Journal articles on the topic 'Vortex-motion. Leading edges (Aerodynamics)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Vortex-motion. Leading edges (Aerodynamics).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Buzica, Andrei, Lisa Debschütz, Florian Knoth, and Christian Breitsamter. "Leading-Edge Roughness Affecting Diamond-Wing Aerodynamic Characteristics." Aerospace 5, no. 3 (September 19, 2018): 98. http://dx.doi.org/10.3390/aerospace5030098.
Full textZhao, Hong Yan, Peng Fei Zhang, and Yun Ma. "The Influence of the Flight Aerodynamic for Interactions of Wings and Body of the Honeybee." Applied Mechanics and Materials 670-671 (October 2014): 700–704. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.700.
Full textWillmott, Alexander P., Charles P. Ellington, and Adrian L. R. Thomas. "Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 352, no. 1351 (March 29, 1997): 303–16. http://dx.doi.org/10.1098/rstb.1997.0022.
Full textViswanath, P. R., and S. R. Patil. "Aerodynamic characteristics of delta wing–body combinations at high angles of attack." Aeronautical Journal 98, no. 975 (May 1994): 159–70. http://dx.doi.org/10.1017/s0001924000049848.
Full textSaputra, Do Young Byun, Yung Hwan Byun, and Hoon Cheol Park. "Experimental and Numerical Study on Flapping Wing Kinematics and Aerodynamics of Coleoptera." Key Engineering Materials 326-328 (December 2006): 175–78. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.175.
Full textLiu, H., C. P. Ellington, K. Kawachi, C. van den Berg, and A. P. Willmott. "A computational fluid dynamic study of hawkmoth hovering." Journal of Experimental Biology 201, no. 4 (February 15, 1998): 461–77. http://dx.doi.org/10.1242/jeb.201.4.461.
Full textLamar, J. "A career in vortices and edge forces." Aeronautical Journal 116, no. 1176 (February 2012): 101–52. http://dx.doi.org/10.1017/s0001924000006667.
Full textEllington, C. P. "The novel aerodynamics of insect flight: applications to micro-air vehicles." Journal of Experimental Biology 202, no. 23 (December 1, 1999): 3439–48. http://dx.doi.org/10.1242/jeb.202.23.3439.
Full textThielicke, William, and Eize J. Stamhuis. "The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale." Journal of Fluid Mechanics 768 (March 4, 2015): 240–60. http://dx.doi.org/10.1017/jfm.2015.71.
Full textHan, Jong-Seob, Jo Won Chang, and Jae-Hung Han. "The advance ratio effect on the lift augmentations of an insect-like flapping wing in forward flight." Journal of Fluid Mechanics 808 (November 3, 2016): 485–510. http://dx.doi.org/10.1017/jfm.2016.629.
Full textKawazoe, Hiromitsu, and Susumu Kato. "Effects of Leading Edge Separation Vortex of Flexible Structure Delta Wing on Its Aerodynamic Characteristics(Wing and Airfoil)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 583–89. http://dx.doi.org/10.1299/jsmeicjwsf.2005.583.
Full textBuzica, Andrei, and Christian Breitsamter. "Pulsed Blowing Interacting with a Leading-Edge Vortex." Aerospace 7, no. 1 (January 10, 2020): 4. http://dx.doi.org/10.3390/aerospace7010004.
Full textMcCune, J. E., and T. S. Tavares. "Perspective: Unsteady Wing Theory—The Ka´rma´n/Sears Legacy." Journal of Fluids Engineering 115, no. 4 (December 1, 1993): 548–60. http://dx.doi.org/10.1115/1.2910179.
Full textBensebaa, T., T. Jardin, S. Prothin, and N. Doue. "Rotor performance enhancement through blade surging." International Journal of Micro Air Vehicles 11 (January 2019): 175682931984427. http://dx.doi.org/10.1177/1756829319844275.
Full textXu, Min, and Mingjun Wei. "Using adjoint-based optimization to study kinematics and deformation of flapping wings." Journal of Fluid Mechanics 799 (June 21, 2016): 56–99. http://dx.doi.org/10.1017/jfm.2016.351.
Full textMuir, Rowan Eveline, Abel Arredondo-Galeana, and Ignazio Maria Viola. "The leading-edge vortex of swift wing-shaped delta wings." Royal Society Open Science 4, no. 8 (August 2017): 170077. http://dx.doi.org/10.1098/rsos.170077.
Full textHan, S., and R. J. Goldstein. "Influence of Blade Leading Edge Geometry on Turbine Endwall Heat (Mass) Transfer." Journal of Turbomachinery 128, no. 4 (February 1, 2005): 798–813. http://dx.doi.org/10.1115/1.2221326.
Full textBoyle, M. T., M. Simonds, and K. Poon. "A Comparison of Secondary Flow in a Vane Cascade and a Curved Duct." Journal of Turbomachinery 111, no. 4 (October 1, 1989): 530–36. http://dx.doi.org/10.1115/1.3262304.
Full textYang, Wen Qing, Bi Feng Song, Wen Ping Song, Zhan Ke Li, and Ya Feng Zhang. "Aerodynamic Mechanism Research of Flapping Flight." Advanced Materials Research 354-355 (October 2011): 674–78. http://dx.doi.org/10.4028/www.scientific.net/amr.354-355.674.
Full textvan den Berg, Coen, and Charles P. Ellington. "The three–dimensional leading–edge vortex of a ‘hovering’ model hawkmoth." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 352, no. 1351 (March 29, 1997): 329–40. http://dx.doi.org/10.1098/rstb.1997.0024.
Full textOnoue, Kyohei, and Kenneth S. Breuer. "Vortex formation and shedding from a cyber-physical pitching plate." Journal of Fluid Mechanics 793 (March 14, 2016): 229–47. http://dx.doi.org/10.1017/jfm.2016.134.
Full textLuckring, J. M. "The discovery and prediction of vortex flow aerodynamics." Aeronautical Journal 123, no. 1264 (June 2019): 729–804. http://dx.doi.org/10.1017/aer.2019.43.
Full textDickinson, M. H., and K. G. Gotz. "UNSTEADY AERODYNAMIC PERFORMANCE OF MODEL WINGS AT LOW REYNOLDS NUMBERS." Journal of Experimental Biology 174, no. 1 (January 1, 1993): 45–64. http://dx.doi.org/10.1242/jeb.174.1.45.
Full textKasim, K. A., P. Segard, S. Mat, S. Mansor, M. N. Dahalan, N. A. R. N. Mohd, and M. N. M. Nasir. "Effects of the Propeller Advance Ratio on Delta Wing UAV Leading Edge Vortex." International Journal of Automotive and Mechanical Engineering 16, no. 3 (October 3, 2019): 6958–70. http://dx.doi.org/10.15282/ijame.16.3.2019.10.0522.
Full textHoff, R. I., and G. B. Gratton. "Camera tracking and qualitative airflow assessment of a two-turn erect spin." Aeronautical Journal 116, no. 1179 (May 2012): 541–62. http://dx.doi.org/10.1017/s0001924000007028.
Full textUsherwood, James R., and Charles P. Ellington. "The aerodynamics of revolving wings I. Model hawkmoth wings." Journal of Experimental Biology 205, no. 11 (June 1, 2002): 1547–64. http://dx.doi.org/10.1242/jeb.205.11.1547.
Full textHan, Jong-Seob, and Christian Breitsamter. "Leading-Edge Vortex Characteristics of Low-Aspect-Ratio Sweptback Plates at Low Reynolds Number." Applied Sciences 11, no. 6 (March 10, 2021): 2450. http://dx.doi.org/10.3390/app11062450.
Full textWan, Hui, Haibo Dong, and Kuo Gai. "Computational investigation of cicada aerodynamics in forward flight." Journal of The Royal Society Interface 12, no. 102 (January 2015): 20141116. http://dx.doi.org/10.1098/rsif.2014.1116.
Full textHuang, Yuqi, James Venning, Mark C. Thompson, and John Sheridan. "Vortex separation and interaction in the wake of inclined trapezoidal plates." Journal of Fluid Mechanics 771 (April 20, 2015): 341–69. http://dx.doi.org/10.1017/jfm.2015.160.
Full textArifin, Muhamad Ridzuan, A. F. M. Yamin, A. S. Abdullah, M. F. Zakaryia, S. Shuib, and S. Suhaimi. "Evolution of the leading-edge vortex over a flapping wing mechanism." Journal of Mechanical Engineering and Sciences 14, no. 2 (June 23, 2020): 6888–94. http://dx.doi.org/10.15282/jmes.14.2.2020.27.0539.
Full textWood, Richard M., and David S. Miller. "Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows." Journal of Aircraft 22, no. 6 (June 1985): 479–85. http://dx.doi.org/10.2514/3.45152.
Full textChowdhury, Juhi, and Matthew J. Ringuette. "A simple vortex-loop-based model for unsteady rotating wings." Journal of Fluid Mechanics 880 (October 18, 2019): 1020–35. http://dx.doi.org/10.1017/jfm.2019.735.
Full textBaofeng, Tu, Zhang Kai, and Hu Jun. "Investigation on Performance of Compressor Cascade with Tubercle Leading Edge Blade." International Journal of Turbo & Jet-Engines 37, no. 3 (August 27, 2020): 295–303. http://dx.doi.org/10.1515/tjj-2019-0023.
Full textZhao, Zhuang, Hai Yuan Jiang, Hua Chang, and Jing Guo. "Dynamics and Control of a Flexible Flapping Wing Aircraft." Applied Mechanics and Materials 246-247 (December 2012): 537–42. http://dx.doi.org/10.4028/www.scientific.net/amm.246-247.537.
Full textValdez, M. F., B. Balachandran, and S. Preidikman. "Comparative study on analytical and computational aerodynamic models for flapping wings MAVs." Aeronautical Journal 124, no. 1280 (July 7, 2020): 1636–65. http://dx.doi.org/10.1017/aer.2020.45.
Full textRamesh, Kiran, Ashok Gopalarathnam, Kenneth Granlund, Michael V. Ol, and Jack R. Edwards. "Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding." Journal of Fluid Mechanics 751 (June 23, 2014): 500–538. http://dx.doi.org/10.1017/jfm.2014.297.
Full textJardin, T., A. Farcy, and L. David. "Three-dimensional effects in hovering flapping flight." Journal of Fluid Mechanics 702 (May 23, 2012): 102–25. http://dx.doi.org/10.1017/jfm.2012.163.
Full textAmeduri, Salvatore. "A SMA Based Morphing Leading Edge Architecture." Advanced Materials Research 1016 (August 2014): 383–88. http://dx.doi.org/10.4028/www.scientific.net/amr.1016.383.
Full textFerrier, L., M. Vezza, and H. Zare-Behtash. "Improving the aerodynamic performance of a cycloidal rotor through active compliant morphing." Aeronautical Journal 121, no. 1241 (May 11, 2017): 901–15. http://dx.doi.org/10.1017/aer.2017.34.
Full textPhillips, Nathan, Kevin Knowles, and Richard J. Bomphrey. "Petiolate wings: effects on the leading-edge vortex in flapping flight." Interface Focus 7, no. 1 (February 6, 2017): 20160084. http://dx.doi.org/10.1098/rsfs.2016.0084.
Full textZhang, Cheng Chun, Wen Qiang Wang, Lei Shi, Jing Wang, and Lu Quan Ren. "Experimental and Numerical Study on Aerodynamic Noise Reduction of Cylindrical Rod with Bionic Wavy Surface." Applied Mechanics and Materials 461 (November 2013): 690–701. http://dx.doi.org/10.4028/www.scientific.net/amm.461.690.
Full textPérez-Torró, Rafael, and Jae Wook Kim. "A large-eddy simulation on a deep-stalled aerofoil with a wavy leading edge." Journal of Fluid Mechanics 813 (January 17, 2017): 23–52. http://dx.doi.org/10.1017/jfm.2016.841.
Full textAvallone, Francesco, Damiano Casalino, and Daniele Ragni. "Impingement of a propeller-slipstream on a leading edge with a flow-permeable insert: A computational aeroacoustic study." International Journal of Aeroacoustics 17, no. 6-8 (July 28, 2018): 687–711. http://dx.doi.org/10.1177/1475472x18788961.
Full textNakata, Toshiyuki, and Hao Liu. "Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach." Proceedings of the Royal Society B: Biological Sciences 279, no. 1729 (August 10, 2011): 722–31. http://dx.doi.org/10.1098/rspb.2011.1023.
Full textYang, Dang Guo, Yong Hang Wu, Jin Min Liang, and Jun Liu. "An Investigation on Numerical Simulation Method for Aero-Acoustics Based on Acoustics Analogy." Applied Mechanics and Materials 444-445 (October 2013): 462–67. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.462.
Full textAshwin Kumar, B., P. Kumar, S. Das, and JK Prasad. "Effect of leading edge shapes on 81°/45° double-delta wing at low speeds." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232, no. 16 (August 10, 2017): 3100–3107. http://dx.doi.org/10.1177/0954410017724822.
Full textMa, Yi-yang, Qi-jun Zhao, and Guo-qing Zhao. "New combinational active control strategy for improving aerodynamic characteristics of airfoil and rotor." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, no. 4 (December 11, 2019): 977–96. http://dx.doi.org/10.1177/0954410019893193.
Full textHu, Y., H. L. Zhang, and C. Tan. "The effect of the aerofoil thickness on the performance of the MAV scale cycloidal rotor." Aeronautical Journal 119, no. 1213 (March 2015): 343–64. http://dx.doi.org/10.1017/s0001924000010502.
Full textLaneville, A., and P. Vittecoq. "Dynamic Stall: The Case of the Vertical Axis Wind Turbine." Journal of Solar Energy Engineering 108, no. 2 (May 1, 1986): 140–45. http://dx.doi.org/10.1115/1.3268081.
Full textGarmann, D. J., and M. R. Visbal. "Dynamics of revolving wings for various aspect ratios." Journal of Fluid Mechanics 748 (May 12, 2014): 932–56. http://dx.doi.org/10.1017/jfm.2014.212.
Full text