Academic literature on the topic 'Vortex dipole'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vortex dipole.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vortex dipole"

1

Voropayev, S. I., and Ya D. Afanasyev. "Two-dimensional vortex-dipole interactions in a stratified fluid." Journal of Fluid Mechanics 236 (March 1992): 665–89. http://dx.doi.org/10.1017/s0022112092001575.

Full text
Abstract:
Planar motion produced when a viscous fluid is forced from an initial state of rest is studied. We consider a vortex dipole produced by the action of a point force (Cantwell 1986), and a vortex quadrupole produced by the action of two equal forces of opposite direction. We also present results from an experimental investigation into the dynamics of the interactions between vortex dipoles as well as between vortex dipoles and a vertical wall in a stratified fluid. Theoretical consideration reveals that the dynamics of two-dimensional vortex-dipole interactions are determined by two main governing parameters: the dipolar intensity of the vorticity distribution (momentum) and the quadrupolar intensity of the vorticity distribution of the flow. We document details of different basic types of interactions and present a physical interpretation of the results obtained in terms of vortex multipoles: dipoles, quadrupoles and their combinations.
APA, Harvard, Vancouver, ISO, and other styles
2

Tchieu, Andrew A., Eva Kanso, and Paul K. Newton. "The finite-dipole dynamical system." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2146 (2012): 3006–26. http://dx.doi.org/10.1098/rspa.2012.0119.

Full text
Abstract:
The notion of a finite dipole is introduced as a pair of equal and opposite strength point vortices (i.e. a vortex dipole) separated by a finite distance. Equations of motion for N finite dipoles interacting in an unbounded inviscid fluid are derived from the modified interaction of 2 N independent vortices subject to the constraint that the inter-vortex spacing of each constrained dipole, ℓ, remains constant. In the absence of all other dipoles and background flow, a single dipole moves in a straight line along the perpendicular bisector of the line segment joining the two point vortices comprising the dipole, with a self-induced velocity inversely proportional to ℓ. When more than one dipole is present, the velocity of the dipole centre is the sum of the self-induced velocity and the average of the induced velocities on each vortex comprising the pair due to all the other dipoles. Each dipole orients in the direction of shear gradient based on the difference in velocities on each of the two vortices in the pair. Several numerical experiments are shown to illustrate the interactions between two and three dipoles in abreast and tandem configurations. We also show that equilibria (multi-poles) can form as a result of the interactions, and we study the stability of polygonal equilibria, showing that the N =3 case is linearly stable, whereas the N >3 case is linearly unstable.
APA, Harvard, Vancouver, ISO, and other styles
3

Muraki, David J., and Chris Snyder. "Vortex Dipoles for Surface Quasigeostrophic Models." Journal of the Atmospheric Sciences 64, no. 8 (2007): 2961–67. http://dx.doi.org/10.1175/jas3958.1.

Full text
Abstract:
A new class of exact vortex dipole solutions is derived for surface quasigeostrophic (sQG) models. The solutions extend the two-dimensional barotropic modon to fully three-dimensional, continuously stratified flow and are a simple model of localized jets on the tropopause. In addition to the basic sQG dipole, dipole structures exist for a layer of uniform potential vorticity between two rigid boundaries and for a dipole in the presence of uniform background vertical shear and horizontal potential temperature gradient. In the former case, the solution approaches the barotropic Lamb dipole in the limit of a layer that is shallow relative to the Rossby depth based on the dipole’s radius. In the latter case, dipoles that are bounded in the far field must propagate counter to the phase speed of the linear edge waves associated with the surface temperature gradient.
APA, Harvard, Vancouver, ISO, and other styles
4

Arnoldus, Henk F., and John T. Foley. "The dipole vortex." Optics Communications 231, no. 1-6 (2004): 115–28. http://dx.doi.org/10.1016/j.optcom.2003.12.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sokolovskiy, Mikhail A., Xavier J. Carton, and Boris N. Filyushkin. "Mathematical Modeling of Vortex Interaction Using a Three-Layer Quasigeostrophic Model. Part 1: Point-Vortex Approach." Mathematics 8, no. 8 (2020): 1228. http://dx.doi.org/10.3390/math8081228.

Full text
Abstract:
The theory of point vortices is used to explain the interaction of a surface vortex with subsurface vortices in the framework of a three-layer quasigeostrophic model. Theory and numerical experiments are used to calculate the interaction between one surface and one subsurface vortex. Then, the configuration with one surface vortex and two subsurface vortices of equal and opposite vorticities (a subsurface vortex dipole) is considered. Numerical experiments show that the self-propelling dipole can either be captured by the surface vortex, move in its vicinity, or finally be completely ejected on an unbounded trajectory. Asymmetric dipoles make loop-like motions and remain in the vicinity of the surface vortex. This model can help interpret the motions of Lagrangian floats at various depths in the ocean.
APA, Harvard, Vancouver, ISO, and other styles
6

Snyder, Chris, David J. Muraki, Riwal Plougonven, and Fuqing Zhang. "Inertia–Gravity Waves Generated within a Dipole Vortex." Journal of the Atmospheric Sciences 64, no. 12 (2007): 4417–31. http://dx.doi.org/10.1175/2007jas2351.1.

Full text
Abstract:
Abstract Vortex dipoles provide a simple representation of localized atmospheric jets. Numerical simulations of a synoptic-scale dipole in surface potential temperature are considered in a rotating, stratified fluid with approximately uniform potential vorticity. Following an initial period of adjustment, the dipole propagates along a slightly curved trajectory at a nearly steady rate and with a nearly fixed structure for more than 50 days. Downstream from the jet maximum, the flow also contains smaller-scale, upward-propagating inertia–gravity waves that are embedded within and stationary relative to the dipole. The waves form elongated bows along the leading edge of the dipole. Consistent with propagation in horizontal deformation and vertical shear, the waves’ horizontal scale shrinks and the vertical slope varies as they approach the leading stagnation point in the dipole’s flow. Because the waves persist for tens of days despite explicit dissipation in the numerical model that would otherwise damp the waves on a time scale of a few hours, they must be inherent features of the dipole itself, rather than remnants of imbalances in the initial conditions. The wave amplitude varies with the strength of the dipole, with waves becoming obvious once the maximum vertical vorticity in the dipole is roughly half the Coriolis parameter. Possible mechanisms for the wave generation are spontaneous wave emission and the instability of the underlying balanced dipole.
APA, Harvard, Vancouver, ISO, and other styles
7

Pallàs-Sanz, Enric, and Álvaro Viúdez. "Three-Dimensional Ageostrophic Motion in Mesoscale Vortex Dipoles." Journal of Physical Oceanography 37, no. 1 (2007): 84–105. http://dx.doi.org/10.1175/jpo2978.1.

Full text
Abstract:
Abstract The three-dimensional motion of mesoscale baroclinic dipoles is simulated using a nonhydrostatic Boussinesq numerical model. The initial conditions are two ellipsoidal vortices of positive and negative potential vorticity anomalies. The flow is moderately ageostrophic with a maximum absolute Rossby number equal to 0.71. The trajectory of the dipole is related to the maximum potential vorticity anomaly and size of the vortices. Three cases are considered depending on the curvature of the dipole trajectory: negative, close to zero, and positive. The ageostrophic flow strongly depends on the distance between the ellipsoidal vortices d0. For small d0 the vortices move steadily as a compact dipole, and the vertical velocity w has an octupolar three-dimensional pattern. The horizontal ageostrophic velocity is due to the advective acceleration of the flow, particularly the centripetal acceleration. The speed acceleration is only relatively important at the rear and front parts of the dipole axis, where the flow curvature is small but where the flow confluence and diffluence are, respectively, large. The geostrophy is maximal at the dipole center, on the dipole axis, where both curvature and speed acceleration are minimal. As d0 increases, the dipole self-propagating velocity and the extreme values of |w| decrease, and vortex oscillations highly distort the octupolar pattern of w. In all cases, as is typical of balanced mesoscale geophysical flows, the vertical velocity is related to the advection of vertical vorticity by the horizontal shear velocity uhz · ∇hζ.
APA, Harvard, Vancouver, ISO, and other styles
8

Chérubin, L., X. Carton, and D. G. Dritschel. "Vortex Dipole Formation by Baroclinic Instability of Boundary Currents." Journal of Physical Oceanography 37, no. 6 (2007): 1661–77. http://dx.doi.org/10.1175/jpo3079.1.

Full text
Abstract:
Abstract In situ data of the Mediterranean Water undercurrents and eddies south of Portugal indicate that the undercurrents have a tubelike structure in potential vorticity and that dipole formation can occur when the lower undercurrent extends seaward below an offshore upper countercurrent. A two-layer quasigeostrophic model is used to determine the dynamical conditions under which dipole formation is possible. With piecewise-constant potential vorticity, the flow exhibits two linear modes of instability comparable to those found in the Phillips model with topography. Weakly nonlinear analysis and fully nonlinear simulations of the flow evolution agree on the regimes of either finite-amplitude perturbation saturation, corresponding to filamentation, or amplification, corresponding to vortex or dipole formation. This latter regime is more specifically studied: vortex dipole formation and ejection from the coast is obtained for long waves, with opposite-signed but similar amplitude layer potential vorticities. A simple point vortex model reproduces this phenomenon under the same conditions. It is then shown that dipole formation occurs for minimal wave dispersion, and hence for weak horizontal velocity shears. As observed at sea, dipoles are formed when the lower potential vorticity core extends seaward below a countercurrent.
APA, Harvard, Vancouver, ISO, and other styles
9

Arnoldus, Henk F., Xin Li, and Zhangjin Xu. "The giant dipole vortex." Journal of Modern Optics 63, no. 11 (2015): 1068–72. http://dx.doi.org/10.1080/09500340.2015.1120897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roux, Filippus S. "Canonical vortex dipole dynamics." Journal of the Optical Society of America B 21, no. 3 (2004): 655. http://dx.doi.org/10.1364/josab.21.000655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Vortex dipole"

1

Blackhurst, Tyler D. "Numerical Investigation of Internal Wave-Vortex Dipole Interactions." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3133.

Full text
Abstract:
Three-dimensional linear ray theory is used to investigate internal waves interacting with a Lamb-Chaplygin pancake vortex dipole. These interactions involve waves propagating in the same (co-propagating) and opposite (counter-propagating) horizontal directions as the dipole translation. Co-propagating internal waves in the vertical symmetry plane between the vortices of the dipole can approach critical levels where the wave energy is absorbed by the dipole or where the waves are overturned and possibly break. As wave breaking cannot be simulated with this linear model, changes in wave steepness are calculated to aid in estimating the onset of breaking. Counter-propagating internal waves in the vertical symmetry plane can experience horizontal and vertical reflections, including turning points similar to waves in two-dimensional steady shear. Wave capture is also a possible effect of either type of interaction, depending on initial wave properties and positioning relative to the vortex dipole. Away from the vertical symmetry plane, a spanwise converging (focusing) and diverging (defocusing) of wave energy is observed in co- and counter-propagating interactions as symmetric off-center rays interact with the dipole's individual vortices. Some off-center rays experience multiple horizontal refractions similar to wave trapping.
APA, Harvard, Vancouver, ISO, and other styles
2

Mulvaney, Daniel. "Numerical simulation of vortex dipole formation and evolution in stably stratified fluid." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/397199/.

Full text
Abstract:
Direct numerical simulation has been used to study how axisymmetric vertical flow structures evolve whilst propagating horizontally in both homogeneous fluid and in fluid with a linear stable density stratification in the vertical direction. The structures studied were initially toroidal vortex rings and impulsive jets formed from a brief, horizontal injection of fluid into a quiescent domain. Previous experimental studies have demonstrated that when these initially axisymmetric structures are allowed to evolve under the influence of stable stratification, acceleration due to buoyancy acts to suppress vertical displacement of fluid particles, eventually reducing the flow to a pair of contra-rotating, planar vortices, commonly referred to as a vortex dipole. The numerical simulations documented in this thesis demonstrate the process by which the initially axisymmetric structures are transformed into late time dipoles in a stratified fluid, with the stages of this transformation categorised both through visual changes in the flow field as well as characteristic variations in kinetic energy and buoyancy variance histories that are inaccessible to the experimental work, thus allowing the energetics and vorticity fields of these flows to be directly correlated for the first time. Additionally, it has been demonstrated that while different means of imparting horizontal momentum to the fluid through an initial solution or different profiles of momentum injection may generate distinct vorticity fields at the early time, the energetics, scaling behaviours and agreement with theoretical models appear universal across the late time dipoles formed from these cases, which has not been addressed directly in previous literature.
APA, Harvard, Vancouver, ISO, and other styles
3

Whittle, Christo Peter. "A descriptive analysis of the genesis and translation of a dipole vortex from the Agulhas retroflection region." Master's thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/6445.

Full text
Abstract:
Bibliography: leaves 111-126.
An anomalous leakage of Agulhas Current water into the south-east Atlantic Ocean, exhibiting a mushroom-like shape, was observed during routine observations of A VHRR satellite imagery in early December 1996. The development of this anomaly was followed on the sea surface temperature (SST) imagery and it was tentatively identified as a consequence of filament interaction between the Agulhas retroflection and an occluding Agulhas ring. This interpretation prompted a cruise onboard the FR.S Africana with the objective of conducting a hydrographic survey of the Agulhas ring and the associated filament near Cape Town. A descriptive analysis, gleaned from A VHRR satellite imagery and in situ data, of the hydrographic characteristics of a vortex dipole, surveyed during this cruise, is presented in this thesis. An analysis of water mass properties and geostrophic flow patterns determined that an Agulhas ring and a cyclonic eddy, containing Benguela Current water in its core, constituted a dipole vortex in the south-eastern Atlantic Ocean. During the period of the hydrographic survey, the secondary vortex exhibited an anticlockwise rotation of 8. 6°/day around the Agulhas ring A warm filament, originating from the western Agulhas Bank, was entrained between the two counter-rotating eddies, thus resulting in the mixing of Agulhas Bank water into the South Atlantic Ocean. Satellite altimetry and A VHRR imagery were used to "backtrack" the vortex dipole to its origin at the Agulhas retroflectiOn. By combining interpretations from the altimetry and A VHRR imagery, it was possible to describe the complex interactions the dipole displayed with the retroflection and the Agulhas Bank as it franslated in a north-westerly direction. The mushroom configuration, identified earlier on SST imagery, betrayed the presence of an adjacent pair of circulatory features of opposing spm. As the dipole translated northward, it interacted with the Agulhas Bank and the cyclone was strained, becoming a filament as it was forced between the Agulhas ring and the Agulhas Bank. West of Cape Town the dipole was re-established when the cyclone redeveloped, changing the orientation of the dipole so that a filament was drawn directly from the Agulhas Bank.
APA, Harvard, Vancouver, ISO, and other styles
4

Nicholas, Patrick Taylor. "An experimental study of the development and growth rate of short-wave instabilities on a vortex dipole." Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486613.

Full text
Abstract:
Aircraft wakes ar~ dominated by a pair of strong counter-rotating vortices that give rise to the well known 'wake hazard' wherein an aircraft encountering the wake may be subjected to severe forces and moments. Eventually, naturally occurring instabilities grow and cause the breakdown of the wake vortices. The purpose of this current study is to gain a further understanding of instabilities which are supported by and develop in counter-rotating vortex pairs (vortex dipoles). Particularly, it is of importance to try to ascertain under which conditions such instabilities develop and grow and whether it is possible to promote their occurrence by means that could bOe practically implemented on an aircraft. Also ofinterest is whether there are conditions under which such instabilities may not occur. This research is mainly of an experimental nature in which the studies are conducted using water as a medium. A rig has been designed and built to generate a pair of counter rotating vortices in a water tank. The vortices are generated by rotating two flat plates submerged in the water. As the plates rotate, the fluid boundary layer rolls off of the plate edges and thus generates a vortex. The plates are controlled via a stepper motor and code written in LabView. Vortex strength, r, core radius, a, and separation distance between the vortex pair, h, can be controlled by rotating the plates at various angular velocities and though various angular displacements. The rig described above generates vortices with no axial velocity, besides those which occur due to end effects. In order to compare the behaviour of vortices with axial velocity to those without, experiments have also been conducted on a delta wing which was towed through a large (8m long) water tank. The vortices have been characterised by computing a velocity field from experimental data derived using the PlY technique. Subsequent to this, the vortex characterisation parameters, circulation, r, core radius, a, and separation distance, b, were extracted by means of a least squares fit to a Lamb-Oseen vortex profile. In order to observe instabilities which may occur, the colunmar vortex centre line was mapped by means of flow visualisation using hydrogen bubbles as markers. A new data processing algorithm has been developed to extract frequencies and amplitudes of the 'wave' like vortex centre line disturbance from the flow visualisation and has provided a new insight into this phenomenon. A full discussion of the accuracy of the techniques used is given in the thesis. The results presented are for vortices with Rer (where Rer = r/v) ranging between 2000 and 10000, core radius, a, ranging between 5mm and 15mm and the ratio of core radius to separation distance, alb, ranging between 0.15 and 0.3.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Shuguang. "Gravity waves from vortex dipoles and jets." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jaouani, Nassim. "Modelling of installation effects on the tonal noise radiated by counter-rotating open rotors." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC002.

Full text
Abstract:
The Counter-Rotating Open Rotors (CROR) are identified as a possible alternative to turbofan engines for middle-range aircrafts. Providing significant fuel savings and reducing the green-house gas emissions, they may lead however to an increased noise radiation due to the absence of nacelle shielding. To properly predict the acoustic radiation of such systems is then mandatory both to reduce the source mechanisms of the isolated engine and to offer an optimal noise installation solution. Such an objective is tackled in the present thesis in two steps. In a first part, the research aims at predicting the tonal noise radiated from the first propeller of CROR mounted on the rear fuselage by means of a pylon (pusher configuration), considering both the pylon-wake and the uniform ow effects. From the Ffowcs Williams & Hawkings' formalism, three noise sources are identified. First the unsteady loading is computed using a similar procedure to the one used for the rotor-rotor wake interaction noise prediction. The velocity deficit in the pylon wake is locally expanded in two-dimensional Fourier gusts in a reference frame attached to the front rotor. The unsteady lift induced by each gust on a blade segment is calculated using a linearized analytical response function that accounts for a realistic geometry. The steady loading is the second source contribution and is evaluated using both a software based on the lifting-line theory and some numerical simulations for different reference source surfaces. Finally the thickness noise due to the blade volume displacement is included in the analysis using Isom's formulation. From the linear acoustic assumptions, all these sources modelled as equivalent acoustic dipoles rotating in a uniformly moving atmosphere are then summed to calculate the far-field noise. The whole methodology is assessed against wind-tunnel test data and reference software predictions. A parametric study considering several pylon positionings and pylon-wake configurations with blowing is performed in order to emphasize the relative contribution of the three noise sources. Secondly, the rotor- rotor wake interaction noise being recognized as the most significant contribution in isolated configuration, its modelling is completed by introducing the dynamics of the vortex occurring near the rear-rotor leading edge. A semi-analytical methodology is developed to determine a vortex attached over a at plate embedded in a uniform ow with incidence. Applied to the case of a rear blade going through a front-rotor wake, it provides a first estimate of the noise contribution of the vortex
Les hélices contrarotatives constituent une alternative possible aux turboréacteurs pour les avions moyens- courriers. Réduisant significativement la consommation de carburant et les émissions de gaz à effet de serre, ils peuvent néanmoins conduire à un rayonnement sonore accru de par l'absence de carénage. Prédire correctement le rayonnement sonore de telles motorisations est donc indispensable pour réduire les mécanismes sources propres au moteur isolé ou assurer une solution d'installation acoustique optimale. Un tel objectif est abordé dans cette thèse en deux temps. Dans un premier temps, l’étude vise à prédire le bruit tonal rayonné par la première hélice d'un moteur monté à l'arrière du fuselage (configuration dite en pousseur), en considérant les effets du sillage du pylône supportant le moteur et de l'écoulement moyen. Partant du formalisme de Ffowcs Williams & Hawkings, trois sources sonores sont identifiées à cet effet. La charge instationnaire, tout d'abord, est calculée en s'appuyant sur une méthodologie similaire à celle utilisée pour la prédiction du bruit d'interaction de sillages entre les deux rotors. Le déficit de vitesse dans le sillage du mât est décomposé localement en rafales bidimensionnelles dans un repère attaché au rotor amont. La portance instationnaire induite par chaque rafale sur un segment de pale est calculée en utilisant une fonction de réponse analytique linéarisée considérant une géométrie réaliste. Deuxième contribution, la charge stationnaire est évaluée au moyen d'un logiciel s'appuyant sur la théorie de la ligne portante mais également via des simulations numériques pour différentes surfaces sources de référence. Enfin, le bruit d'épaisseur associé au déplacement du volume de la pale est inclus dans l'analyse à partir de la formulation d'Isom. D'après les hypothèses de l'acoustique linéaire, toutes ces sources modélisées comme des dipôles acoustiques tournant dans une atmosphère uniforme en mouvement sont ensuite sommées pour calculer le bruit en champ lointain. L'ensemble de la méthodologie est comparé à des données d'essai et des prédictions d'un logiciel de référence. Une étude paramétrique considérant plusieurs positionnements du pylône et des configurations avec soufflage est effectuée afin de bien mettre en évidence les contributions relatives des trois sources sonores. Dans un deuxième temps, le bruit d'interaction de sillages étant reconnu comme la contribution majoritaire en configuration isolée, sa modélisation est complétée en introduisant la dynamique du tourbillon se développant au voisinage du bord d'attaque du rotor aval. Une méthodologie semi-analytique est développée pour déterminer un tourbillon attaché au-dessus d'une plaque plane plongée dans un écoulement uniforme avec incidence. Appliquée au cas d'une pale aval traversant le sillage du rotor amont, elle fournit une première estimation de la contribution sonore du tourbillon
APA, Harvard, Vancouver, ISO, and other styles
7

Pigeau, Benjamin. "Magnetic vortex dynamics nanostructures." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00779597.

Full text
Abstract:
This thesis is aimed at studying experimentally the magnetisationdynamics of discs in the sub-micron range made of low dampingferromagnetic materials. For this purpose, an extremely sensitivetechnique has been used: the ferromagnetic resonance force microscopy. A firstpart is devoted to the measurement of the eigenmodes of NiMnSb discstaken in their remanent state: a vortex. The influence of aperpendicular magnetic field on the spin wave modes in the vortex state willbe detailled. Then, the coupling mechanism between the vortex core andthese spin wave, eventually leading to its dynamical reversal, ishighlighted. A theoretical framework of the vortex state is presented,allowing to model the experimental observations. In a second part,the problem of the collective magnetisation dynamics in several FeVdiscs is addressed. Measurements of the collective modes coupled bythe dynamical dipolar interaction are presented, associated with atheoretical modelisation which explain quantitatively the experimentalresults.
APA, Harvard, Vancouver, ISO, and other styles
8

Fellows, Jonathan Michael. "Realization of a striped superfluid with ultracold dipolar bosons : phase competition, symmetry enhancement and vortex softening." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4205/.

Full text
Abstract:
In this thesis we develop a model of ultracold dipolar bosons in a highly anisotropic quasi-one-dimensional optical lattice. We will see that the model is identical to one describing quasi-one-dimensional superconductivity in condensed matter systems giving rise to the possibility of using this ultracold atoms system as an analogue simulator of interesting electronic systems. In investigating the properties of this model we find a rich phase diagram containing density wave, superfluid, and possibly supersolid phases, accessible by tuning the optical lattice parameters and the alignment of the dipole moments. An important property of this model turns out to be the existence of an enhanced symmetry at the self dual point where the density wave and superfluid orders are maximally competing. At this point the Berezinskii-Kosterlitz-Thouless transition temperature of either phase must necessarily vanish to zero due to the Hohenberg-Mermin-Wagner theorem. Inspired by this model we go on to study a more general system in two dimensions with O(M) x O(2) symmetry which has an enhanced symmetry point of O(M + 2) symmetry. The BKT transition in the O(2) sector is mediated by vortex excitations, but these must somehow disappear as the high symmetry point is approached. Using both a variational argument adapting the standard BKT argument, and a more rigorous RG analysis we show that the size of the vortex cores in such a system must diverge as 1/\(\sqrt{\Delta}\) where \(\Delta\) measures the distance from the high symmetry point, and further that the BKT transition temperature must vanish as 1/ln(1/\(\Delta\)).
APA, Harvard, Vancouver, ISO, and other styles
9

Silva, Maria das Gra?as Dias da. "Efeitos da intera??o dipolar na nuclea??o de v?rtices em nano-cilindros ferromagn?ticos." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br:8080/jspui/handle/123456789/16635.

Full text
Abstract:
Made available in DSpace on 2014-12-17T15:15:01Z (GMT). No. of bitstreams: 1 MariaGDS_TESE.pdf: 10253325 bytes, checksum: a11a4b9893c49f999607f55737b5aded (MD5) Previous issue date: 2014-07-28
Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
The effect of confinement on the magnetic structure of vortices of dipolar coupled ferromagnetic nanoelements is an issue of current interest, not only for academic reasons, but also for the potential impact in a number of promising applications. Most applications, such as nano-oscillators for wireless data transmission, benefit from the possibility of tailoring the vortex core magnetic pattern. We report a theoretical study of vortex nucleation in pairs of coaxial iron and Permalloy cylinders, with diameters ranging from 21nm to 150nm, and 12nm and 21nm thicknesses, separated by a non-magnetic layer. 12nm thick iron and Permalloy isolated (single) cylinders do not hold a vortex, and 21nm isolated cylinders hold a vortex. Our results indicate that one may tailor the magnetic structure of the vortices, and the relative chirality, by selecting the thickness of the non-magnetic spacer and the values of the cylinders diameters and thicknesses. Also, the dipolar interaction may induce vortex formation in pairs of 12nm thick nanocylinders and inhibit the formation of vortices in pairs of 21nm thick nanocylinders. These new phases are formed according to the value of the distance between the cylinderes. Furthermore, we show that the preparation route may control relative chirality and polarity of the vortex pair. For instance: by saturating a pair of Fe 81nm diameter, 21nm thickness cylinders, along the crystalline anisotropy direction, a pair of 36nm core diameter vortices, with same chirality and polarity is prepared. By saturating along the perpendicular direction, one prepares a 30nm diameter core vortex pair, with opposite chirality and opposite polarity. We also present a theoretical discussion of the impact of vortices on the thermal hysteresis of a pair of interface biased elliptical iron nanoelements, separated by an ultrathin nonmagnetic insulating layer. We have found that iron nanoelements exchange coupled to a noncompensated NiO substrate, display thermal hysteresis at room temperature, well below the iron Curie temperature. The thermal hysteresis consists in different sequences of magnetic states in the heating and cooling branches of a thermal loop, and originates in the thermal reduction of the interface field, and on the rearrangements of the magnetic structure at high temperatures, 5 produce by the strong dipolar coupling. The width of the thermal hysteresis varies from 500 K to 100 K for lateral dimensions of 125 nm x 65 nm and 145 nm x 65 nm. We focus on the thermal effects on two particular states: the antiparallel state, which has, at low temperatures, the interface biased nanoelement with the magnetization aligned with the interface field and the second nanoelement aligned opposite to the interface field; and in the parallel state, which has both nanoelements with the magnetization aligned with the interface field at low temperatures. We show that the dipolar interaction leads to enhanced thermal stability of the antiparallel state, and reduces the thermal stability of the parallel state. These states are the key phases in the application of pairs of ferromagnetic nanoelements, separated by a thin insulating layer, for tunneling magnetic memory cells. We have found that for a pair of 125nm x 65nm nanoelements, separated by 1.1nm, and low temperature interface field strength of 5.88kOe, the low temperature state (T = 100K) consists of a pair of nearly parallel buckle-states. This low temperature phase is kept with minor changes up to T= 249 K when the magnetization is reduced to 50% of the low temperature value due to nucleation of a vortex centered around the middle of the free surface nanoelement. By further increasing the temperature, there is another small change in the magnetization due to vortex motion. Apart from minor changes in the vortex position, the high temperature vortex state remains stable, in the cooling branch, down to low temperatures. We note that wide loop thermal hysteresis may pose limits on the design of tunneling magnetic memory cells
Os efeitos de confinamento e o forte acoplamento dipolar na estrutura de v?rtices de nano-elementos ferromagn?ticos ? um tema de interesse atual, n?o apenas pelo valor puramente acad?mico, mas tamb?m pelo impacto em grande n?mero de dispositivos da ?rea de spintr?nica. Muitos dispositivos, como nano-osciladores para transmiss?o de dados sem fio, podem tirar grande proveito da possibilidade de controlar o padr?o magn?tico do n?cleo do v?rtice magn?tico. Relatamos um estudo te?rico da nuclea??o de v?rtices em um par de cilindros coaxiais de ferro e de Permalloy, com di?metros desde 21nm at? 150nm e espessuras de 12nm e de 21nm, separados por uma fina camada n?o-magn?tica. Cilindros isolados de ferro e Permalloy com espessura de 12nm n?o permitem a forma??o de v?rtices, enquanto que cilindros de espessura de 21nm possuem v?rtices quando isolados em reman?ncia. Nossos resultados indicam que ? poss?vel controlar a estrutura magn?tica dos v?rtices, bem como a chiralidade e polaridade relativa dos dois v?rtices, pela escolha apropriada dos valores dos di?metros e da separa??o dos dois cilindros ferromagn?ticos. Dependendo do valor da separa??o entre os cilindros, a intera??o dipolar pode induzir a forma??o de v?rtices em pares de cilindros de espessura de 12nm e inibir a forma??o de v?rtices em pares de cilindros de 21nm de espessura. Al?m disso, mostramos que a rota de prepara??o do estado magn?tico em campo nulo, pode ser usada para determinar a chiralidade e polaridade relativa dos dois v?rtices. Por exemplo: partindo da satura??o da magnetiza??o de um par de cilindros de ferro com di?metro de 81nm e espessura de 21nm, na dire??o do eixo f?cil da anisotropia uniaxial do ferro, resulta um par de v?rtices com n?cleo de 36nm, mesma chiralidade e mesma polaridade. Partindo do estado saturado em uma dire??o no plano e perpendicular ao eixo de anisotropia uniaxial, resulta um par de v?rtices com n?cleo de 30nm de di?metro, com chiralidade e polaridade opostas. Relatamos tamb?m um estudo te?rico do impacto de v?rtices magn?ticos na histerese t?rmica de um par de nanoelementos el?pticos de ferro, de 10nm de espessura, separados por um espa?ador n?o-magn?tico e acoplados com um substrato antiferromagn?tico por energia de 3 troca. Nossos resultados indicam que h? histerese t?rmica em temperatura ambiente (muito menor do que a temperatura de Curie do ferro), se o substrato for uma superf?cie n?o compensada de NiO. A histerese t?rmica consiste na diferen?a da sequ?ncia de estados magn?ticos nos ramos de aquecimento e resfriamento de um ciclo t?rmico, e se origina na redu??o do valor do campo de interface em altas temperaturas, e na reestrutura??o das fases magn?ticas impostas pela intera??o dipolar forte entre os dois nanoelementos de ferro. A largura da histerese t?rmica varia entre 500K ? 100K para dimens?es laterais de 125nm x 65nm e 145nm x 65nm. Focamos nos ciclos t?rmicos de dois estados especiais: o estado antiparalelo, com o nanoelmento em contato com o substrato alinhado na dire??o do campo de interface e o outro nanoelemento alinhado em dire??o oposta; e o estado paralelo em que os dois nanoelementos est?o alinhados com o campo de interface em temperaturas baixas. Esses s?o os dois estados magn?ticos b?sicos de c?lulas de mem?rias magn?ticas de tunelamento. Mostramos que a intera??o dipolar confere estabilidade t?rmica ao estado antiparalelo e reduz a estabilidade t?rmica do estado paralelo. Al?m disso, nossos resultados indicam que um par de cilindros com dimens?es de 125nm x 65nm, separados por 1.1nm, com campo de interface de 5.88kOe em temperatura de 100K, est? no estado paralelo. Essa fase se mant?m at? 249K, quando h? uma redu??o de 50% da magnetiza??o devido ? nuclea??o de um v?rtice no nanoelemento com superf?cie livre. Pequenas varia??es da magnetiza??o, devidas ao movimento do v?rtice, s?o encontradas no ramo de aquecimento, at? 600K. O estado encontrado em 600K se mant?m ao longo do ramo de resfriamento, com pequenas mudan?as na posi??o do v?rtice. A exist?ncia de histerese t?rmica pode ser um s?rio limite de viabilidade de mem?rias magn?ticas de tunelamento
APA, Harvard, Vancouver, ISO, and other styles
10

Hamadeh, Abbass. "Synchronization of spin trasnsfer nano-oscillators." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112262/document.

Full text
Abstract:
Les nano-Oscillateurs à transfert de spin (STNOs) sont des dispositifs capables d'émettre une onde hyperfréquence lorsqu'ils sont pompés par un courant polarisé grâce au couple de transfert de spin. Bien qu'ils offrent de nombreux avantages (agilité spectrale, intégrabilité, etc.) pour les applications, leur puissance d'émission et leur pureté spectrale sont en général faibles. Une stratégie pour améliorer ces propriétés est de synchroniser plusieurs oscillateurs entre eux. Une première étape est de comprendre la synchronisation d'un STNO unique à une source externe. Pour cela, nous avons étudié une vanne de spin Cu60|NiFe15|Cu10|NiFe4| Au25 (épaisseurs en nm) de section circulaire de 200 nm. Dans l'état saturé perpendiculaire (champ appliqué > 0.8 T), nous avons déterminé la nature du mode qui auto-Oscille et son couplage à une source externe grâce à un microscope de force par résonance magnétique (MRFM). Seul un champ micro-Onde uniforme permet de synchroniser le mode oscillant de la couche fine car il possède la bonne symétrie spatiale, au contraire du courant micro-Onde traversant l'échantillon. Ce même échantillon a ensuite été étudié sous faible champ perpendiculaire, les deux couches magnétiques étant alors dans l'état vortex. Dans ce cas, il est possible d'exciter un mode de grande cohérence (F/ ∆F >15000) avec une largeur de raie inférieure à 100 kHz. En analysant le contenu harmonique du spectre, nous avons déterminé que le couplage non-Linéaire amplitude-Phase du mode excité est quasi nul, ce qui explique la grande pureté spectrale observée, et qu'en parallèle, la fréquence d'oscillation reste ajustable sur une grande gamme grâce au champ d'Oersted créé par le courant injecté. De plus, la synchronisation de ce mode à une source de champ micro-Onde est très robuste, la largeur de raie mesurée diminuant de plus de cinq ordres de grandeur par rapport au régime autonome. Nous concluons de cette étude que le couplage magnéto-Dipolaire entre STNOs à base de vortex est très prometteur pour obtenir une synchronisation mutuelle, le champ dipolaire rayonné par un STNO sur ses voisins jouant alors le rôle de la source micro-Onde. Nous sommes donc passés à l'étape suivante, à savoir la mesure expérimentale de deux STNOs similaires séparés latéralement de 100 nm. En jouant sur les différentes configurations de polarités des vortex, nous avons réussi à observer la synchronisation mutuelle de ces deux oscillateurs
Spin transfer nano-Oscillators (STNOs) are nanoscale devices capable of generating high frequency microwave signals through spin momentum transfer. Although they offer decisive advantages compared to existing technology (spectral agility, integrability, etc.), their emitted power and spectral purity are quite poor. In view of their applications, a promising strategy to improve the coherence and increase the emitted microwave power of these devices is to mutually synchronize several of them. A first step is to understand the synchronization of a single STNO to an external source. For this, we have studied a circular nanopillar of diameter 200~nm patterned from a Cu60|Py15|Cu10|Py4|Au25 stack, where thicknesses are in nm. In the saturated state (bias magnetic field > 0.8 T), we have identified the auto-Oscillating mode and its coupling to an external source by using a magnetic resonance force microscope (MRFM). Only the uniform microwave field applied perpendicularly to the bias field is efficient to synchronize the STNO because it shares the spatial symmetry of the auto-Oscillation mode, in contrast to the microwave current passing through the device. The same sample was then studied under low perpendicular magnetic field, with the two magnetic layers in the vortex state. In this case, it is possible to excite a highly coherent mode (F/∆F>15000) with a linewidth below 100 kHz. By analyzing the harmonic content of the spectrum, we have determined that the non-Linear amplitude-Phase coupling of the excited mode is almost vanishing, which explains the high spectral purity observed. Moreover, the oscillation frequency can still be widely tuned thanks to the Oersted field created by the dc current. We have also shown that the synchronization of this mode to a microwave field source is very robust, the generation linewidth decreasing by more than five orders of magnitude compared to the autonomous regime. From these findings we conclude that the magneto-Dipolar interaction is promising to achieve mutual coupling of vortex based STNOs, the dipolar field from a neighboring oscillator playing the role of the microwave source. We have thus experimentally measured a system composed of two STNOs laterally separated by 100 nm. By varying the different configurations of vortex polarities, we have observed the mutual synchronization of these two oscillators
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Vortex dipole"

1

Ono, T. Spin-transfer torque in nonuniform magnetic structures. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0023.

Full text
Abstract:
This chapter defines a magnetic domain wall (DW) as the transition region where the direction of magnetic moments gradually change between two neighbouring domains. It has been pointed out that ferromagnetic materials are not necessarily magnetized to saturation in the absence of an external magnetic field. Instead, they have magnetic domains, within each of which magnetic moments align. The formation of the magnetic domains is energetically favourable because this structure can lower the magnetostatic energy originating from the dipole–dipole interaction. A magnetic vortex realized in a ferromagnetic disk is a typical example of nonuniform magnetic structure. In very small ferromagnetic systems, where a curling spin configuration has been proposed to occur in place of domains, the formation of DWs is not energetically favored.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Vortex dipole"

1

Sharma, Manoj Kumar, Joby Joseph, and Paramasivam Senthilkumaran. "Fractional Vortex Dipole Spatial Filtering." In Fringe 2013. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36359-7_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Voropayev, Sergey I., and Yakov D. Afanasyev. "Vortex dipole interactions in a stratified fluid." In Vortex Structures in a Stratified Fluid. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-2859-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vivanco, Francisco, and Francisco Melo. "Vortex-dipole surface wave interactions in deep water." In Nonlinear Phenomena and Complex Systems. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2149-7_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coutsias, E. A., J. P. Lynov, A. H. Nielsen, M. Nielsen, J. Juul Rasmussen, and B. Stenum. "Vortex Dipoles Colliding with Curved Walls." In NATO ASI Series. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1609-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zavala Sansón, Luis, and Ana C. Barbosa Aguiar. "Dipolar Vortex in a Rotating System." In Experimental and Theoretical Advances in Fluid Dynamics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17958-7_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Newton, Paul K., and Houman Shokraneh. "Vortex Dipole Coordinates on the Sphere." In Vortex Dominated Flows. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812703439_0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

G. Abrahamyan, Martin. "Vortices in Rotating and Gravitating Gas Disk and in a Protoplanetary Disk." In Vortex Dynamics Theories and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92028.

Full text
Abstract:
Nonlinear equations describing dynamics of 2D vortices are very important in the physics of the ocean and the atmosphere and in plasma physics and Astrophysics. Here linear and nonlinear 2D vortex perturbations of gravitating and light gaseous disks are examined in the geostrophic and post-geostrophic approximations. In the frame of geostrophic approximation, it is shown that the vortex with positive velocity circulation is characterized by low pressure with negative excess mass density of substance. Vortex with negative circulation has higher pressure and is a relatively tight formation with the positive excess mass density. In the post-geostrophic approximation, structures of the isolated monopole and dipole vortex (modons) solutions of these equations are studied. Two types of mass distributions in dipole vortices are found. The first type of modon is characterized by an asymmetrically positioned single circular densification and one rarefaction. The second type is characterized by two asymmetrically positioned densifications and two rarefactions, where the second densification-rarefaction pair is crescent shaped. The constant density contours of a dipole vortex in a light gas disk coincide with the streamlines of the vortex; in a self-gravitating disk, the constant density contours in the vortex do not coincide with streamlines. Possible manifestations of monopole and dipole vortices in astrophysical objects are discussed. Vortices play decisive role in the process of planet formation. Gas in a protoplanetary disk practically moves on sub-Keplerian speeds. Rigid particles, under the action of a head wind drags, lose the angular momentum and energy. As a result, the ~10 cm to meter-sized particles drift to the central star for hundreds of years. Long-lived vortical structures in gas disk are a possible way to concentrate the ~10 cm to meter sized particles and to grow up them in planetesimal. Here the effect of anticyclonic Burgers vortex on formation of planetesimals in a protoplanetary dusty disc in local approach is also considered. It is shown that the Burgers vortex with homogeneously rotating kernel and a converging radial stream of substance can effectively accumulate in its nuclear area the meter-sized rigid particles of total mass ∼1028 g for characteristic time ∼106 year.
APA, Harvard, Vancouver, ISO, and other styles
8

Perez-Garcia, Ismael, Alejandro Aguilar-Sierra, and Jaime Hernández. "Interaction of Tropical Cyclones with a Dipole Vortex." In Vortex Structures in Fluid Dynamic Problems. InTech, 2017. http://dx.doi.org/10.5772/65953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Xin, Henk F. Arnoldus, and Zhangjin Xu. "Vortices and Singularities in Electric Dipole Radiation near an Interface." In Vortex Dynamics and Optical Vortices. InTech, 2017. http://dx.doi.org/10.5772/66459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Y. N., and R. Y. Qian. "THE DIPOLE-LIKE FLOW FIELD AS A CONTROLLING MECHANISM FOR SHEDDING OF KARMAN VORTEX." In Frontiers of Fluid Mechanics. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-036232-8.50100-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Vortex dipole"

1

Sharma, Varun, A. Aadhi, and G. K. Samanta. "Tunable, vortex dipole doubly resonant optical parametric oscillator." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zivkov, Eugene, Sean D. Peterson, and Serhiy Yarusevych. "Poster: Vortex Dipole Impacting a Semi-Infinite Rigid Plate." In 67th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2014. http://dx.doi.org/10.1103/aps.dfd.2014.gfm.p0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hassan, M. Haj, B. Sievert, A. Rennings та D. Erni. "Generation of Vortex Waves Using Crossed 2λ-Dipole Antennas". У 2021 15th European Conference on Antennas and Propagation (EuCAP). IEEE, 2021. http://dx.doi.org/10.23919/eucap51087.2021.9411239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haldar, A., and A. Adeyeye. "Control of vortex chirality in Ni80Fe20 dots using dipole coupled nanomagnets." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

mishra, Bal Krishan, and Pradipta kumar panigrahi. "Video: Starting vortex, wall jet, periodic vortex and dipole generated by a dielectric barrier discharge plasma actuator in quiescent air." In 70th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2017. http://dx.doi.org/10.1103/aps.dfd.2017.gfm.v0055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manela, A. "Effects of Non-Linear Eddy-Airfoil Interaction on the Acoustic Radiation of a Thin Wing." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70217.

Full text
Abstract:
We study the combined effect of boundary animation (small-amplitude heaving) and incoming flow unsteadiness (incident vorticity) on the vibroacoustic signature of a thin rigid airfoil in low-Mach high-Reynolds number flow. The nonlinear dynamical problem for the vortex trajectory is studied using potential flow theory. The dynamical description then serves as an effective source term to evaluate the far-field sound using Powell-Howe’s analogy. The results identify the fluid-airfoil system as a dipole-type source, and demonstrate the significance of non-linear eddy-airfoil interaction on the acoustic radiation. At low heaving frequencies (ωa/U < 1, where ω denotes the heaving frequency, 2a the airfoil chord, and U the mean stream speed), the effect of heaving is minor, and the acoustic field can be approximated by neglecting airfoil motion. However, at ωa/U > 1, heaving becomes dominant, radiating sound through an “airfoil motion” dipole (oriented along the direction of heaving) and airfoil-induced oscillations in the vortex trajectory. In contrast with the periodic “airfoil motion” signal, the non-periodic incident vortex sound has a component along the airfoil chord, which becomes significant when the vortex passes close to the airfoil. The work is suggested as a preliminary tool to examine the acoustic radiation during flapping flight at unsteady flow conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

Sharma, Varun, A. Aadhi, and G. K. Samanta. "Direct generation of tunable optical vortex dipole beams using a Gaussian beam pumped optical parametric oscillator." In Frontiers in Optics. OSA, 2017. http://dx.doi.org/10.1364/fio.2017.fw2b.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arik, Mehmet, and Yogen Utturkar. "Vortex Dynamics of Synthetic Jets: A Computational and Experimental Investigation." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23099.

Full text
Abstract:
Seamless advancements in electronics industry resulted in high performance computing. These innovations lead to smaller electronics systems with higher heat fluxes than ever. However, shrinking nature of real estate for thermal management has created a need for more effective and compact cooling solutions. Novel cooling techniques have been of interest to solve the demand. One such technology that functions with the principle of creating vortex rings is called synthetic jets. The jets are meso-scale devices operating as zero-net-mass-flux principle by ingesting and ejection of high velocity working fluid from a single opening. These devices produce periodic jet streams, which may have peak velocities over 20 times greater than conventional, comparable size fan velocities. Those jets enhance heat transfer in both natural and forced convection significantly over bare and extended surfaces. Recognizing the heat transfer physics over surfaces require a fundamental understanding of the flow physics caused by micro fluid motion. A comprehensive computational and experimental study has been performed to understand the flow physics of a synthetic jet. Computational study has been performed via Fluent commercial software, while the experimental study has been performed by using Laser Doppler Anemometry. Since synthetic jets are typical sine-wave excited between 20 and 60 V range, they have an orifice peak velocity of over 60 m/s, resulting in a Reynolds number of 2000. CFD predictions on the vortex dipole location fall within 10% of the experimental measurement uncertainty band.
APA, Harvard, Vancouver, ISO, and other styles
9

Tanaka, Daisuke, Shungo Harajiri, David L. Andrews, and Kayn A. Forbes. "Discrete dipole approximation simulation of optical vortex excited plasmonic properties of a partially capped core-shell nanostructure." In Complex Light and Optical Forces XV, edited by David L. Andrews, Enrique J. Galvez, and Halina Rubinsztein-Dunlop. SPIE, 2021. http://dx.doi.org/10.1117/12.2583976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elkin, Dmitry, Dmitry Elkin, Andrey Zatsepin, and Andrey Zatsepin. "LABORATORY STUDIES OF THE OF EDDY FORMATION IN ROTATING AND NON-ROTATING FLUID DUE TO SPATIALLY NON-UNIFORM WIND FORCING." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b43175a0331.

Full text
Abstract:
Laboratory investigation of eddy formation mechanism due to spatially non-uniform wind impact was fulfilled. Experiment was provided in a cylindrical and a square form tank filled with homogeneous or stratified fluid and displaced on a rotating platform. In the absence of the platform rotation, an impact of the single air jet lead to the formation of a symmetric vortex dipole structure that occupied the whole water area in the tank. In the presence of the platform rotation, a compact anticyclonic eddy was formed in a part of the dipole with anticyclonic vorticity, while in a part with cyclonic vorticity no any compact eddy was observed. The laboratory results were successfully compared with the field observation results fulfilled in the at the Black Sea coastal zone near Gelendzhik.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography