Guangyi Wang, Peipei Jin, Long Chen, and Guanrong Chen. "Action potential and chaos near the edge of chaos in memristive circuits." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 9 (2022): 093101. http://dx.doi.org/10.1063/5.0097075.
Full textLagorce, Xavier, and Ryad Benosman. "STICK: Spike Time Interval Computational Kernel, a Framework for General Purpose Computation Using Neurons, Precise Timing, Delays, and Synchrony." Neural Computation 27, no. 11 (2015): 2261–317. http://dx.doi.org/10.1162/neco_a_00783.
Full textZhou, Rong, and Hao Cai. "Time-domain computing for Boolean logic using STT-MRAM." AIP Advances 13, no. 2 (2023): 025102. http://dx.doi.org/10.1063/9.0000378.
Full textSun, Zhaohui, Yang Feng, Peng Guo, et al. "Flash-based in-memory computing for stochastic computing in image edge detection." Journal of Semiconductors 44, no. 5 (2023): 054101. http://dx.doi.org/10.1088/1674-4926/44/5/054101.
Full textHe, Zhen-Yu, Tian-Yu Wang, Jia-Lin Meng, et al. "CMOS Back-end compatible memristors for in-situ digital and neuromorphic computing application." Materials Horizons, 2021. http://dx.doi.org/10.1039/d1mh01257f.
Full textChen, Yang, Haoming Wei, Yangqing Wu, Tengzhou Yang, and Bingqiang Cao. "Photovoltaic Memristor based on Photoelectric Synaptic Plasticity of Bulk Photovoltaic Effect." Journal of Materials Chemistry C, 2022. http://dx.doi.org/10.1039/d2tc03800e.
Full textChoi, Moon Gu, Jae Hyun In, Hanchan Song, et al. "Demonstration of a novel Majority logic in the memristive crossbar array for in-memory parallel computing." Materials Horizons, 2024. http://dx.doi.org/10.1039/d4mh01196a.
Full textHe, Lin, Zuchong Yang, Zhiming Wang, Tim Olivier Leydecker, and Emanuele Orgiu. "Organic multilevel (opto)electronic memories towards neuromorphic applications." Nanoscale, 2023. http://dx.doi.org/10.1039/d3nr01311a.
Full textFeng, Zihao, Ahmed Elewa, Islam Mekhemer, et al. "Covalent Organic Polymer Based Transistor with Multifunctional Memory and Synaptic Functions." Journal of Materials Chemistry C, 2024. http://dx.doi.org/10.1039/d3tc03026a.
Full textYan, Xiaobing, Jianhui Zhao, Yunfeng Ran, et al. "Memristors based in NdNiO3 nanocrystals film as sensory neurons for neuromorphic computing." Materials Horizons, 2023. http://dx.doi.org/10.1039/d3mh00835e.
Full textCao, Yixin, Yuanxi Li, Ganggui Zhu, et al. "Advances in Perovskite-Based Neuromorphic Computing Devices." Nanoscale, 2025. https://doi.org/10.1039/d5nr00335k.
Full textNandi, Sanju, Sirsendu Ghosal, M. Meyyappan, and P. K. Giri. "Defect-engineered 2DBi2Se3-based broadband optoelectronic synapses with ultralow energy consumption for neuromorphic computing." Materials Horizons, 2025. https://doi.org/10.1039/d4mh01625d.
Full textSarkar, Prasenjit, Litty Thomas Manamel, Puranjay Saha, et al. "A Triradical-Containing Trinuclear Pd(II) Complex: Spin-Polarized Electronic Transmission, Analog Resistive Switching and Neuromorphic Advancements." Materials Horizons, 2024. http://dx.doi.org/10.1039/d4mh00928b.
Full textLiu, Yongkai, Tian-Yu Wang, Kangli Xu, et al. "Low-Power and High-Speed HfLaO-based FE-TFTs for Artificial Synapse and Reconfigurable Logic Applications." Materials Horizons, 2023. http://dx.doi.org/10.1039/d3mh01461d.
Full textZhu, Chen, Tenglong Guo, Hanyu Zhang, et al. "Mimicking Excitatory and Inhibitory Behaviors with Optical-Absorption and Electrical-Switch Heterostructures." Journal of Materials Chemistry C, 2025. https://doi.org/10.1039/d5tc01522g.
Full textSachan, Pradeep, Anwesha Mahapatra, Rajwinder Kaur, Lalith Adithya Sai Channapragada, Subham Sahay, and Prakash Chandra Mondal. "Electrosynthesis of Molecular Memory Elements." Chemical Science, 2025. https://doi.org/10.1039/d4sc08461f.
Full textSingh, Deependra Kumar, and Govind Gupta. "Brain-Inspired Computing: Can 2D Materials Bridge the Gap Between Biological and Artificial Neural Networks?" Materials Advances, 2024. http://dx.doi.org/10.1039/d4ma00133h.
Full text