Academic literature on the topic 'Voronoi diagram'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Voronoi diagram.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Voronoi diagram"

1

Nielsen, Frank. "On Voronoi Diagrams on the Information-Geometric Cauchy Manifolds." Entropy 22, no. 7 (2020): 713. http://dx.doi.org/10.3390/e22070713.

Full text
Abstract:
We study the Voronoi diagrams of a finite set of Cauchy distributions and their dual complexes from the viewpoint of information geometry by considering the Fisher-Rao distance, the Kullback-Leibler divergence, the chi square divergence, and a flat divergence derived from Tsallis entropy related to the conformal flattening of the Fisher-Rao geometry. We prove that the Voronoi diagrams of the Fisher-Rao distance, the chi square divergence, and the Kullback-Leibler divergences all coincide with a hyperbolic Voronoi diagram on the corresponding Cauchy location-scale parameters, and that the dual
APA, Harvard, Vancouver, ISO, and other styles
2

PAPADOPOULOU, EVANTHIA, and D. T. LEE. "THE HAUSDORFF VORONOI DIAGRAM OF POLYGONAL OBJECTS: A DIVIDE AND CONQUER APPROACH." International Journal of Computational Geometry & Applications 14, no. 06 (2004): 421–52. http://dx.doi.org/10.1142/s0218195904001536.

Full text
Abstract:
We study the Hausdorff Voronoi diagram of a set S of polygonal objects in the plane, a generalization of Voronoi diagrams based on the maximum distance of a point from a polygon, and show that it is equivalent to the Voronoi diagram of S under the Hausdorff distance function. We investigate the structural and combinatorial properties of the Hausdorff Voronoi diagram and give a divide and conquer algorithm for the construction of this diagram that improves upon previous results. As a byproduct we introduce the Hausdorff hull, a structure that relates to the Hausdorff Voronoi diagram in the same
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Qingping, Xuesheng Zhao, Yuanzheng Duan, Mengmeng Qin, Wenlan Xie, and Wenbin Sun. "Dynamic Construction of Spherical Raster Voronoi Diagrams Based on Ordered Dilation." ISPRS International Journal of Geo-Information 13, no. 6 (2024): 202. http://dx.doi.org/10.3390/ijgi13060202.

Full text
Abstract:
The Voronoi diagram on the Earth’s surface is a significant data model, characterized by natural proximity and dynamic stability, which has emerged as one of the most promising solutions for global spatial dynamic management and analysis. However, traditional algorithms for generating spherical raster Voronoi diagrams find it challenging to dynamically adjust the Voronoi diagram while maintaining precision and efficiency. The efficient and accurate construction of the spherical Voronoi diagram has become one of the bottleneck issues limiting its further large-scale application. To this end, th
APA, Harvard, Vancouver, ISO, and other styles
4

MEHLHORN, KURT, STEFAN MEISER, and RONALD RASCH. "FURTHEST SITE ABSTRACT VORONOI DIAGRAMS." International Journal of Computational Geometry & Applications 11, no. 06 (2001): 583–616. http://dx.doi.org/10.1142/s0218195901000663.

Full text
Abstract:
Voronoi diagrams were introduced by R. Klein as a unifying approach to Voronoi diagrams. In this paper we study furthest site abstract Voronoi diagrams and give a unified mathematical and algorithmic treatment for them. In particular, we show that furthest site abstract Voronoi diagrams are trees, have linear size, and that, given a set of n sites, the furthest site abstract Voronoi diagram can be computed by a randomized algorithm in expected time O(n log n).
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Meng, Jianyu Li, Chang Wang, Jing Wang, and Li Wang. "Applications of Voronoi Diagrams in Multi-Robot Coverage: A Review." Journal of Marine Science and Engineering 12, no. 6 (2024): 1022. http://dx.doi.org/10.3390/jmse12061022.

Full text
Abstract:
In recent decades, multi-robot region coverage has played an important role in the fields of environmental sensing, target searching, etc., and it has received widespread attention worldwide. Due to the effectiveness in segmenting nearest regions, Voronoi diagrams have been extensively used in recent years for multi-robot region coverage. This paper presents a survey of recent research works on region coverage methods within the framework of the Voronoi diagram, to offer a perspective for researchers in the multi-robot cooperation domain. First, some basic knowledge of the Voronoi diagram is i
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Jae-Kwan, Youngsong Cho, Donguk Kim, and Deok-Soo Kim. "Voronoi diagrams, quasi-triangulations, and beta-complexes for disks in R2: the theory and implementation in BetaConcept." Journal of Computational Design and Engineering 1, no. 2 (2014): 79–87. http://dx.doi.org/10.7315/jcde.2014.008.

Full text
Abstract:
Abstract Voronoi diagrams are powerful for solving spatial problems among particles and have been used in many disciplines of science and engineering. In particular, the Voronoi diagram of three-dimensional spheres, also called the additively-weighted Voronoi diagram, has proven its powerful capabilities for solving the spatial reasoning problems for the arrangement of atoms in both molecular biology and material sciences. In order to solve application problems, the dual structure, called the quasi-triangulation, and its derivative structure, called the beta-complex, are frequently used with t
APA, Harvard, Vancouver, ISO, and other styles
7

PAPADOPOULOU, EVANTHIA, and SANDEEP KUMAR DEY. "ON THE FARTHEST LINE-SEGMENT VORONOI DIAGRAM." International Journal of Computational Geometry & Applications 23, no. 06 (2013): 443–59. http://dx.doi.org/10.1142/s0218195913600121.

Full text
Abstract:
The farthest line-segment Voronoi diagram illustrates properties surprisingly different from its counterpart for points: Voronoi regions may be disconnected and they are not characterized by convex-hull properties. In this paper we introduce the farthest hull and its Gaussian map as a closed polygonal curve that characterizes the regions of the farthest line-segment Voronoi diagram, and derive tighter bounds on the (linear) size of this diagram. With the purpose of unifying construction algorithms for farthest-point and farthest line-segment Voronoi diagrams, we adapt standard techniques to co
APA, Harvard, Vancouver, ISO, and other styles
8

DE LACY COSTELLO, BEN, NORMAN RATCLIFFE, ANDREW ADAMATZKY, ALEXEY L. ZANIN, ANDREAS W. LIEHR, and HANS-GEORG PURWINS. "THE FORMATION OF VORONOI DIAGRAMS IN CHEMICAL AND PHYSICAL SYSTEMS: EXPERIMENTAL FINDINGS AND THEORETICAL MODELS." International Journal of Bifurcation and Chaos 14, no. 07 (2004): 2187–210. http://dx.doi.org/10.1142/s021812740401059x.

Full text
Abstract:
The work discusses the formation of Voronoi diagrams in spatially extended nonlinear systems taking experimental and theoretical results into account. Concerning experimental systems a number of chemical systems used previously as prototype chemical processors and a barrier gas-discharge system are investigated. Although the underlying microscopic processes are very different, both types of systems show self-organized Voronoi diagrams for suitable parameters. Indeed certain chemical systems exhibit Voronoi diagrams as an output state for two distinct sets of parameters one that corresponds to
APA, Harvard, Vancouver, ISO, and other styles
9

Devillers, Olivier, and Pierre-Marie Gandoin. "Rounding Voronoi diagram." Theoretical Computer Science 283, no. 1 (2002): 203–21. http://dx.doi.org/10.1016/s0304-3975(01)00076-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jooyandeh, Mohammadreza, Ali Mohades, and Maryam Mirzakhah. "Uncertain Voronoi diagram." Information Processing Letters 109, no. 13 (2009): 709–12. http://dx.doi.org/10.1016/j.ipl.2009.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Voronoi diagram"

1

Lee, King-for Foris, and 李敬科. "Clustering uncertain data using Voronoi diagram." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43224131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, King-for Foris. "Clustering uncertain data using Voronoi diagram." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43224131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Petersson, Filip, and Daniel Windhede. "Procedurell generering av racerbanor genom Voronoi diagram : Procedurellt genererade Formel 1 racerbanor genom modifierade Voronoi diagram och self-avoiding random walk." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19872.

Full text
Abstract:
Arbetet undersökte om det är möjligt att procedurellt generera giltiga och underhållande racerbanor för Formel 1 genom användandet av Voronoi diagram och self-avoiding random walk. En procedurell algoritm skapades och två enkäter konstruerades för att undersöka denna algoritms underhållningsvärde. Dessa enkäter distribuerades till kunniga individer inom racinggenren. Både algoritmen som helhet och dess dynamiska parametrar undersöktes. Det fastställdes att det är möjligt att procedurellt generera Formel 1 racerbanor som är underhållande med detta tillvägagångssätt. Vidare visar resultatet att
APA, Harvard, Vancouver, ISO, and other styles
4

Santana, Juliana Exel 1986. "Representação da área de responsabilidade de jogadores de futebol através do Diagrama de Voronoi." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/274723.

Full text
Abstract:
Orientador: Sérgio Augusto Cunha<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Educação Física<br>Made available in DSpace on 2018-08-17T12:23:18Z (GMT). No. of bitstreams: 1 Santana_JulianaExel_M.pdf: 6461488 bytes, checksum: 731aaed1e02fe448da4b39f4f7b8fb28 (MD5) Previous issue date: 2011<br>Resumo: O desempenho de jogadores de futebol de elite durante uma partida é diretamente influenciado por fatores físicos, psicológicos, técnicos, táticos e entre outros. Um suporte científico capaz de buscar e aplicar metodologias que quantifiquem esses fatores é uma fonte
APA, Harvard, Vancouver, ISO, and other styles
5

Loret, Vincent. "Tessellations de Voronoï généralisées : modélisation CAO, propriétés statistiques et application à l'homogénéisation du comportement des agrégats polycristallins." Electronic Thesis or Diss., université Paris-Saclay, 2023. https://www.biblio.univ-evry.fr/theses/2023/interne/2023UPAST173.pdf.

Full text
Abstract:
De nombreux matériaux hétérogènes peuvent voir leur architecture représentée géométriquement au moyen de Diagrammes De Voronoi (DDV). Les agrégats polycristallins en particulier sont ainsi couramment modélisés par des tessellations de Laguerre qui généralisent les DDV de base. Cette classe de DDV a été bien étudiée des points de vue des algorithmes permettant de les engendrer et de leurs propriétés statistiques. Elle constitue en pratique le standard pour la modélisation du comportement des polycristaux que ce soit à partir d'une géométrie initiale idéalisée ou d'une géométrie reconstruite à p
APA, Harvard, Vancouver, ISO, and other styles
6

Muhammad, Rashid Bin. "Parallel and Network Algorithms and Applications for Steiner Trees and Voronoi Diagram." Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1259182746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ledoux, Hugo. "Modelling three-dimensional fields in geoscience with the Voronoi diagram and its dual." Thesis, University of South Wales, 2006. https://pure.southwales.ac.uk/en/studentthesis/modelling-threedimensional-fields-in-geoscience-with-the-voronoi-diagram-and-its-dual(0cbb5565-4493-4f07-bd6a-3e41c47c056e).html.

Full text
Abstract:
The objects studied in geoscience are often not man-made objects, but rather the spatial distribution of three-dimensional continuous geographical phenomena such as the salinity of a body of water, the humidity of the air or the percentage of gold in the rock (phenomena that tend to change over time). These are referred to as fields, and their modelling with geographical information systems is problematic because the structures of these systems are usually two dimensional and static. Raster structures (voxels or octrees) are the most popular solutions, but, as I argue in this thesis, they have
APA, Harvard, Vancouver, ISO, and other styles
8

Pires, Fernando Bissi. "Triangulações regulares e aplicações." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26082008-163553/.

Full text
Abstract:
A triangulação de Delaunay de um conjunto de pontos é uma importante entidade geométrica cujas aplicações abrangem diversas áreas da ciência. Triangulações regulares, que podem ser vistas como uma generalização da triangulação de Delaunay, onde pesos são associados aos vértices, também têm sido aplicadas em diversos problemas como reconstrução a partir de nuvens de pontos [5], geração de malha [12], modelagem molecular [7] e muitos outros. Apesar de ser muito utilizada, a fundamentação teórica referente à triangulação regular ainda não está tão desenvolvida quanto para triangulação de Delaunay
APA, Harvard, Vancouver, ISO, and other styles
9

Silva, Daniele Pereira da. "Estimativa de erros no cálculo de gradientes em malhas de Voronoi." Universidade do Estado do Rio de Janeiro, 2012. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=3815.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br>O presente trabalho propõe analisar metodologias para o cálculo do gradiente em malhas não-estruturadas do tipo Voronoi que são utilizadas no método de Volumes Finitos. Quatro metodologias para o cálculo do gradiente são testadas e comparadas com soluções analíticas. As técnicas utilizadas são: Método do Balanço de Forças, Método do Mínimo Resíduo Quadrático, Método da Média dos Gradientes Projetos e Método da Média dos Gradientes Projetados Corrigidos. Uma análise por série de Taylor também foi feita, e as equações analíticas comp
APA, Harvard, Vancouver, ISO, and other styles
10

Oliveira, Douglas Cedrim. "Simplificação de malhas triangulares baseada no diagrama de Voronoi intrínseco." Universidade Federal de Alagoas, 2011. http://repositorio.ufal.br/handle/riufal/1047.

Full text
Abstract:
In this dissertation, we study the triangular mesh simplification process, describing its main characteristics. We discuss an adaptation for triangular meshes of a mesh simplification process based on Voronoi coverage proposed by Peixoto [2002]. Moreover, we use Fast Marching Method as a distance function over the mesh and some different strategies for simplified mesh vertices selection, like curvature based selection. The simplification process is done by constructing an intrinsic Voronoi diagram over the original mesh. We discuss some necessary conditions to obtain a mesh, as Voronoi dual, w
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Voronoi diagram"

1

Aronov, Boris. The furthest-site geodesic Voronoi diagram. Courant Institute of Mathematical Sciences, New York University, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gavrilova, Marina L., ed. Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85126-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gavrilova, Marina L. Generalized Voronoi diagram: A geometry-based approach to computational intelligence. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aronov, Boris. On the geodesic Voronoi diagram of point sites in a simple polygon. Courant Institute of Mathematical Sciences, New York University, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schreiber, Thomas. A voronoi diagram based adaptive k-means-type clustering algorithm for multidimensional weighted data. Universität Kaiserslautern, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yap, Chee K. An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments (preliminary version). Courant Institute of Mathematical Sciences, New York University, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klein, Rolf. Concrete and Abstract Voronoi Diagrams. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3-540-52055-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rolf, Klein. Concrete and abstract Voronoi diagrams. Springer-Verlag, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

N, Boots B., and Sugihara Kōkichi 1948-, eds. Spatial tessellations: Concepts and applications of Voronoi diagrams. Wiley, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rosenberger, Harald. Order-k Voronoi diagrams of sites with additive weights in the plane. Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Voronoi diagram"

1

Kang, James M. "Voronoi Diagram." In Encyclopedia of GIS. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23519-6_1461-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gass, Saul I., and Carl M. Harris. "Voronoi diagram." In Encyclopedia of Operations Research and Management Science. Springer US, 2001. http://dx.doi.org/10.1007/1-4020-0611-x_1116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kang, James M. "Voronoi Diagram." In Encyclopedia of GIS. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-17885-1_1461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kang, James M. "Voronoi Diagram." In Encyclopedia of GIS. Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_1461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deza, Michel Marie, and Elena Deza. "Voronoi Diagram Distances." In Encyclopedia of Distances. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44342-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deza, Michel Marie, and Elena Deza. "Voronoi Diagram Distances." In Encyclopedia of Distances. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30958-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deza, Michel Marie, and Elena Deza. "Voronoi Diagram Distances." In Encyclopedia of Distances. Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52844-0_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Devillers, Olivier, and Pierre-Marie Gandoin. "Rounding Voronoi Diagram." In Discrete Geometry for Computer Imagery. Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-49126-0_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jooyandeh, Mohammadreza, and Ali Mohades Khorasani. "Fuzzy Voronoi Diagram." In Communications in Computer and Information Science. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89985-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nilforoushan, Zahra, and Ali Mohades. "Hyperbolic Voronoi Diagram." In Computational Science and Its Applications - ICCSA 2006. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11751649_81.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Voronoi diagram"

1

Zhelezov, Ognyan Ivanov, and Valentina Markova Petrova. "An Accelerated SFTessellation Algorithm for Obtaining a Voronoi Diagram." In 2024 23rd International Symposium on Electrical Apparatus and Technologies (SIELA). IEEE, 2024. http://dx.doi.org/10.1109/siela61056.2024.10637861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gomes, Dipta, Md Manzurul Hasan, and Pritam Khan Boni. "A Systemic Expansion of Dhaka City using Voronoi Diagram." In 2024 6th International Conference on Sustainable Technologies for Industry 5.0 (STI). IEEE, 2024. https://doi.org/10.1109/sti64222.2024.10951090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fan, Chenglin, Jianbiao He, Jun Luo, and Binhai Zhu. "Moving Network Voronoi Diagram." In 2010 International Symposium on Voronoi Diagrams in Science and Engineering (ISVD). IEEE, 2010. http://dx.doi.org/10.1109/isvd.2010.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fan, Chenglin, Jun Luo, Jinfei Liu, and Yinfeng Xu. "Half-Plane Voronoi Diagram." In 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD). IEEE, 2011. http://dx.doi.org/10.1109/isvd.2011.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cheng, Reynold, Xike Xie, Man Lung Yiu, Jinchuan Chen, and Liwen Sun. "UV-diagram: A Voronoi diagram for uncertain data." In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icde.2010.5447917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, KwangSoo, Apurv Hirsh Shekhar, Dev Oliver, and Shashi Shekhar. "Capacity-Constrained Network-Voronoi Diagram." In 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, 2016. http://dx.doi.org/10.1109/icde.2016.7498423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Christianto, Daud Sandy, Kiki Maulana Adhinugraha, Anisa Herdiani, and Sultan Alamri. "Highest order Voronoi diagram optimization." In 2017 5th International Conference on Information and Communication Technology (ICoIC7). IEEE, 2017. http://dx.doi.org/10.1109/icoict.2017.8074644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tetsuo Asano. "Angular Voronoi Diagram with Applications." In 2006 3rd International Symposium on Voronoi Diagrams in Science and Engineering. IEEE, 2006. http://dx.doi.org/10.1109/isvd.2006.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muta, Hidetoshi, and Kimikazu Kato. "Degeneracy of Angular Voronoi Diagram." In 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007). IEEE, 2007. http://dx.doi.org/10.1109/isvd.2007.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dan, Dai. "Image segmentation using Voronoi diagram." In Eighth International Conference on Digital Image Processing (ICDIP 2016), edited by Charles M. Falco and Xudong Jiang. SPIE, 2016. http://dx.doi.org/10.1117/12.2244272.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Voronoi diagram"

1

Bernal, J. An expected linear 3-dimensional Voronoi diagram algorithm. National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.4340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bemal, Javier. On the expected complexity of the 3-dimensional voronoi diagram. National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-4100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bernal, J. On the expected complexity of the 3-dimensional Voronoi diagram. National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.4321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cronin, T. M. The Voronoi Diagram for the Euclidean Traveling Salesman Problem Is Piecemeal Quartic and Hyperbolic. Defense Technical Information Center, 1990. http://dx.doi.org/10.21236/ada256112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liotta, G., F. P. Preparata, and R. Tamassia. Robust Proximity Queries in Implicit Voronoi Diagrams. Defense Technical Information Center, 1996. http://dx.doi.org/10.21236/ada313538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mount, David M. Voronoi Diagrams on the Surface of a Polyhedron. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada166220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bernal, Javier. Expected O(N) and O(N??�) algorithms for constructing Voronoi diagrams in two and three dimensions. National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bibliographic notes on Voronoi diagrams. National Institute of Standards and Technology, 1993. http://dx.doi.org/10.6028/nist.ir.5164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!