Journal articles on the topic 'Voronoi Cell Finite Element Method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Voronoi Cell Finite Element Method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Rui, and Ran Guo. "Voronoi Cell Finite Element Method for Fluid-Filled Materials." Transport in Porous Media 120, no. 1 (2017): 23–35. http://dx.doi.org/10.1007/s11242-017-0898-9.
Full textXu, Jia Li, Ran Guo, and Wen Hai Gai. "VCFEM Method Mixed with Finite Element Method Calculation of Numerical Simulation." Applied Mechanics and Materials 444-445 (October 2013): 103–9. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.103.
Full textLiu, Yuan Yuan, Ran Guo, and Wen Hai Gai. "The Analysis of Interfacial Debonding Using Voronoi Cell Finite Element Method." Applied Mechanics and Materials 644-650 (September 2014): 4922–26. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.4922.
Full textGuo, Jun, Ran Guo, and Wen Hai Gai. "Simulation of Particle Reinforced Composite Materials in Macro- and Meso-Scales." Applied Mechanics and Materials 444-445 (October 2013): 37–44. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.37.
Full textZhang, Guangjie, and Ran Guo. "Interfacial cracks analysis of functionally graded materials using Voronoi cell finite element method." Procedia Engineering 31 (2012): 1125–30. http://dx.doi.org/10.1016/j.proeng.2012.01.1152.
Full textLi, Huan, Ran Guo, and Heming Cheng. "Extended Voronoi cell finite element method for multiple crack propagation in brittle materials." Theoretical and Applied Fracture Mechanics 109 (October 2020): 102741. http://dx.doi.org/10.1016/j.tafmec.2020.102741.
Full textGuo, Ran, Wenyan Zhang, Tao Tan, and Benning Qu. "Modeling of fatigue crack in particle reinforced composites with Voronoi cell finite element method." Procedia Engineering 31 (2012): 288–96. http://dx.doi.org/10.1016/j.proeng.2012.01.1026.
Full textGhosh, Somnath, and Suresh Moorthy. "Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method." Computer Methods in Applied Mechanics and Engineering 121, no. 1-4 (1995): 373–409. http://dx.doi.org/10.1016/0045-7825(94)00687-i.
Full textZhang, H. W., H. Wang, B. S. Chen, and Z. Q. Xie. "Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle." Computer Methods in Applied Mechanics and Engineering 197, no. 6-8 (2008): 741–55. http://dx.doi.org/10.1016/j.cma.2007.09.003.
Full textYang, Jie, Shi Long Wang, Zhi Jun Zheng, and Ji Lin Yu. "Impact Resistance of Graded Cellular Metals Using Cell-Based Finite Element Models." Key Engineering Materials 703 (August 2016): 400–405. http://dx.doi.org/10.4028/www.scientific.net/kem.703.400.
Full textGai, Wen Hai, R. Guo, and Jun Guo. "Molecular Dynamics Approach and its Application in the Analysis of Multi-Scale." Applied Mechanics and Materials 444-445 (October 2013): 1364–69. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.1364.
Full textGrujicic, M., and Y. Zhang. "Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method." Materials Science and Engineering: A 251, no. 1-2 (1998): 64–76. http://dx.doi.org/10.1016/s0921-5093(98)00647-9.
Full textGuo, R., H. J. Shi, and Z. H. Yao. "Modeling of interfacial debonding crack in particle reinforced composites using Voronoi cell finite element method." Computational Mechanics 32, no. 1-2 (2003): 52–59. http://dx.doi.org/10.1007/s00466-003-0461-0.
Full textShen, Liu-Lei, Zhi-Bin Shen, Hai-Yang Li, and Ze-Yuan Zhang. "A Voronoi cell finite element method for estimating effective mechanical properties of composite solid propellants." Journal of Mechanical Science and Technology 31, no. 11 (2017): 5377–85. http://dx.doi.org/10.1007/s12206-017-1032-1.
Full textTiwary, Abhijeet, Chao Hu, and Somnath Ghosh. "Numerical conformal mapping method based Voronoi cell finite element model for analyzing microstructures with irregular heterogeneities." Finite Elements in Analysis and Design 43, no. 6-7 (2007): 504–20. http://dx.doi.org/10.1016/j.finel.2006.12.005.
Full textGhosh, Somnath, Kyunghoon Lee, and Suresh Moorthy. "Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method." International Journal of Solids and Structures 32, no. 1 (1995): 27–62. http://dx.doi.org/10.1016/0020-7683(94)00097-g.
Full textShi, Hui Ji, Ya-Xiong Zheng, Ran Guo, and Gerard Mesmacque. "Characterization of High Temperature Thermomechanical Fatigue Properties for Particle Reinforced Composites." Key Engineering Materials 297-300 (November 2005): 1495–502. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.1495.
Full textLi, Huan, Ran Guo, and Heming Cheng. "Modelling interfacial cracking and matrix cracking in particle reinforced composites using the extended Voronoi cell finite element method." Composite Structures 255 (January 2021): 112991. http://dx.doi.org/10.1016/j.compstruct.2020.112991.
Full textShen, Liu-Lei, Zhi-Bin Shen, Yan Xie, and Hai-Yang Li. "Effective Mechanical Property Estimation of Composite Solid Propellants Based on VCFEM." International Journal of Aerospace Engineering 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/2050876.
Full textZhang, H. W., H. Wang, and J. B. Wang. "Parametric variational principle based elastic–plastic analysis of materials with polygonal and Voronoi cell finite element methods." Finite Elements in Analysis and Design 43, no. 3 (2007): 206–17. http://dx.doi.org/10.1016/j.finel.2006.09.001.
Full textSkibinski, Jakub, Karol Cwieka, Samih Haj Ibrahim, and Tomasz Wejrzanowski. "Influence of Pore Size Variation on Thermal Conductivity of Open-Porous Foams." Materials 12, no. 12 (2019): 2017. http://dx.doi.org/10.3390/ma12122017.
Full textLi, Huan, Ran Guo, and Heming Cheng. "Calculation of stress intensity factors of matrix crack tip in particle reinforced composites using the singular Voronoi cell finite element method." Theoretical and Applied Fracture Mechanics 101 (June 2019): 269–78. http://dx.doi.org/10.1016/j.tafmec.2019.03.008.
Full textZhang, Xiaoyang, Liqun Tang, Zhenyu Jiang, Zejia Liu, Yiping Liu, and Daining Fang. "Effects of Meso Shape Irregularity of Metal Foam on Yield Features under Triaxial Loading." International Journal of Structural Stability and Dynamics 15, no. 07 (2015): 1540014. http://dx.doi.org/10.1142/s0219455415400143.
Full textWang, Xiao Kai, Zhi Jun Zheng, Ji Lin Yu, and Chang Feng Wang. "Impact Resistance and Energy Absorption of Functionally Graded Cellular Structures." Applied Mechanics and Materials 69 (July 2011): 73–78. http://dx.doi.org/10.4028/www.scientific.net/amm.69.73.
Full textTateyama, Kohei, and Keiko Watanabe. "Effect of microstructure on dynamic compressive behavior of cellular materials." EPJ Web of Conferences 250 (2021): 02026. http://dx.doi.org/10.1051/epjconf/202125002026.
Full textJahandari, Hormoz, and Colin G. Farquharson. "Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids." GEOPHYSICS 78, no. 3 (2013): G69—G80. http://dx.doi.org/10.1190/geo2012-0246.1.
Full textYu, Ji Lin, Shen Fei Liao, Zhi Jun Zheng, and Chang Feng Wang. "Dynamic Crushing of Voronoi Honeycombs: Local Stress-Strain States." Applied Mechanics and Materials 566 (June 2014): 563–68. http://dx.doi.org/10.4028/www.scientific.net/amm.566.563.
Full textĆwieka, K., T. Wejrzanowski, and K. J. Kurzydłowski. "Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams." Archives of Metallurgy and Materials 62, no. 1 (2017): 259–62. http://dx.doi.org/10.1515/amm-2017-0039.
Full textYang, B., Z. J. Liu, L. Q. Tang, Z. Y. Jiang, and Y. P. Liu. "Mechanism of the Strain Rate Effect of Metal Foams with Numerical Simulations of 3D Voronoi Foams during the Split Hopkinson Pressure Bar Tests." International Journal of Computational Methods 12, no. 04 (2015): 1540010. http://dx.doi.org/10.1142/s0219876215400101.
Full textHuang, Yunqing, Hengfeng Qin, Desheng Wang, and Qiang Du. "Convergent Adaptive Finite Element Method Based on Centroidal Voronoi Tessellations and Superconvergence." Communications in Computational Physics 10, no. 2 (2011): 339–70. http://dx.doi.org/10.4208/cicp.030210.051110a.
Full textZhou, Qibin, Hongxiang Yang, Xin Huang, Manyu Wang, and Xin Ren. "Numerical modelling of MOV with Voronoi network and finite element method." High Voltage 6, no. 4 (2021): 711–17. http://dx.doi.org/10.1049/hve2.12072.
Full textMoorthy, Suresh, Somnath Ghosh, and Yunshan Liu. "Voronoi Cell Finite Element Model for Thermoelastoplastic Deformation in Random Heterogeneous Media." Applied Mechanics Reviews 47, no. 1S (1994): S207—S220. http://dx.doi.org/10.1115/1.3122815.
Full textTu, Yuhui, Seán B. Leen, and Noel M. Harrison. "A high-fidelity crystal-plasticity finite element methodology for low-cycle fatigue using automatic electron backscatter diffraction scan conversion: Application to hot-rolled cobalt–chromium alloy." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235, no. 8 (2021): 1901–24. http://dx.doi.org/10.1177/14644207211010836.
Full textGhosh, S., and S. Moorthy. "Three dimensional Voronoi cell finite element model for microstructures with ellipsoidal heterogeneties." Computational Mechanics 34, no. 6 (2004): 510–31. http://dx.doi.org/10.1007/s00466-004-0598-5.
Full textZhang, Rui, and Ran Guo. "Voronoi cell finite element model to simulate crack propagation in porous materials." Theoretical and Applied Fracture Mechanics 115 (October 2021): 103045. http://dx.doi.org/10.1016/j.tafmec.2021.103045.
Full textGafarova, Yu A. "Numerical implementation of finite-element method of control volume using irregular mesh." Proceedings of the Mavlyutov Institute of Mechanics 7 (2010): 98–108. http://dx.doi.org/10.21662/uim2010.1.008.
Full textMoorthy, S., and S. Ghosh. "Particle cracking in discretely reinforced materials with the voronoi cell finite element model." International Journal of Plasticity 14, no. 8 (1998): 805–27. http://dx.doi.org/10.1016/s0749-6419(98)00024-2.
Full textVena, P., and D. Gastaldi. "A Voronoi cell finite element model for the indentation of graded ceramic composites." Composites Part B: Engineering 36, no. 2 (2005): 115–26. http://dx.doi.org/10.1016/j.compositesb.2004.05.003.
Full textWang, Zhiyong, and Peifeng Li. "Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina." Ceramics International 43, no. 9 (2017): 6967–75. http://dx.doi.org/10.1016/j.ceramint.2017.02.121.
Full textDeng, Da Zhao, and Ji Xiang Luo. "Study of the Crack Propagation for Particles Reinforced Composite Materials with Different Inclusion Distribution." Advanced Materials Research 461 (February 2012): 338–42. http://dx.doi.org/10.4028/www.scientific.net/amr.461.338.
Full textYu, Hai Bin, Chuan Zhen Huang, Han Lian Liu, Bin Zou, Hong Tao Zhu, and Jun Wang. "A 3D Cohesive Element Model for Fracture Behavior Analysis of Ceramic Tool Materials Microstructure." Materials Science Forum 723 (June 2012): 119–23. http://dx.doi.org/10.4028/www.scientific.net/msf.723.119.
Full textTanaka, Kazuto, Kohji Minoshima, and Takehiro Imoto. "Young’s Modulus of Polysilicon Thin Film Evaluated by Finite Element Analysis." Key Engineering Materials 353-358 (September 2007): 2227–30. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.2227.
Full textLuo, Ji Xiang. "Simulation of the Cracking Behavior for Fiber Reinforced Composite Materials with Different Inclusion Quantity." Advanced Materials Research 568 (September 2012): 238–41. http://dx.doi.org/10.4028/www.scientific.net/amr.568.238.
Full textSong, Chongmin, and John P. Wolf. "The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics." Computer Methods in Applied Mechanics and Engineering 147, no. 3-4 (1997): 329–55. http://dx.doi.org/10.1016/s0045-7825(97)00021-2.
Full textSong, Chongmin, and John P. Wolf. "The scaled boundary finite element method?alias consistent infinitesimal finite element cell method?for diffusion." International Journal for Numerical Methods in Engineering 45, no. 10 (1999): 1403–31. http://dx.doi.org/10.1002/(sici)1097-0207(19990810)45:10<1403::aid-nme636>3.0.co;2-e.
Full textDarbani, Mohsen. "The Meshfree Finite Element Method for Fluids with Large Deformations." Defect and Diffusion Forum 326-328 (April 2012): 176–80. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.176.
Full textMoorthy, Suresh, and Somnath Ghosh. "Adaptivity and convergence in the Voronoi cell finite element model for analyzing heterogeneous materials." Computer Methods in Applied Mechanics and Engineering 185, no. 1 (2000): 37–74. http://dx.doi.org/10.1016/s0045-7825(99)00349-7.
Full textMoorthy, Suresh, and Somnath Ghosh. "A Voronoi Cell finite element model for particle cracking in elastic-plastic composite materials." Computer Methods in Applied Mechanics and Engineering 151, no. 3-4 (1998): 377–400. http://dx.doi.org/10.1016/s0045-7825(97)00160-6.
Full textGhosh, Somnath, and Yunshan Liu. "Voronoi cell finite element model based on micropolar theory of thermoelasticity for heterogeneous materials." International Journal for Numerical Methods in Engineering 38, no. 8 (1995): 1361–98. http://dx.doi.org/10.1002/nme.1620380808.
Full textLi, Shanhu, and Somnath Ghosh. "Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials." International Journal for Numerical Methods in Engineering 65, no. 7 (2006): 1028–67. http://dx.doi.org/10.1002/nme.1472.
Full text