Journal articles on the topic 'Vortex devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Vortex devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Uss, A. Y., and A. V. Chernyshev. "Classification of Vortex Jet Devices for Gas Flow Control in Pneumo-Hydraulic Systems." Proceedings of Higher Educational Institutions. Маchine Building, no. 07 (724) (July 2020): 43–58. http://dx.doi.org/10.18698/0536-1044-2020-7-43-58.
Full textDMITRIEVA, O. S., A. V. DMITRIEV, A. N. NIKOLAEV, and G. R. BADRETDINOVA. "FEATURES OF THE USE OF VORTEX DEVICES OF VARIOUS DESIGNS IN INDUSTRY." Herald of Technological University 27, no. 10 (2024): 79–84. https://doi.org/10.55421/1998-7072_2024_27_10_79.
Full textКузнецов, Виктор Иванович, and Олег Алексеевич Шариков. "FIRE EXTINGUISHING METHOD BY MEANS OF VORTEX WATER FIRE EXTINGUISHERS USING THE VORTEX CONFUSER EFFECT." Pozharnaia bezopasnost`, no. 4(109) (December 16, 2022): 55–62. http://dx.doi.org/10.37657/vniipo.pb.2022.109.4.006.
Full textDuwel, A. E., H. S. J. van der Zant, and T. P. Orlando. "Discrete underdamped vortex flow devices." IEEE Transactions on Appiled Superconductivity 5, no. 2 (1995): 3357–60. http://dx.doi.org/10.1109/77.403311.
Full textIbragimov, Ruslan A., Evgeniy V. Korolev, T. R. Deberdeev, V. V. Leksin, and Denis B. Solovev. "Energy Parameters of the Binder during Activation in the Vortex Layer Apparatus." Materials Science Forum 945 (February 2019): 98–103. http://dx.doi.org/10.4028/www.scientific.net/msf.945.98.
Full textLiu, Houquan, Hongchang Deng, Shijie Deng, Chuanxin Teng, Ming Chen, and Libo Yuan. "Vortex Beam Encoded All-Optical Logic Gates Based on Nano-Ring Plasmonic Antennas." Nanomaterials 9, no. 12 (2019): 1649. http://dx.doi.org/10.3390/nano9121649.
Full textGrishin, Boris, Marina Bikunova, Natalya Osipova, and Sergey Salmin. "Efficiency assessment of vortex tubular enameled coalescing devices for oil emulsion destabilization." E3S Web of Conferences 549 (2024): 07005. http://dx.doi.org/10.1051/e3sconf/202454907005.
Full textArtyukhov, Artem, Viktor Obodiak, and Pavlo Boiko. "Development of Software for Calculating of the Vortex Fluidized Bed Granulator." Journal of Software Engineering: Theories and Practices 2, no. 1 (2017): 1–10. http://dx.doi.org/10.21174/josetap.v2i1.61.
Full textUss, A. Yu, and A. V. Chernyshev. "A Vortex Jet Device Applied in the Development of Active Hydro-Pneumatic Dampers Used in Rehabilitation Equipment." Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, no. 1 (136) (March 2021): 185–204. http://dx.doi.org/10.18698/0236-3941-2021-1-185-204.
Full textPavlenko, Anatoliy, Andrii Cheilytko, Sergii Ilin, and Hanna Karpenko. "Minimization of Energy Consumption of Vortex Devices for Granulation of Materials." Rocznik Ochrona Środowiska 25 (2023): 198–207. http://dx.doi.org/10.54740/ros.2023.019.
Full textZhou, Xinyi, Zongjie Zhu, Xiangsheng Xie, Lishuang Yao, Fan Fan, and Yaqin Zhou. "Broadband Vortex Beam Modulating System Based on Electrically Controlled Liquid Crystal Devices." Photonics 10, no. 9 (2023): 1012. http://dx.doi.org/10.3390/photonics10091012.
Full textPastukhov, A. G., and D. N. Bakharev. "Maize Threshing and Separating Device for Primary Seed Production." Agricultural Machinery and Technologies 14, no. 1 (2020): 34–39. http://dx.doi.org/10.22314/2073-7599-2020-14-1-34-39.
Full textVoinov, Nikolai A., Anastasiya V. Bogatkova, and Denis A. Zemtsov. "Intensification of Heat and Mass Transfer in a Diabatic Column with Vortex Trays." ChemEngineering 6, no. 2 (2022): 29. http://dx.doi.org/10.3390/chemengineering6020029.
Full textYakimushkin, R. V. "VORTEX DEVICES OF THE DIESEL AIR SUPPLY SYSTEM: MATHEMATICAL MODEL OF AERODYNAMIC PROCESSES." Russian Automobile and Highway Industry Journal 17, no. 1 (2020): 110–20. http://dx.doi.org/10.26518/2071-7296-2020-17-1-110-120.
Full textField, Richard, David Averill, Thomas P. O'Connor, and Paula Steel. "Vortex Separation Technology." Water Quality Research Journal 32, no. 1 (1997): 185–214. http://dx.doi.org/10.2166/wqrj.1997.013.
Full textGrigor’yev, Viktor S., and Il’ya V. Romanov. "APPLICATION OF THE VORTEX LAYER APPARATUS FOR MECHANICAL GRINDING OF SUBSTANCES IN A WATER FLOW." Tekhnicheskiy servis mashin 2, no. 143 (2021): 62–70. http://dx.doi.org/10.22314/2618-8287-2021-59-2-62-70.
Full textAbdullah, M. Z., Z. Husain, and S. M. Fraser. "Application of Deswirl Device in Cyclone Dust Separator." ASEAN Journal on Science and Technology for Development 20, no. 3&4 (2017): 203–16. http://dx.doi.org/10.29037/ajstd.354.
Full textIvanov, Boris L., Bulat G. Ziganshin, Andrey V. Dmitriev, Maxim A. Lushnov, and Manuel O. Binelo. "Numerical modeling of the effect of energy-separation in the ranque-hilsch tube." BIO Web of Conferences 27 (2020): 00109. http://dx.doi.org/10.1051/bioconf/20202700109.
Full textKarakeyan, V. I., and A. V. Maltsev. "Vortex flow transducer for ecological monitoring devices." Measurement Techniques 55, no. 7 (2012): 806–12. http://dx.doi.org/10.1007/s11018-012-0043-7.
Full textBakhronov, Kh Sh, A. A. Akhmatov, Yo B. Kadirov, and Kh Kh Suyarova. "AN EXPERIMENTAL STUDY OF THE EFFECTIVENESS OF VORTEX APPARATUS FOR REGENERATIVE EXTRACTION OF SODIUM CYANIDE FROM SPENT SOLUTIONS." Journal of Science and Innovative Development 3, no. 5 (2020): 86–92. http://dx.doi.org/10.36522/2181-9637-2020-5-10.
Full textLiu, Zhengyuan, Bingcheng Luo, Labao Zhang, Boyu Hou, and Danyang Wang. "Vortex dynamics in amorphous MoSi superconducting thin films." Superconductor Science and Technology 34, no. 12 (2021): 125014. http://dx.doi.org/10.1088/1361-6668/ac2eb0.
Full textHwang, Peter H., Rachel J. Woo, and Karen J. Fong. "Intranasal Deposition of Nebulized Saline: A Radionuclide Distribution Study." American Journal of Rhinology 20, no. 3 (2006): 255–61. http://dx.doi.org/10.2500/ajr.2006.20.2861.
Full textNIKOLAEV, A. N., O. S. DMITRIEVA, and V. V. KHARKOV. "DROPLET SIZE DISTRIBUTION IN ROTATING DROPLET LAYER OF VORTEX SEPARATION DEVICE." Herald of Technological University 27, no. 6 (2024): 90–93. http://dx.doi.org/10.55421/1998-7072_2024_27_6_90.
Full textDowling, A. P. "The effect of large-eddy breakup devices on oncoming vorticity." Journal of Fluid Mechanics 160 (November 1985): 447–63. http://dx.doi.org/10.1017/s002211208500355x.
Full textFeng, Xin-di, Yin Wang, Li-juan Shi, et al. "Mode converter of vortex beams by phase-gradient acoustic metagratings." Journal of Applied Physics 133, no. 3 (2023): 034502. http://dx.doi.org/10.1063/5.0130015.
Full textGalera, L., P. Martinez-Filgueira, U. Fernández-Gámiz, E. Zulueta, JM Lopez, and JM Blanco. "A triangular vortex generator modeling on a DU97-W-300 airfoil by a source term model." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 233, no. 5 (2019): 635–45. http://dx.doi.org/10.1177/0957650919850449.
Full textOstroukhov, N. N., and E. V. Chumakova. "ENGINEERING AND MODELING OF OPTIMAL MANEUVERING OF VESSELS WITH VORTEX PROPULSION UNITS." World of Transport and Transportation 15, no. 5 (2017): 14–27. http://dx.doi.org/10.30932/1992-3252-2017-15-5-2.
Full textСёмин, Дмитрий Александрович, Андрей Сергеевич Роговой, Артем Николаевич Левашов, and Ярослав Николаевич Левашов. "VERIFICATION OF FLOW IN THE VORTEX CHAMBER DEVICES." Journal of Mechanical Engineering the National Technical University of Ukraine "Kyiv Polytechnic Institute" 2, no. 77 (2016): 71–78. http://dx.doi.org/10.20535/2305-9001.2016.77.74796.
Full textJiang, Ye, Yu Cao, and Xue Feng. "Progress in integrated devices for optical vortex emission." Journal of Physics D: Applied Physics 53, no. 30 (2020): 303002. http://dx.doi.org/10.1088/1361-6463/ab84a4.
Full textLi, Zhi-Xiang, Ya-Ping Ruan, Peng Chen, et al. "Liquid crystal devices for vector vortex beams manipulation and quantum information applications [Invited]." Chinese Optics Letters 19, no. 11 (2021): 112601. http://dx.doi.org/10.3788/col202119.112601.
Full textKhabarova, D. F., A. R. Ismagilov, A. V. Podzerko, and I. I. Lazarev. "Experimental study of a vortex-type shut-off device." Bulletin of the South Ural State University series "Mechanical engineering industry" 23, no. 4 (2023): 80–90. http://dx.doi.org/10.14529/engin230407.
Full textAbramkina, D. V., A. O. Ivanova, D. F. Karpov, Kh M. Vafaeva, and A. S. Voronov. "Analysis of air flow formation in a nozzle valve." Herald of Dagestan State Technical University. Technical Sciences 51, no. 4 (2025): 171–78. https://doi.org/10.21822/2073-6185-2024-51-4-171-178.
Full textJiang, Wenkai, Sen Wang, Xinhua Yang, and Junsheng Yang. "Effect of Aspect Ratio of Ferroelectric Nanofilms on Polarization Vortex Stability under Uniaxial Tension or Compression." Materials 16, no. 24 (2023): 7699. http://dx.doi.org/10.3390/ma16247699.
Full textBiryuk, V. V., S. V. Lukachev, V. T. Volov, and Sh A. Pirallishvili. "Professor A.P. Merkulov’ role in the process of research and development of the vortex effect." VESTNIK of Samara University. Aerospace and Mechanical Engineering 20, no. 2 (2021): 105–21. http://dx.doi.org/10.18287/2541-7533-2021-20-2-105-121.
Full textWang, Wei, Ruikang Zhao, Shilong Chang, et al. "High-Efficiency Spin-Related Vortex Metalenses." Nanomaterials 11, no. 6 (2021): 1485. http://dx.doi.org/10.3390/nano11061485.
Full textDelgado-Álvarez, J. A., J. G. Perea-Zurita, A. Antonio-Morales, C. González-Rivera, and M. A. Ramírez-Argáez. "Mathematical modeling of the fluid flow in a mixing device for melting/dissolving solid particles in a liquid alloy." MRS Proceedings 1611 (2014): 19–24. http://dx.doi.org/10.1557/opl.2014.752.
Full textFilali, E. G., J. M. Michel, S. Hattori, and S. Fujikawa. "The Cavermod Device: Force Measurements." Journal of Fluids Engineering 121, no. 2 (1999): 312–17. http://dx.doi.org/10.1115/1.2822209.
Full textMielczarek, Szymon, and Jerzy M. Sawicki. "Model of Pressure Distribution in Vortex Flow Controls." Archives of Hydro-Engineering and Environmental Mechanics 62, no. 1-2 (2015): 41–52. http://dx.doi.org/10.1515/heem-2015-0018.
Full textLi, Yong, Junrong Wang, Hui Ji, Ouyang Li, and Songlin Nie. "Numerical Simulation Analysis of Main Structural Parameters of Hydrocyclones on Oil-Gas Separation Effect." Processes 8, no. 12 (2020): 1624. http://dx.doi.org/10.3390/pr8121624.
Full textSokolovska, I., and K. Demin. "FEATURES OF MODELING THE TRACTION OF MOVEMENT OF MATERIAL PARTICLES IN A VORTICAL LAYER." Collection of scholarly papers of Dniprovsk State Technical University (Technical Sciences) 1, no. 38 (2021): 99–105. http://dx.doi.org/10.31319/2519-2884.38.2021.12.
Full textRogovyi, Andrii, Artem Neskorozhenyi, Serhiy Lukianets, and Oleksandr Shudryk. "Comparison of the Vortex Chamber Supercharger Characteristics for Grain Pumping with Other Types Superchargers." Bulletin of Kharkov National Automobile and Highway University 1, no. 101 (2023): 104. http://dx.doi.org/10.30977/bul.2219-5548.2023.101.0.104.
Full textVoinov, Nikolai Alexandrovich, Aleksandr Sergeyevich Frolov, Anastasiya Viktorovna Bogatkova, Denis Andreyevich Zemtsov, and Ol'ga Petrovna Zhukova. "IMPROVEMENT OF CONTACT DEVICES OF THE BUBBLING TRAY." chemistry of plant raw material, no. 4 (December 15, 2022): 343–51. http://dx.doi.org/10.14258/jcprm.20220411381.
Full textGranata, V., B. A. Davidson, E. Sarnelli, and S. Pagano. "Three Terminal HTc Vortex Flow Transistors: Optimisation of the Device Geometry Employing Bicrystal Grain-Boundary Josephson Junctions." International Journal of Modern Physics B 13, no. 09n10 (1999): 1253–58. http://dx.doi.org/10.1142/s0217979299001260.
Full textPalm, Marius L., Chaoxin Ding, William S. Huxter, Takashi Taniguchi, Kenji Watanabe, and Christian L. Degen. "Observation of current whirlpools in graphene at room temperature." Science 384, no. 6694 (2024): 465–69. http://dx.doi.org/10.1126/science.adj2167.
Full textFu, Ben, Shi-Xing Yu, Na Kou, Zhao Ding, and Zheng-Ping Zhang. "Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation." Chinese Physics B 31, no. 4 (2022): 040703. http://dx.doi.org/10.1088/1674-1056/ac3a65.
Full textLaRocco, John, Qudsia Tahmina, Stanley Essel, and John Simonis. "Firefighting with Conductive Aerosol-Assisted Vortex Rings." Technologies 13, no. 1 (2024): 10. https://doi.org/10.3390/technologies13010010.
Full textMoskalev, L. N. "Gas-dynamic resistance in the swirling zone of the vortex apparatus gas flow." E3S Web of Conferences 592 (2024): 04016. http://dx.doi.org/10.1051/e3sconf/202459204016.
Full textQiang, Xu, Peng Wang, and Yingzheng Liu. "Aeroacoustic simulation of transient vortex dynamics inside double-degree-of-freedom orifice-cavity structure subjected to high-intensity acoustic waves." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, no. 6 (2023): 2292–301. http://dx.doi.org/10.3397/in_2023_0338.
Full textInna, Pitak, Shaporev Valery, Briankin Serhii, Komarysta Bohdana, and Nechyporenko Dmytro. "DEVELOPMENT OF A HIGHLY EFFICIENT COMBINED APPARATUS (A COMBINATION OF VORTEX CHAMBERS WITH A BIN) FOR DRY DEDUSTING OF GASES." Eastern-European Journal of Enterprise Technologies 3, no. 10(99) (2019): 49–55. https://doi.org/10.15587/1729-4061.2019.170134.
Full textNaletov, V. A., M. B. Glebov, and L. V. Ravichev. "Analysis of the Oil Flowing Process on the Basis of von Kármán Vortex Streets." Теоретические основы химической технологии 57, no. 6 (2023): 661–67. http://dx.doi.org/10.31857/s0040357123060167.
Full text