To see the other types of publications on this topic, follow the link: Vuv spectroscopy.

Journal articles on the topic 'Vuv spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Vuv spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Larsson, J. "VUV laser spectroscopy." Physica Scripta 49, no. 2 (1994): 173–79. http://dx.doi.org/10.1088/0031-8949/49/2/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, L. C., Masako Suto, and K. Y. Tang. "Quantitative VUV spectroscopy of Cl2." Journal of Chemical Physics 84, no. 10 (1986): 5277–83. http://dx.doi.org/10.1063/1.449937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wojtowicz, Andrzej J. "VUV spectroscopy of BaF2:Er." Optical Materials 31, no. 3 (2009): 474–78. http://dx.doi.org/10.1016/j.optmat.2007.09.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sivaraman, B., B. N. Raja Sekhar, N. C. Jones, S. V. Hoffmann, and N. J. Mason. "VUV spectroscopy of formamide ices." Chemical Physics Letters 554 (December 2012): 57–59. http://dx.doi.org/10.1016/j.cplett.2012.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LEWIS, B. R., S. T. GIBSON, K. G. H. BALDWIN, P. M. DOOLEY, and K. WARING. "COMPARATIVE VERY-HIGH-RESOLUTION VUV SPECTROSCOPY: LASER SPECTROSCOPY OF O2." Surface Review and Letters 09, no. 01 (2002): 31–38. http://dx.doi.org/10.1142/s0218625x02001690.

Full text
Abstract:
Despite their importance to the photochemistry of the terrestrial atmosphere, and many experimental studies, previous characterization of the Schumann–Runge (SR) bands of O 2, [Formula: see text] (1750–2050 Å) has been limited by poor experimental resolution. In addition, our understanding of the SR spectrum is incomplete, many rovibrational transitions in the perturbed region of the spectrum [B(v > 15)] remaining unassigned. We review new very-high-resolution measurements of the O 2 photoabsorption cross section in the SR bands. Tunable, narrow-bandwidth background vacuum-ultraviolet (VUV)
APA, Harvard, Vancouver, ISO, and other styles
6

Jones, D. J., R. H. French, H. Müllejans, S. Loughin, A. D. Dorneich, and P. F. Carcia. "Optical properties of AlN determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry data." Journal of Materials Research 14, no. 11 (1999): 4337–44. http://dx.doi.org/10.1557/jmr.1999.0587.

Full text
Abstract:
Precise and accurate knowledge of the optical properties of aluminum nitride (AlN) in the ultraviolet (UV) and visible (VIS) regions is important because of the increasing application of AlN in optical and electro-optical devices, including compact disks, phase shift lithography masks, and AlN/GaN multilayer devices. The interband optical properties in the vacuum ultraviolet (VUV) region of 6–44 eV have been investigated previously because they convey detailed information on the electronic structure and interatomic bonding of the material. In this work, we have combined spectroscopic ellipsome
APA, Harvard, Vancouver, ISO, and other styles
7

Kink, M., R. Kink, J. Maksimov, H. Niedrais, M. Selg, and P. Vaino. "VUV laser spectroscopy of gaseous xenon." Physica Scripta 45, no. 2 (1992): 79–82. http://dx.doi.org/10.1088/0031-8949/45/2/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wojtowicz, Andrzej J. "VUV spectroscopy of wide bandgap materials." Optical Materials 31, no. 12 (2009): 1772–76. http://dx.doi.org/10.1016/j.optmat.2008.12.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eden, S., P. Limão-Vieira, S. V. Hoffmann, and N. J. Mason. "VUV spectroscopy of CH3Cl and CH3I." Chemical Physics 331, no. 2-3 (2007): 232–44. http://dx.doi.org/10.1016/j.chemphys.2006.10.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kirm, M., M. True, S. Vielhauer, et al. "VUV spectroscopy of pure LiCaAlF6 crystals." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 537, no. 1-2 (2005): 291–94. http://dx.doi.org/10.1016/j.nima.2004.08.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dose, V., Th Fauster, and R. Schneider. "Improved resolution in VUV isochromat spectroscopy." Applied Physics A Solids and Surfaces 40, no. 4 (1986): 203–7. http://dx.doi.org/10.1007/bf00616595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cruse, Courtney A., Jingzhi Pu, and John V. Goodpaster. "Identifying Thermal Decomposition Products of Nitrate Ester Explosives Using Gas Chromatography–Vacuum Ultraviolet Spectroscopy: An Experimental and Computational Study." Applied Spectroscopy 74, no. 12 (2020): 1486–95. http://dx.doi.org/10.1177/0003702820915506.

Full text
Abstract:
Analysis of nitrate ester explosives (e.g., nitroglycerine) using gas chromatography–vacuum ultraviolet spectroscopy (GC–VUV) results in their thermal decomposition into nitric oxide, water, carbon monoxide, oxygen, and formaldehyde. These decomposition products exhibit highly structured spectra in the VUV that is not seen in larger molecules. Computational analysis using time-dependent density functional theory (TDDFT) was utilized to investigate the excited states and vibronic transitions of these decomposition products. The experimental and computational results are compared with those in p
APA, Harvard, Vancouver, ISO, and other styles
13

Meijerink, A., and R. T. Wegh. "VUV Spectroscopy of Lanthanides: Extending the Horizon." Materials Science Forum 315-317 (July 1999): 11–26. http://dx.doi.org/10.4028/www.scientific.net/msf.315-317.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mota, R., R. Parafita, M. J. P. Maneira, et al. "VUV spectroscopy of water under cellular conditions." Radiation Protection Dosimetry 122, no. 1-4 (2006): 66–71. http://dx.doi.org/10.1093/rpd/ncl388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Holtom, P. D., A. Dawes, R. J. Mukerji, et al. "VUV photoabsorption spectroscopy of sulfur dioxide ice." Phys. Chem. Chem. Phys. 8, no. 6 (2006): 714–18. http://dx.doi.org/10.1039/b513182k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

HATTA, Akimitsu. "VUV Emission Spectroscopy of CO Gas Discharge." Journal of Light & Visual Environment 29, no. 3 (2005): 79–84. http://dx.doi.org/10.2150/jlve.29.79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Adamchuk, V. K., S. L. Molodtsov, and G. V. Prudnikova. "VUV-spectroscopy of scattered electrons in insulators." Physica Scripta 41, no. 4 (1990): 526–29. http://dx.doi.org/10.1088/0031-8949/41/4/034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kuzmin, A., V. Pankratov, A. Kalinko, A. Kotlov, L. Shirmane, and A. I. Popov. "UV-VUV synchrotron radiation spectroscopy of NiWO4." Low Temperature Physics 42, no. 7 (2016): 543–46. http://dx.doi.org/10.1063/1.4959010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Terekhin, M. A., and V. N. Makhov. "Luminescence of CsTaF6 Studied by VUV Spectroscopy." Physics Procedia 76 (2015): 92–96. http://dx.doi.org/10.1016/j.phpro.2015.10.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Scacco, A., C. Marasca, U. M. Grassano, R. Capelletti, S. Prato, and N. Zema. "VUV spectroscopy of OH--doped LiF crystals." Journal of Physics: Condensed Matter 6, no. 38 (1994): 7813–22. http://dx.doi.org/10.1088/0953-8984/6/38/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ubachs, W., E. J. Salumbides, K. S. E. Eikema, N. de Oliveira, and L. Nahon. "Novel techniques in VUV high-resolution spectroscopy." Journal of Electron Spectroscopy and Related Phenomena 196 (October 2014): 159–64. http://dx.doi.org/10.1016/j.elspec.2013.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Luiten, O. J., H. G. C. Werij, M. W. Reynolds, I. D. Setija, T. W. Hijmans, and J. T. M. Walraven. "VUV spectroscopy of magnetically trapped atomic hydrogen." Applied Physics B Lasers and Optics 59, no. 3 (1994): 311–19. http://dx.doi.org/10.1007/bf01081399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Feldbach, Eduard, Viktor P. Denks, Marco Kirm, et al. "VUV and cathodoluminescence spectroscopy of 12CaO · 7Al2O3." Journal of Materials Science: Materials in Electronics 20, S1 (2008): 260–63. http://dx.doi.org/10.1007/s10854-008-9570-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hopkirk, A., J. A. Salthouse, R. W. P. White, J. C. Whitehead, and F. Winterbottom. "The VUV spectroscopy of deuterated hydrazine, N2D4." Chemical Physics Letters 188, no. 5-6 (1992): 399–404. http://dx.doi.org/10.1016/0009-2614(92)80837-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Seon, C. R., J. H. Hong, I. Song, et al. "VUV spectroscopy in impurity injection experiments at KSTAR using prototype ITER VUV spectrometer." Review of Scientific Instruments 88, no. 8 (2017): 083511. http://dx.doi.org/10.1063/1.4998970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hodgson, Alex, and Jack Cochran. "Vacuum Ultraviolet Spectroscopy as a New Tool for GC Analysis of Terpenes in Flavors and Fragrances." Journal of AOAC INTERNATIONAL 102, no. 2 (2019): 655–58. http://dx.doi.org/10.5740/jaoacint.18-0284.

Full text
Abstract:
Abstract Background: Traditional detectors such as flame ionization detection and MS have issues with coeluting isomers like terpenes; however, unique vacuum UV (VUV) absorbance spectra can be used to deliberately compress chromatography. Objective: Deconvolution capabilities under various run conditions of GC-MS and GC-VUV arecompared. Methods: A standard terpenes mix and tea tree essential oil were run on both GC-MS (63 and 14 min run times) and GC-VUV (22, 11, and 7 min run times). Results: The three GC-VUV methods showed good precision for10 terpenes, as well as with the 63 min GC-MS metho
APA, Harvard, Vancouver, ISO, and other styles
27

Yatsyna, Vasyl, Ranim Mallat, Tim Gorn, et al. "Competition between folded and extended structures of alanylalanine (Ala-Ala) in a molecular beam." Physical Chemistry Chemical Physics 21, no. 26 (2019): 14126–32. http://dx.doi.org/10.1039/c9cp00140a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

de Oliveira, Nelson, Denis Joyeux, Mourad Roudjane, et al. "The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL." Journal of Synchrotron Radiation 23, no. 4 (2016): 887–900. http://dx.doi.org/10.1107/s1600577516006135.

Full text
Abstract:
A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV–VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm−1on a large spectral window, ΔE/E= 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution
APA, Harvard, Vancouver, ISO, and other styles
29

Kim, Jinhong, and Sung-Jin Park. "In-Situ Photo-Dissociation and Polymerization of Carbon Disulfide with Vacuum Ultraviolet Microplasma Flat Lamp for Organic Thin Films." Applied Sciences 11, no. 6 (2021): 2597. http://dx.doi.org/10.3390/app11062597.

Full text
Abstract:
Vacuum UV (VUV) photo-dissociation for a liquid phase organic compound, carbon disulfide (CS2), has been investigated. 172 nm (7.2 eV) VUV photons from Xe2* excimers in a microcavity plasma lamp irradiated free-standing liquid droplets on Si substrate in each a nitrogen environment and an atmospheric air environment. Selective and rapid dissociation of CS2 into C-C, C-S or C-O-S based fragments was observed in the different gas environments during the reaction. Thin-layered polymeric microdeposites have been identified by characterization with a Scanning electron microscope (SEM), Energy dispe
APA, Harvard, Vancouver, ISO, and other styles
30

Leckey, Robert, and John Riley. "Photoelectron Spectroscopy of Solids ? VUV Band Structure Studies." Australian Journal of Physics 43, no. 5 (1990): 651. http://dx.doi.org/10.1071/ph900651.

Full text
Abstract:
The electronic band structure of solids, including states specific to the surface, may now be explored in very great detail by photoelectron spectroscopy. Variable energy photon sources (synchroton radiation sources) coupled with advanced angle resolving electron spectrometers permit access to emission from specific points within the complete Brillouin zone. The technique of band mapping has now reached a stage where the small k-dependent changes to individual valence bands due to the effects of introduced lattice strain can be observed, for example. The relative importance of emission from su
APA, Harvard, Vancouver, ISO, and other styles
31

UEDA, Kiyoshi. "Atomic and Molecular VUV Spectroscopy Using Synchrotron Radiation." Review of Laser Engineering 19, no. 11 (1991): 1089–98. http://dx.doi.org/10.2184/lsj.19.11_1089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lai, Kin-Fung, Wim Ubachs, Nelson De Oliveira, and Edcel J. Salumbides. "Fourier-Transform VUV Spectroscopy of 14,15N and 12,13C." Atoms 8, no. 3 (2020): 62. http://dx.doi.org/10.3390/atoms8030062.

Full text
Abstract:
Accurate Fourier-transform spectroscopic absorption measurements of vacuum ultraviolet transitions in atomic nitrogen and carbon were performed at the Soleil synchrotron. For 14N, transitions from the 2s22p34S3/2 ground state and from the 2s22p32P and 2D metastable states were determined in the 95–124 nm range at an accuracy of 0.025cm−1. The combination of these results with data from previous precision laser experiments in the vacuum ultraviolet range reveals an overall and consistent offset of −0.04 cm−1 from values reported in the NIST database. The splittings of the 2s22p34S3/2 – 2s2p44PJ
APA, Harvard, Vancouver, ISO, and other styles
33

Shapochkin, G. M., V. V. Mikhailin, S. P. Chernov, and D. N. Karimov. "VUV spectroscopy of Ce3+-doped Na0.4Lu0.6F2.2 single crystals." Moscow University Physics Bulletin 64, no. 2 (2009): 141–45. http://dx.doi.org/10.3103/s002713490902009x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pustovarov, V. A., V. L. Petrov, É. I. Zinin, M. Kirm, G. Tsimmerer, and B. V. Shul’gin. "Optical and luminescent VUV spectroscopy of La2Be2O5 crystals." Physics of the Solid State 42, no. 2 (2000): 253–56. http://dx.doi.org/10.1134/1.1131155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nunnemann, A., Th Prescher, M. Richer, et al. "VUV photoelectron spectroscopy of laser-excited atomic Ba." Journal of Physics B: Atomic and Molecular Physics 18, no. 11 (1985): L337—L341. http://dx.doi.org/10.1088/0022-3700/18/11/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Quang, V. X., N. N. Dat, V. P. Tuyen, et al. "VUV spectroscopy of lanthanide doped fluoride crystals K2YF5." Optical Materials 107 (September 2020): 110049. http://dx.doi.org/10.1016/j.optmat.2020.110049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Suave, R. N., and A. R. B. de Castro. "VUV reflectance spectroscopy study of Fe/Cu alloying." Journal of Electron Spectroscopy and Related Phenomena 101-103 (June 1999): 653–55. http://dx.doi.org/10.1016/s0368-2048(98)00330-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

True, M., M. Kirm, E. Negodine, S. Vielhauer, and G. Zimmerer. "VUV spectroscopy of Tm3+ and Mn2+ doped LiSrAlF6." Journal of Alloys and Compounds 374, no. 1-2 (2004): 36–39. http://dx.doi.org/10.1016/j.jallcom.2003.11.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mota, R., R. Parafita, A. Giuliani, et al. "Water VUV electronic state spectroscopy by synchrotron radiation." Chemical Physics Letters 416, no. 1-3 (2005): 152–59. http://dx.doi.org/10.1016/j.cplett.2005.09.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Folkmann, F., I. Lesteven-Vaïsse, A. Ben Sitel, M. Chantepie, and D. Lecler. "Time-differential VUV spectroscopy of argon recoil ions." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 31, no. 1-2 (1988): 246–52. http://dx.doi.org/10.1016/0168-583x(88)90423-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bel’skii, A. N., A. N. Vasil’ev, S. N. Ivanov, et al. "Optical and luminescent VUV spectroscopy using synchrotron radiation." Crystallography Reports 61, no. 6 (2016): 886–96. http://dx.doi.org/10.1134/s1063774516060043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Larsson, J., and S. Svanberg. "High-resolution VUV spectroscopy using pulsed laser sources." Applied Physics B Laser and Optics 59, no. 4 (1994): 433–36. http://dx.doi.org/10.1007/bf01081065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sheng, Liusi, Fei Qi, Hui Gao, Shuqin Yu, and Yunwu Zhang. "VUV threshold photoelectron spectroscopy of the C2H3Cl molecule." Chinese Science Bulletin 43, no. 1 (1998): 36–39. http://dx.doi.org/10.1007/bf02885508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tan, G., H. Fukuta, K. K. H. De Silva, et al. "Characterization of vacuum ultraviolet-irradiated surface modification of CoO(111) crystal by low-energy atom scattering spectroscopy." Journal of Vacuum Science & Technology A 40, no. 6 (2022): 063202. http://dx.doi.org/10.1116/6.0001971.

Full text
Abstract:
The surface of a CoO(111) single crystal was treated with vacuum ultraviolet (VUV) light at a wavelength of 172 nm without heat treatment. We studied the surface structural analysis of CoO(111) before and after VUV light irradiation in air using low-energy atom scattering spectroscopy. The primary beam was 3 keV-4He0, and backscattered 4He particles from Co atoms were detected using a microchannel plate detector. We compared the experimental spectra to simulation results, and the results demonstrated that the rock-salt CoO(111) surface was transformed to a spinel Co3O4(111) surface after VUV l
APA, Harvard, Vancouver, ISO, and other styles
45

Adachi, Shunsuke, and Toshinori Suzuki. "UV-Driven Harmonic Generation for Time-Resolved Photoelectron Spectroscopy of Polyatomic Molecules." Applied Sciences 8, no. 10 (2018): 1784. http://dx.doi.org/10.3390/app8101784.

Full text
Abstract:
A single-order harmonic pulse in the vacuum-ultraviolet (VUV) is highly desirable for time-resolved photoelectron spectroscopy (TRPES) of polyatomic molecules. A high-power 9th harmonic of a Ti:sapphire laser (hv = 14 eV) is obtained using a UV driving laser at 270 nm (the 3rd harmonic). We describe our recent efforts to develop VUV TRPES combined with UV-driven harmonic generation, and present a few representative results from our recent TRPES studies.
APA, Harvard, Vancouver, ISO, and other styles
46

Mao, James X., Phillip Walsh, Peter Kroll, and Kevin A. Schug. "Simulation of Vacuum Ultraviolet Absorption Spectra: Paraffin, Isoparaffin, Olefin, Naphthene, and Aromatic Hydrocarbon Class Compounds." Applied Spectroscopy 74, no. 1 (2019): 72–80. http://dx.doi.org/10.1177/0003702819875132.

Full text
Abstract:
The advent of a new vacuum ultraviolet (VUV) spectroscopic absorption detector for gas chromatography has enabled applications in many areas. Theoretical simulations of VUV spectra using computational chemistry can aid the new technique in situations where experimental spectra are unavailable. In this study, VUV spectral simulations of paraffin, isoparaffin, olefin, naphthene, and aromatic (PIONA) compounds using time-dependent density functional theory (TDDFT) methods were investigated. Important factors for the simulations, such as functionals/basis sets and formalism of oscillator strength
APA, Harvard, Vancouver, ISO, and other styles
47

Liu, Feng, Haoyu Shi, Kui Liang, et al. "TOF mass spectra of zircon M257 measured by VUV laser desorption ionization." Journal of Analytical Atomic Spectrometry 37, no. 1 (2022): 95–102. http://dx.doi.org/10.1039/d1ja00191d.

Full text
Abstract:
The time-of-flight mass spectrum of zircon M257 was measured using a VUV laser desorption/ionization method. The VUV laser scanned an area of 10 × 10 μm2 with a step of 0.5 μm, in total 30 layers and 6000 laser pulses, resulting in a depth of ∼20 nm.
APA, Harvard, Vancouver, ISO, and other styles
48

Attar, K. M. "Coincidence Profiles for Sulfur Emission at 180.73 nm (Third Order) in ICP-AES." Applied Spectroscopy 42, no. 8 (1988): 1493–99. http://dx.doi.org/10.1366/0003702884429689.

Full text
Abstract:
Coincidence profiles of eleven prevalent concomitant elements, on the sulfur emission line at 180.73 nm in the third order, were procured by scanning the sulfur channel of a vacuum argon ICP-AES using the polychromator primary slit. VUV, as well as UV emission lines above 250 nm in the second order were observed, despite the fact that an interference filter with less than 2% transmission above 250 nm was located before the channel photomultiplier. Spectral interferences from Ca (1000 mg/L), Si (1000 mg/L), Cr (200 mg/L), and Ti (200 mg/L) were attributed to VUV emission lines; those from Mn (2
APA, Harvard, Vancouver, ISO, and other styles
49

Inoue, Satoshi, Yoshiaki Hattori, and Masatoshi Kitamura. "Organic monolayers modified by vacuum ultraviolet irradiation for solution-processed organic thin-film transistors." Japanese Journal of Applied Physics 61, SE (2022): SE1012. http://dx.doi.org/10.35848/1347-4065/ac4b92.

Full text
Abstract:
A trimethylsilyl-monolayer modified by vacuum ultraviolet (VUV) light has been investigated for use in solution-processed organic thin-film transistors (OTFTs). The VUV irradiation changed a hydrophobic trimethylsilyl-monolayer formed from hexamethyldisilazane vapor into a hydrophilic surface suitable for solution processing. The treated surface was examined via water contact angle measurement and X-ray photoelectron spectroscopy. An appropriate irradiation of VUV light enabled the formation of a dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) film on a modified monolayer by spin-coati
APA, Harvard, Vancouver, ISO, and other styles
50

MAETA, Shusaku, Ryo KAWAMOTO, Akira TONEGAWA, and Kazutaka KAWAMURA. "Absolute calibration of VUV spectroscope by Atomic branching ratio method for plasma spectroscopy." Journal of Advanced Science 18, no. 3/4 (2006): 204–7. http://dx.doi.org/10.2978/jsas.18.204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!