Academic literature on the topic 'Vortex dipole'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vortex dipole.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vortex dipole"
Voropayev, S. I., and Ya D. Afanasyev. "Two-dimensional vortex-dipole interactions in a stratified fluid." Journal of Fluid Mechanics 236 (March 1992): 665–89. http://dx.doi.org/10.1017/s0022112092001575.
Full textTchieu, Andrew A., Eva Kanso, and Paul K. Newton. "The finite-dipole dynamical system." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2146 (2012): 3006–26. http://dx.doi.org/10.1098/rspa.2012.0119.
Full textMuraki, David J., and Chris Snyder. "Vortex Dipoles for Surface Quasigeostrophic Models." Journal of the Atmospheric Sciences 64, no. 8 (2007): 2961–67. http://dx.doi.org/10.1175/jas3958.1.
Full textArnoldus, Henk F., and John T. Foley. "The dipole vortex." Optics Communications 231, no. 1-6 (2004): 115–28. http://dx.doi.org/10.1016/j.optcom.2003.12.043.
Full textSokolovskiy, Mikhail A., Xavier J. Carton, and Boris N. Filyushkin. "Mathematical Modeling of Vortex Interaction Using a Three-Layer Quasigeostrophic Model. Part 1: Point-Vortex Approach." Mathematics 8, no. 8 (2020): 1228. http://dx.doi.org/10.3390/math8081228.
Full textSnyder, Chris, David J. Muraki, Riwal Plougonven, and Fuqing Zhang. "Inertia–Gravity Waves Generated within a Dipole Vortex." Journal of the Atmospheric Sciences 64, no. 12 (2007): 4417–31. http://dx.doi.org/10.1175/2007jas2351.1.
Full textPallàs-Sanz, Enric, and Álvaro Viúdez. "Three-Dimensional Ageostrophic Motion in Mesoscale Vortex Dipoles." Journal of Physical Oceanography 37, no. 1 (2007): 84–105. http://dx.doi.org/10.1175/jpo2978.1.
Full textChérubin, L., X. Carton, and D. G. Dritschel. "Vortex Dipole Formation by Baroclinic Instability of Boundary Currents." Journal of Physical Oceanography 37, no. 6 (2007): 1661–77. http://dx.doi.org/10.1175/jpo3079.1.
Full textArnoldus, Henk F., Xin Li, and Zhangjin Xu. "The giant dipole vortex." Journal of Modern Optics 63, no. 11 (2015): 1068–72. http://dx.doi.org/10.1080/09500340.2015.1120897.
Full textRoux, Filippus S. "Canonical vortex dipole dynamics." Journal of the Optical Society of America B 21, no. 3 (2004): 655. http://dx.doi.org/10.1364/josab.21.000655.
Full textDissertations / Theses on the topic "Vortex dipole"
Blackhurst, Tyler D. "Numerical Investigation of Internal Wave-Vortex Dipole Interactions." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3133.
Full textMulvaney, Daniel. "Numerical simulation of vortex dipole formation and evolution in stably stratified fluid." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/397199/.
Full textWhittle, Christo Peter. "A descriptive analysis of the genesis and translation of a dipole vortex from the Agulhas retroflection region." Master's thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/6445.
Full textAn anomalous leakage of Agulhas Current water into the south-east Atlantic Ocean, exhibiting a mushroom-like shape, was observed during routine observations of A VHRR satellite imagery in early December 1996. The development of this anomaly was followed on the sea surface temperature (SST) imagery and it was tentatively identified as a consequence of filament interaction between the Agulhas retroflection and an occluding Agulhas ring. This interpretation prompted a cruise onboard the FR.S Africana with the objective of conducting a hydrographic survey of the Agulhas ring and the associated filament near Cape Town. A descriptive analysis, gleaned from A VHRR satellite imagery and in situ data, of the hydrographic characteristics of a vortex dipole, surveyed during this cruise, is presented in this thesis. An analysis of water mass properties and geostrophic flow patterns determined that an Agulhas ring and a cyclonic eddy, containing Benguela Current water in its core, constituted a dipole vortex in the south-eastern Atlantic Ocean. During the period of the hydrographic survey, the secondary vortex exhibited an anticlockwise rotation of 8. 6°/day around the Agulhas ring A warm filament, originating from the western Agulhas Bank, was entrained between the two counter-rotating eddies, thus resulting in the mixing of Agulhas Bank water into the South Atlantic Ocean. Satellite altimetry and A VHRR imagery were used to "backtrack" the vortex dipole to its origin at the Agulhas retroflectiOn. By combining interpretations from the altimetry and A VHRR imagery, it was possible to describe the complex interactions the dipole displayed with the retroflection and the Agulhas Bank as it franslated in a north-westerly direction. The mushroom configuration, identified earlier on SST imagery, betrayed the presence of an adjacent pair of circulatory features of opposing spm. As the dipole translated northward, it interacted with the Agulhas Bank and the cyclone was strained, becoming a filament as it was forced between the Agulhas ring and the Agulhas Bank. West of Cape Town the dipole was re-established when the cyclone redeveloped, changing the orientation of the dipole so that a filament was drawn directly from the Agulhas Bank.
Nicholas, Patrick Taylor. "An experimental study of the development and growth rate of short-wave instabilities on a vortex dipole." Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486613.
Full textWang, Shuguang. "Gravity waves from vortex dipoles and jets." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2875.
Full textJaouani, Nassim. "Modelling of installation effects on the tonal noise radiated by counter-rotating open rotors." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC002.
Full textLes hélices contrarotatives constituent une alternative possible aux turboréacteurs pour les avions moyens- courriers. Réduisant significativement la consommation de carburant et les émissions de gaz à effet de serre, ils peuvent néanmoins conduire à un rayonnement sonore accru de par l'absence de carénage. Prédire correctement le rayonnement sonore de telles motorisations est donc indispensable pour réduire les mécanismes sources propres au moteur isolé ou assurer une solution d'installation acoustique optimale. Un tel objectif est abordé dans cette thèse en deux temps. Dans un premier temps, l’étude vise à prédire le bruit tonal rayonné par la première hélice d'un moteur monté à l'arrière du fuselage (configuration dite en pousseur), en considérant les effets du sillage du pylône supportant le moteur et de l'écoulement moyen. Partant du formalisme de Ffowcs Williams & Hawkings, trois sources sonores sont identifiées à cet effet. La charge instationnaire, tout d'abord, est calculée en s'appuyant sur une méthodologie similaire à celle utilisée pour la prédiction du bruit d'interaction de sillages entre les deux rotors. Le déficit de vitesse dans le sillage du mât est décomposé localement en rafales bidimensionnelles dans un repère attaché au rotor amont. La portance instationnaire induite par chaque rafale sur un segment de pale est calculée en utilisant une fonction de réponse analytique linéarisée considérant une géométrie réaliste. Deuxième contribution, la charge stationnaire est évaluée au moyen d'un logiciel s'appuyant sur la théorie de la ligne portante mais également via des simulations numériques pour différentes surfaces sources de référence. Enfin, le bruit d'épaisseur associé au déplacement du volume de la pale est inclus dans l'analyse à partir de la formulation d'Isom. D'après les hypothèses de l'acoustique linéaire, toutes ces sources modélisées comme des dipôles acoustiques tournant dans une atmosphère uniforme en mouvement sont ensuite sommées pour calculer le bruit en champ lointain. L'ensemble de la méthodologie est comparé à des données d'essai et des prédictions d'un logiciel de référence. Une étude paramétrique considérant plusieurs positionnements du pylône et des configurations avec soufflage est effectuée afin de bien mettre en évidence les contributions relatives des trois sources sonores. Dans un deuxième temps, le bruit d'interaction de sillages étant reconnu comme la contribution majoritaire en configuration isolée, sa modélisation est complétée en introduisant la dynamique du tourbillon se développant au voisinage du bord d'attaque du rotor aval. Une méthodologie semi-analytique est développée pour déterminer un tourbillon attaché au-dessus d'une plaque plane plongée dans un écoulement uniforme avec incidence. Appliquée au cas d'une pale aval traversant le sillage du rotor amont, elle fournit une première estimation de la contribution sonore du tourbillon
Pigeau, Benjamin. "Magnetic vortex dynamics nanostructures." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00779597.
Full textFellows, Jonathan Michael. "Realization of a striped superfluid with ultracold dipolar bosons : phase competition, symmetry enhancement and vortex softening." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4205/.
Full textSilva, Maria das Gra?as Dias da. "Efeitos da intera??o dipolar na nuclea??o de v?rtices em nano-cilindros ferromagn?ticos." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br:8080/jspui/handle/123456789/16635.
Full textConselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
The effect of confinement on the magnetic structure of vortices of dipolar coupled ferromagnetic nanoelements is an issue of current interest, not only for academic reasons, but also for the potential impact in a number of promising applications. Most applications, such as nano-oscillators for wireless data transmission, benefit from the possibility of tailoring the vortex core magnetic pattern. We report a theoretical study of vortex nucleation in pairs of coaxial iron and Permalloy cylinders, with diameters ranging from 21nm to 150nm, and 12nm and 21nm thicknesses, separated by a non-magnetic layer. 12nm thick iron and Permalloy isolated (single) cylinders do not hold a vortex, and 21nm isolated cylinders hold a vortex. Our results indicate that one may tailor the magnetic structure of the vortices, and the relative chirality, by selecting the thickness of the non-magnetic spacer and the values of the cylinders diameters and thicknesses. Also, the dipolar interaction may induce vortex formation in pairs of 12nm thick nanocylinders and inhibit the formation of vortices in pairs of 21nm thick nanocylinders. These new phases are formed according to the value of the distance between the cylinderes. Furthermore, we show that the preparation route may control relative chirality and polarity of the vortex pair. For instance: by saturating a pair of Fe 81nm diameter, 21nm thickness cylinders, along the crystalline anisotropy direction, a pair of 36nm core diameter vortices, with same chirality and polarity is prepared. By saturating along the perpendicular direction, one prepares a 30nm diameter core vortex pair, with opposite chirality and opposite polarity. We also present a theoretical discussion of the impact of vortices on the thermal hysteresis of a pair of interface biased elliptical iron nanoelements, separated by an ultrathin nonmagnetic insulating layer. We have found that iron nanoelements exchange coupled to a noncompensated NiO substrate, display thermal hysteresis at room temperature, well below the iron Curie temperature. The thermal hysteresis consists in different sequences of magnetic states in the heating and cooling branches of a thermal loop, and originates in the thermal reduction of the interface field, and on the rearrangements of the magnetic structure at high temperatures, 5 produce by the strong dipolar coupling. The width of the thermal hysteresis varies from 500 K to 100 K for lateral dimensions of 125 nm x 65 nm and 145 nm x 65 nm. We focus on the thermal effects on two particular states: the antiparallel state, which has, at low temperatures, the interface biased nanoelement with the magnetization aligned with the interface field and the second nanoelement aligned opposite to the interface field; and in the parallel state, which has both nanoelements with the magnetization aligned with the interface field at low temperatures. We show that the dipolar interaction leads to enhanced thermal stability of the antiparallel state, and reduces the thermal stability of the parallel state. These states are the key phases in the application of pairs of ferromagnetic nanoelements, separated by a thin insulating layer, for tunneling magnetic memory cells. We have found that for a pair of 125nm x 65nm nanoelements, separated by 1.1nm, and low temperature interface field strength of 5.88kOe, the low temperature state (T = 100K) consists of a pair of nearly parallel buckle-states. This low temperature phase is kept with minor changes up to T= 249 K when the magnetization is reduced to 50% of the low temperature value due to nucleation of a vortex centered around the middle of the free surface nanoelement. By further increasing the temperature, there is another small change in the magnetization due to vortex motion. Apart from minor changes in the vortex position, the high temperature vortex state remains stable, in the cooling branch, down to low temperatures. We note that wide loop thermal hysteresis may pose limits on the design of tunneling magnetic memory cells
Os efeitos de confinamento e o forte acoplamento dipolar na estrutura de v?rtices de nano-elementos ferromagn?ticos ? um tema de interesse atual, n?o apenas pelo valor puramente acad?mico, mas tamb?m pelo impacto em grande n?mero de dispositivos da ?rea de spintr?nica. Muitos dispositivos, como nano-osciladores para transmiss?o de dados sem fio, podem tirar grande proveito da possibilidade de controlar o padr?o magn?tico do n?cleo do v?rtice magn?tico. Relatamos um estudo te?rico da nuclea??o de v?rtices em um par de cilindros coaxiais de ferro e de Permalloy, com di?metros desde 21nm at? 150nm e espessuras de 12nm e de 21nm, separados por uma fina camada n?o-magn?tica. Cilindros isolados de ferro e Permalloy com espessura de 12nm n?o permitem a forma??o de v?rtices, enquanto que cilindros de espessura de 21nm possuem v?rtices quando isolados em reman?ncia. Nossos resultados indicam que ? poss?vel controlar a estrutura magn?tica dos v?rtices, bem como a chiralidade e polaridade relativa dos dois v?rtices, pela escolha apropriada dos valores dos di?metros e da separa??o dos dois cilindros ferromagn?ticos. Dependendo do valor da separa??o entre os cilindros, a intera??o dipolar pode induzir a forma??o de v?rtices em pares de cilindros de espessura de 12nm e inibir a forma??o de v?rtices em pares de cilindros de 21nm de espessura. Al?m disso, mostramos que a rota de prepara??o do estado magn?tico em campo nulo, pode ser usada para determinar a chiralidade e polaridade relativa dos dois v?rtices. Por exemplo: partindo da satura??o da magnetiza??o de um par de cilindros de ferro com di?metro de 81nm e espessura de 21nm, na dire??o do eixo f?cil da anisotropia uniaxial do ferro, resulta um par de v?rtices com n?cleo de 36nm, mesma chiralidade e mesma polaridade. Partindo do estado saturado em uma dire??o no plano e perpendicular ao eixo de anisotropia uniaxial, resulta um par de v?rtices com n?cleo de 30nm de di?metro, com chiralidade e polaridade opostas. Relatamos tamb?m um estudo te?rico do impacto de v?rtices magn?ticos na histerese t?rmica de um par de nanoelementos el?pticos de ferro, de 10nm de espessura, separados por um espa?ador n?o-magn?tico e acoplados com um substrato antiferromagn?tico por energia de 3 troca. Nossos resultados indicam que h? histerese t?rmica em temperatura ambiente (muito menor do que a temperatura de Curie do ferro), se o substrato for uma superf?cie n?o compensada de NiO. A histerese t?rmica consiste na diferen?a da sequ?ncia de estados magn?ticos nos ramos de aquecimento e resfriamento de um ciclo t?rmico, e se origina na redu??o do valor do campo de interface em altas temperaturas, e na reestrutura??o das fases magn?ticas impostas pela intera??o dipolar forte entre os dois nanoelementos de ferro. A largura da histerese t?rmica varia entre 500K ? 100K para dimens?es laterais de 125nm x 65nm e 145nm x 65nm. Focamos nos ciclos t?rmicos de dois estados especiais: o estado antiparalelo, com o nanoelmento em contato com o substrato alinhado na dire??o do campo de interface e o outro nanoelemento alinhado em dire??o oposta; e o estado paralelo em que os dois nanoelementos est?o alinhados com o campo de interface em temperaturas baixas. Esses s?o os dois estados magn?ticos b?sicos de c?lulas de mem?rias magn?ticas de tunelamento. Mostramos que a intera??o dipolar confere estabilidade t?rmica ao estado antiparalelo e reduz a estabilidade t?rmica do estado paralelo. Al?m disso, nossos resultados indicam que um par de cilindros com dimens?es de 125nm x 65nm, separados por 1.1nm, com campo de interface de 5.88kOe em temperatura de 100K, est? no estado paralelo. Essa fase se mant?m at? 249K, quando h? uma redu??o de 50% da magnetiza??o devido ? nuclea??o de um v?rtice no nanoelemento com superf?cie livre. Pequenas varia??es da magnetiza??o, devidas ao movimento do v?rtice, s?o encontradas no ramo de aquecimento, at? 600K. O estado encontrado em 600K se mant?m ao longo do ramo de resfriamento, com pequenas mudan?as na posi??o do v?rtice. A exist?ncia de histerese t?rmica pode ser um s?rio limite de viabilidade de mem?rias magn?ticas de tunelamento
Hamadeh, Abbass. "Synchronization of spin trasnsfer nano-oscillators." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112262/document.
Full textSpin transfer nano-Oscillators (STNOs) are nanoscale devices capable of generating high frequency microwave signals through spin momentum transfer. Although they offer decisive advantages compared to existing technology (spectral agility, integrability, etc.), their emitted power and spectral purity are quite poor. In view of their applications, a promising strategy to improve the coherence and increase the emitted microwave power of these devices is to mutually synchronize several of them. A first step is to understand the synchronization of a single STNO to an external source. For this, we have studied a circular nanopillar of diameter 200~nm patterned from a Cu60|Py15|Cu10|Py4|Au25 stack, where thicknesses are in nm. In the saturated state (bias magnetic field > 0.8 T), we have identified the auto-Oscillating mode and its coupling to an external source by using a magnetic resonance force microscope (MRFM). Only the uniform microwave field applied perpendicularly to the bias field is efficient to synchronize the STNO because it shares the spatial symmetry of the auto-Oscillation mode, in contrast to the microwave current passing through the device. The same sample was then studied under low perpendicular magnetic field, with the two magnetic layers in the vortex state. In this case, it is possible to excite a highly coherent mode (F/∆F>15000) with a linewidth below 100 kHz. By analyzing the harmonic content of the spectrum, we have determined that the non-Linear amplitude-Phase coupling of the excited mode is almost vanishing, which explains the high spectral purity observed. Moreover, the oscillation frequency can still be widely tuned thanks to the Oersted field created by the dc current. We have also shown that the synchronization of this mode to a microwave field source is very robust, the generation linewidth decreasing by more than five orders of magnitude compared to the autonomous regime. From these findings we conclude that the magneto-Dipolar interaction is promising to achieve mutual coupling of vortex based STNOs, the dipolar field from a neighboring oscillator playing the role of the microwave source. We have thus experimentally measured a system composed of two STNOs laterally separated by 100 nm. By varying the different configurations of vortex polarities, we have observed the mutual synchronization of these two oscillators
Books on the topic "Vortex dipole"
Ono, T. Spin-transfer torque in nonuniform magnetic structures. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0023.
Full textBook chapters on the topic "Vortex dipole"
Sharma, Manoj Kumar, Joby Joseph, and Paramasivam Senthilkumaran. "Fractional Vortex Dipole Spatial Filtering." In Fringe 2013. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36359-7_46.
Full textVoropayev, Sergey I., and Yakov D. Afanasyev. "Vortex dipole interactions in a stratified fluid." In Vortex Structures in a Stratified Fluid. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-2859-7_5.
Full textVivanco, Francisco, and Francisco Melo. "Vortex-dipole surface wave interactions in deep water." In Nonlinear Phenomena and Complex Systems. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2149-7_26.
Full textCoutsias, E. A., J. P. Lynov, A. H. Nielsen, M. Nielsen, J. Juul Rasmussen, and B. Stenum. "Vortex Dipoles Colliding with Curved Walls." In NATO ASI Series. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1609-9_7.
Full textZavala Sansón, Luis, and Ana C. Barbosa Aguiar. "Dipolar Vortex in a Rotating System." In Experimental and Theoretical Advances in Fluid Dynamics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17958-7_47.
Full textNewton, Paul K., and Houman Shokraneh. "Vortex Dipole Coordinates on the Sphere." In Vortex Dominated Flows. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812703439_0010.
Full textG. Abrahamyan, Martin. "Vortices in Rotating and Gravitating Gas Disk and in a Protoplanetary Disk." In Vortex Dynamics Theories and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92028.
Full textPerez-Garcia, Ismael, Alejandro Aguilar-Sierra, and Jaime Hernández. "Interaction of Tropical Cyclones with a Dipole Vortex." In Vortex Structures in Fluid Dynamic Problems. InTech, 2017. http://dx.doi.org/10.5772/65953.
Full textLi, Xin, Henk F. Arnoldus, and Zhangjin Xu. "Vortices and Singularities in Electric Dipole Radiation near an Interface." In Vortex Dynamics and Optical Vortices. InTech, 2017. http://dx.doi.org/10.5772/66459.
Full textChen, Y. N., and R. Y. Qian. "THE DIPOLE-LIKE FLOW FIELD AS A CONTROLLING MECHANISM FOR SHEDDING OF KARMAN VORTEX." In Frontiers of Fluid Mechanics. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-036232-8.50100-6.
Full textConference papers on the topic "Vortex dipole"
Sharma, Varun, A. Aadhi, and G. K. Samanta. "Tunable, vortex dipole doubly resonant optical parametric oscillator." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086583.
Full textZivkov, Eugene, Sean D. Peterson, and Serhiy Yarusevych. "Poster: Vortex Dipole Impacting a Semi-Infinite Rigid Plate." In 67th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2014. http://dx.doi.org/10.1103/aps.dfd.2014.gfm.p0018.
Full textHassan, M. Haj, B. Sievert, A. Rennings та D. Erni. "Generation of Vortex Waves Using Crossed 2λ-Dipole Antennas". У 2021 15th European Conference on Antennas and Propagation (EuCAP). IEEE, 2021. http://dx.doi.org/10.23919/eucap51087.2021.9411239.
Full textHaldar, A., and A. Adeyeye. "Control of vortex chirality in Ni80Fe20 dots using dipole coupled nanomagnets." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157670.
Full textmishra, Bal Krishan, and Pradipta kumar panigrahi. "Video: Starting vortex, wall jet, periodic vortex and dipole generated by a dielectric barrier discharge plasma actuator in quiescent air." In 70th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2017. http://dx.doi.org/10.1103/aps.dfd.2017.gfm.v0055.
Full textManela, A. "Effects of Non-Linear Eddy-Airfoil Interaction on the Acoustic Radiation of a Thin Wing." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70217.
Full textSharma, Varun, A. Aadhi, and G. K. Samanta. "Direct generation of tunable optical vortex dipole beams using a Gaussian beam pumped optical parametric oscillator." In Frontiers in Optics. OSA, 2017. http://dx.doi.org/10.1364/fio.2017.fw2b.2.
Full textArik, Mehmet, and Yogen Utturkar. "Vortex Dynamics of Synthetic Jets: A Computational and Experimental Investigation." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23099.
Full textTanaka, Daisuke, Shungo Harajiri, David L. Andrews, and Kayn A. Forbes. "Discrete dipole approximation simulation of optical vortex excited plasmonic properties of a partially capped core-shell nanostructure." In Complex Light and Optical Forces XV, edited by David L. Andrews, Enrique J. Galvez, and Halina Rubinsztein-Dunlop. SPIE, 2021. http://dx.doi.org/10.1117/12.2583976.
Full textElkin, Dmitry, Dmitry Elkin, Andrey Zatsepin, and Andrey Zatsepin. "LABORATORY STUDIES OF THE OF EDDY FORMATION IN ROTATING AND NON-ROTATING FLUID DUE TO SPATIALLY NON-UNIFORM WIND FORCING." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b43175a0331.
Full text