Academic literature on the topic 'Wake-Up radio'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wake-Up radio.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Wake-Up radio"

1

Bello, Hilal, Zeng Xiaoping, Rosdiadee Nordin, and Jian Xin. "Advances and Opportunities in Passive Wake-Up Radios with Wireless Energy Harvesting for the Internet of Things Applications." Sensors 19, no. 14 (July 12, 2019): 3078. http://dx.doi.org/10.3390/s19143078.

Full text
Abstract:
Wake-up radio is a promising approach to mitigate the problem of idle listening, which incurs additional power consumption for the Internet of Things (IoT) wireless transmission. Radio frequency (RF) energy harvesting technique allows the wake-up radio to remain in a deep sleep and only become active after receiving an external RF signal to ‘wake-up’ the radio, thus eliminating necessary hardware and signal processing to perform idle listening, resulting in higher energy efficiency. This review paper focuses on cross-layer; physical and media access control (PHY and MAC) approaches on passive wake-up radio based on the previous works from the literature. First, an explanation of the circuit design and system architecture of the passive wake-up radios is presented. Afterward, the previous works on RF energy harvesting techniques and the existing passive wake-up radio hardware architectures available in the literature are surveyed and classified. An evaluation of the various MAC protocols utilized for the novel passive wake-up radio technologies is presented. Finally, the paper highlights the potential research opportunities and practical challenges related to the practical implementation of wake-up technology for future IoT applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Fumtchum, C. Achille, Florin Doru Hutu, Pierre Tsafack, Guillaume Villemaud, and Emmanuel Tanyi. "Towards a Battery-Free Wake-Up Radio." Electronics 10, no. 20 (October 9, 2021): 2449. http://dx.doi.org/10.3390/electronics10202449.

Full text
Abstract:
This paper proposes a contribution to the development of autonomous wake-up radios from the energy supply perspective. More precisely, a rectifier circuit, designed and manufactured in order to provide the energy needed for a quasi passive wake-up radio receiver (WuRx). The WuRx is intended to operate continuously and to ensure a zero energy consumption in standby mode.After the presentation of the said WuRx, the energy requirement for its power supply is defined. Then, the energy harvesting circuit, able to power up the quasi-passive WuRx, is designed, implemented, and then measured. Compared to the state of the art, the energy harvester that we present here is among the few recent designs that replaced the matching network lumped component by butterfly stubs, which brings compactness to the circuit. The rectifier is built on a high efficiency substrate which increases its performance and reduces its form factor.
APA, Harvard, Vancouver, ISO, and other styles
3

Hierold, Martin, Robert Weigel, and Alexander Koelpin. "Assessment of Transmitter Initiated Wake-Up Radio Versus Pure Wake-Up Receiver Decoding." IEEE Microwave and Wireless Components Letters 27, no. 4 (April 2017): 413–15. http://dx.doi.org/10.1109/lmwc.2017.2678446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lopez-Aguilera, Elena, and Eduard Garcia-Villegas. "Bandwidth-Based Wake-Up Radio Solution through IEEE 802.11 Technology." Sensors 21, no. 22 (November 16, 2021): 7597. http://dx.doi.org/10.3390/s21227597.

Full text
Abstract:
IEEE 802.11 consists of one of the most used wireless access technologies, which can be found in almost all consumer electronics devices available. Recently, Wake-up Radio (WuR) systems have emerged as a solution for energy-efficient communications. WuR mechanisms rely on using a secondary low-power radio interface that is always in the active operation mode and is in charge of switching the primary interface, used for main data exchange, from the power-saving state to the active mode. In this paper, we present a WuR solution based on IEEE 802.11 technology employing transmissions of legacy frames by an IEEE 802.11 standard-compliant transmitter during a Transmission Opportunity (TXOP) period. Unlike other proposals available in the literature, the WuR system presented in this paper exploits the PHY characteristics of modern IEEE 802.11 radios, where different signal bandwidths can be used on a per-packet basis. The proposal is validated through the Matlab software tool, and extensive simulation results are presented in a wide variety of scenario configurations. Moreover, insights are provided on the feasibility of the WuR proposal for its implementation in real hardware. Our approach allows the transmission of complex Wake-up Radio signals (i.e., including address field and other binary data) from legacy Wi-Fi devices (from IEEE 802.11n-2009 on), avoiding hardware or even firmware modifications intended to alter standard MAC/PHY behavior, and achieving a bit rate of up to 33 kbps.
APA, Harvard, Vancouver, ISO, and other styles
5

Caballe, Marti Cervia, Anna Calveras Auge, and Josep Paradells Aspas. "Wake-Up Radio: An Enabler of Wireless Convergence." IEEE Access 9 (2021): 3784–97. http://dx.doi.org/10.1109/access.2020.3048673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Valta, Mikko, Pekka Koskela, and Jouni Hiltunen. "Wake-up radio implementation for internet of things." International Journal of Autonomous and Adaptive Communications Systems 9, no. 1/2 (2016): 85. http://dx.doi.org/10.1504/ijaacs.2016.075393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chrobak, Marek, Leszek Gsieniec, and Dariusz R. Kowalski. "The Wake‐Up Problem in MultiHop Radio Networks." SIAM Journal on Computing 36, no. 5 (January 2007): 1453–71. http://dx.doi.org/10.1137/s0097539704442726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gu, Lin, and John A. Stankovic. "Radio-Triggered Wake-Up for Wireless Sensor Networks." Real-Time Systems 29, no. 2-3 (March 2005): 157–82. http://dx.doi.org/10.1007/s11241-005-6883-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stepanova, Ekaterina, Dmitry Bankov, Evgeny Khorov, and Andrey Lyakhov. "On the Joint Usage of Target Wake Time and 802.11ba Wake-Up Radio." IEEE Access 8 (2020): 221061–76. http://dx.doi.org/10.1109/access.2020.3043535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Froytlog, Anders, Thomas Foss, Ole Bakker, Geir Jevne, M. Arild Haglund, Frank Y. Li, Joaquim Oller, and Geoffrey Ye Li. "Ultra-Low Power Wake-up Radio for 5G IoT." IEEE Communications Magazine 57, no. 3 (March 2019): 111–17. http://dx.doi.org/10.1109/mcom.2019.1701288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Wake-Up radio"

1

Tajudeen, Mohammed Ashiq Rahman. "GENERAL WAKE-UP RADIO MODULE FOR ISM BAND." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-36378.

Full text
Abstract:
With the word of smart, the whole world is running on the smart technologies and smart devices which are fairly constructed by wireless sensors networks. The heart of the WSNs are nodes, which are deployed in different environmental conditions with different applications.‘Power constraint’ is a major challenge faced by all manufacturers of nodes, as all the components of the nodes are running just with a single source battery.The work presented in this thesis is an attempt to reduce the power consumption of WSNsby developing a unique Wake-Up Radio system that is super-efficient in power consumption when one compares it to duty cycling method. This paper presents a simple wake-up radio architecture with easily available Off the shelf components and operating in ISM band.At the transmitting end, a receiver with 125 KHz baseband signal is modulated on an 868MHz frequency carrier and is transmitted with the help of homemade dipole antenna. The wake-up radio receiver is constructed with a receiving antenna of 868 MHz and a network that matches good impedance to reduce the power loss of received signal, followed by a demodulation circuit with HSMS-285C zero bias Schottky diode to retrieve the baseband signal and to increase the sensitivity of the device. Later, the retrieved baseband signal is received by AS3933 low frequency wake-up receiver. The AS933 works like a comparator which compares the incoming address with the stored address to generate wake-up interrupt over node’s microcontroller activating it to perform its function.Measurements were made with the help of AS3933 demo board. The proposed system has a current consumption of 42.74μA including the current consumption of the components deployed in the demo board. In an ideal case, wake-up radio can be constructed without usingAS3933 demo board by using only AS3933 IC that gives current consumption of 2.8μA. The developed prototype has a sensitivity of -40 dBm which resulted in a wake-up distance of 20meters at an output power of -5 dBm from the transmitting antenna. This justifies that the proposed system lowers power consumption in wireless sensor networks when compared to duty cycling.
APA, Harvard, Vancouver, ISO, and other styles
2

Ratiu, Alin. "Continuous time signal processing for wake-up radios." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0078/document.

Full text
Abstract:
La consommation des systèmes de communication pour l'IoT peut être réduite grâce à un nouveau paradigme de réception radio. La technique consiste à ajouter un récepteur supplémentaire à chaque noeud IoT, appelé Wake Up Radio (WU-RX). Le rôle du WU-RX est de surveiller le canal de communication et de réveiller le récepteur principal (aussi appelé récepteur de données) lors de la réception d'une demande de communication. Une analyse des implémentations des WU-RX existants montre que les systèmes de l'état de l'art sont suffisamment sensibles par rapport aux récepteurs de données classiques mais manquent de robustesse face aux brouilleurs. Pour améliorer cette caractéristique nous proposons un étage de filtrage accordable `a fréquence intermédiaire qui nous permet de scanner toute la bande FI en cherchant le canal utilisé pour la demande de réveil. Ce filtre a été implémenté en utilisant les principes du traitement numérique de données à temps continu et consiste en un CAN suivi par un processeur numérique à temps continu. Le principe de fonctionnement du CAN est basé sur les modulateurs delta, avec une boucle de retour améliorée qui lui permet la quantification des signaux de fréquence plus élevé pour une consommation énergétique plus faible. Par conséquent, il a une plage de fonctionnement entre 10MHz et 50MHz ; pour un SNDR entre 32dB et 42dB et une consommation de 24uW. Cela se traduit par une figure de mérite entre 3fJ/conv-step et 10fJ/conv-step, une des meilleures pour la gamme de fréquences sélectionnée. Le processeur numérique est constitué d'un filtre IIR suivi par un filtre FIR. L'atténuation hors bande apportée par le filtre IIR permet de réduire le taux d'activité vu par le filtre FIR qui, par conséquent, consomme moins d'énergie. Nous avons montré, en simulation, une réduction de la puissance consommée par le filtre FIR d'un facteur entre 2 et 3. Au total, les deux filtres atteignent plus que 40dB de réjection hors bande, avec une bande passante de 2MHz qui peut être délacée sur toute la bande passante du CAN. Dans un pire cas, le système proposé (CAN et processeur numérique) consomme moins de 100uW, cependant la configuration des signaux à l'entrée peut rendre cette consommation plus faible
Wake-Up Receivers (WU-RX) have been recently proposed as candidates to reduce the communication power budget of wireless networks. Their role is to sense the environment and wake up the main receivers which then handle the bulk data transfer. Existing WU-RXs achieve very high sensitivities for power consumptions below 50uW but severely degrade their performance in the presence of out-of-band blockers. We attempt to tackle this problem by implementing an ultra low power, tunable, intermediate frequency filtering stage. Its specifications are derived from standard WU-RX architectures; it is shown that classic filtering techniques are either not tunable enough or demand a power consumption beyond the total WU-RX budget of 100uW. We thus turn to the use of Continuous Time Digital Signal Processing (CT-DSP) which offers the same level of programmability as standard DSP solutions while providing an excellent scalability of the power consumption with respect to the characteristics of the input signal. A CT-DSP chain can be divided into two parts: the CT-ADC and the CT-DSP itself; the specifications of these two blocks, given the context of this work, are also discussed. The CT-ADC is based on a novel, delta modulator-based architecture which achieves a very low power consumption; its maximum operation frequency was extended by the implementation of a very fast feedback loop. Moreover, the CT nature of the ADC means that it does not do any sampling in time, hence no anti-aliasing filter is required. The proposed ADC requires only 24uW to quantize signals in the [10MHz 50MHz] bandwidth for an SNR between 32dB and 42dB, resulting in a figure of merit of 3-10fJ/conv-step, among the best reported for the selected frequency range. Finally, we present the architecture of the CT-DSP which is divided into two parts: a CT-IIR and a CT-FIR. The CT-IIR is implemented by placing a standard CT-FIR in a feedback loop around the CT-ADC. If designed correctly, the feedback loop can now cancel out certain frequencies from the CT-ADC input (corresponding to those of out-of-band interferers) while boosting the power of the useful signal. The effective amplitude of the CT-ADC input is thus reduced, making it generate a smaller number of tokens, thereby reducing the power consumption of the subsequent CT-FIR by a proportional amount. The CT-DSP consumes around 100uW while achieving more than 40dB of out-of-band rejection; for a bandpass implementation, a 2MHz passband can be shifted over the entire ADC bandwidth
APA, Harvard, Vancouver, ISO, and other styles
3

Hussain, Z. (Zafar). "Performance evaluation of wake-up radio based wireless body area network." Master's thesis, University of Oulu, 2016. http://jultika.oulu.fi/Record/nbnfioulu-201611052965.

Full text
Abstract:
Abstract. The last decade has been really ambitious in new research and development techniques to reduce energy consumption especially in wireless sensor networks (WSNs). Sensor nodes are usually battery-powered and thus have very limited lifetime. Energy efficiency has been the most important aspect to discuss when talking about wireless body area network (WBAN) in particular, since it is the bottleneck of these networks. Medium access control (MAC) protocols hold the vital position to determine the energy efficiency of a WBAN, which is a key design issue for battery operated sensor nodes. The wake-up radio (WUR) based MAC and physical layer (PHY) have been evaluated in this research work in order to contribute to the energy efficient solutions development. WUR is an on-demand approach in which the node is woken up by the wake-up signal (WUS). A WUS switches a node from sleep mode to wake up mode to start signal transmission and reception. The WUS is transmitted or received by a secondary radio transceiver, which operates on very low power. The energy benefit of using WUR is compared with conventional duty-cycling approach. As the protocol defines the nodes in WUR based network do not waste energy on idle listening and are only awakened when there is a request for communication, therefore, energy consumption is extremely low. The performance of WUR based MAC protocol has been evaluated for both physical layer (PHY) and MAC for transmission of WUS and data. The probabilities of miss detection, false alarm and detection error rates are calculated for PHY and the probabilities of collision and successful data transmission for channel access method Aloha is evaluated. The results are obtained to compute and compare the total energy consumption of WUR based network with duty cycling. The results prove that the WUR based networks have significant potential to improve energy efficiency, in comparison to conventional duty cycling approach especially, in the case of low data-reporting rate applications. The duty cycle approach is better than WUR approach when sufficiently low duty cycle is combined with highly frequent communication between the network nodes.
APA, Harvard, Vancouver, ISO, and other styles
4

Antolini, Alessio. "Studio e realizzazione di circuiti per la sincronizzazione di wake-up radio." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17488/.

Full text
Abstract:
La natura wireless delle tecnologie per IOT si accosta nella maggior parte dei casi allo sviluppo di sistemi alimentati a batteria o comunque con un basso fabbisogno energetico. Infatti, la portabilità e l’affidabilità degli smart objects sono direttamente collegate con la loro autonomia energetica. In alcuni casi risulta impossibile, o comunque non conveniente, alimentare i sistemi con la rete elettrica (si pensi al controllo degli spazi agricoli); alternativamente, è necessario garantire la loro utilizzabilità in mancanza di fonti di energia convenzionali, come per esempio nelle applicazioni di sicurezza e monitoraggio, studiate per funzionare in situazioni critiche. Anche per questo motivo, la ricerca, sia in ambito accademico che industriale, ha compiuto notevoli sforzi nello sviluppare nuove tecnologie orientate al basso consumo energetico: i cosiddetti sistemi (ultra-)low power. Questa tesi, sviluppata presso il Centro di Ricerca sui Sistemi Elettronici “Ercole de Castro” dell’Università di Bologna, si focalizza sul progetto di un sistema di controllo digitale dedicato alla sincronizzazione ed alla gestione di Wake-Up Radio. Nel capitolo 1 si tratta in maniera più specifica le architetture di trasmettitori e ricevitori a basso consumo, introducendo il concetto di Wake-Up Radio. Nel capitolo 2 vengono esposte le caratteristiche e le funzionalità offerte dalle Wake-Up Radio. Nel capitolo 3 si presenta il problema della sincronizzazione nei sistemi wireless ed alcune soluzioni ad esso associate. Nel capitolo 4 viene illustrato il sistema digitale e il suo processo di sintesi. Vengono anche ri-portate le principali prestazioni di interesse. Nel capitolo 5 l’architettura viene ottimizzata per ridurne ulteriormente il consumo. Alla fine dell’elaborato sono presentate le conclusioni di questo lavoro di tesi, cercando di discuterne eventuali sviluppi futuri, cercando di aver contribuito positivamente in questo ambito di ricerca stimolante ed in costante evoluzione.
APA, Harvard, Vancouver, ISO, and other styles
5

Sciullo, Luca. "Energy-efficient wireless sensor networks via scheduling algorithm and radio Wake-up technology." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14539/.

Full text
Abstract:
One of the most important requirements for wireless sensor networks (WSNs) is the energy efficiency, since sensors are usually fed by a battery that cannot be replaced or recharged. Radio wake-up - the technology that lets a sensor completely turn off and be reactivated by converting the electromagnetic field of radio waves into energy - is now one of the most emergent strategies in the design of wireless sensor networks. This work presents Scheduled on Demand Radio WakeUp (SORW), a flexible scheduler designed for a wireless sensor network where duty cycling strategy and radio wake-up technology are combined in order to optimize the network lifetime. In particular, it tries to keep sensors sleeping as much as possible, still guaranteeing a minimum number of detections per unit of time. Performances of SORW are provided through the use of OMNet++ simulator and compared to results obtained by other basic approaches. Results show that with SORW it is possible to reach a theoretical lifetime of several years, compared to simpler schedulers that only reach days of activity of the network.
APA, Harvard, Vancouver, ISO, and other styles
6

D'Addato, Matteo. "Progetto di un PLL analogico a bassissimo consumo per sistemi wake-up radio." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17477/.

Full text
Abstract:
Nei nodi wireless per applicazioni IoT, i ricetrasmettitori (transceiver) a radio-frequenza (RF) sono responsabili della maggior parte del consumo di potenza. Inoltre, se da un lato il picco di potenza assorbita avviene in corrispondenza degli istanti di trasmissione, dall’altro il ricevitore, che deve essere mantenuto sempre attivo anche quando il resto del sistema è in stato di “idle”, consuma una buona frazione dell’energia totale. Al fine di ridurre questo consumo, una particolare tipologia di ricevitori detti di “wake-up” sono tra i principali oggetti di ricerca nell’ambito dell’IoT. Essi hanno prestazioni ridotte e consumo molto basso, poiché devono restare sempre attivi mentre il resto del nodo è in stato di “idle”. Tale Wake-Up Radio (WUR) ha il compito di “ascoltare” il canale e attivare il ricevitore principale ed il microcontrollore solo quando c’è qualche richiesta in arrivo. Una parte integrante del ricevitore Wake-Up è il circuito per la decodifica dei byte trasmessi, che di solito comprendono almeno un codice d’indirizzo, che deve essere estratto e confrontato con l’indirizzo memorizzato nel ricevitore. Soltanto se questo confronto ha esito positivo viene attivato il resto del sistema. L’obiettivo di questo lavoro di tesi è il progetto di un sistema di clock recovery basato su PLL analogico a bassissimo consumo per sistemi Wake-Up Radio di tipo short-range caratterizzati da una bit rate di 1 kbps. Tale sistema deve fornire alla rete di controllo un clock allineato in fase e frequenza con i dati ricevuti. Rispetto ad altri sistemi in cui si deve semplicemente decodificare un indirizzo, la soluzione basata su PLL oggetto di questo studio (poiché implica consumi e tempi di aggancio non trascurabili) è particolarmente adatta per lunghe trasmissioni. Nel progetto di un PLL a basso consumo l’obiettivo consiste nell’ottimizzare il trade-off tra consumo (con correnti nell’ordine del nanowatt) e tempo di aggancio.
APA, Harvard, Vancouver, ISO, and other styles
7

Della, Chiesa Enrico. "Progetto a componenti discreti di un circuito wake-up radio in ambito ultra-low power." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
L’obiettivo principale nella progettazione di una Wireless sensor Network (WSN) in ambito ultra-low power è la minimizzazione dei consumi energetici, per aumentare la durata della batteria o addirittura rimuoverla, rendendo il sistema autosufficiente. La maggior parte dell’energia in questi sistemi viene consumata dal ricevitore, che rimane acceso aspettando l’inizio di una comunicazione. Gestire le accensioni del ricevitore si rivela la tecnica migliore per abbassare il consumo energetico. Un circuito studiato per la gestione del ricevitore è la Wake-up Radio (WuR). Una Wake-up radio è un circuito con bassi consumi di potenza, dell’ordine dei uW, che analizza il canale radio e attiva il ricevitore principale solo se viene rilevato un segnale di wake-up, che può limitarsi alla semplice presenza di un segnale ad una certa frequenza o può prevedere la presenza di un indirizzo. In questo elaborato è presentata la progettazione di una Wake-up Radio a componenti discreti. In particolare ci si è concentrati sull’implementazione di una rete di indirizzamento utilizzando i componenti più efficienti presenti sul mercato. Per prima cosa si definiscono le specifiche della rete di indirizzamento e le sue possibili implementazioni; seguono poi la selezione dei componenti, la sintesi logica e infine l’analisi dei consumi. Il risultato finale è di un consumo pari a 2,1 uW in stato di riposo e 417 uW in stato di decodifica dell’indirizzo, ricavato con una frequenza di clock pari a 10KHz. Considerando la bit-rate di trasmissione dell’indirizzo di 7kbit/s e un massimo tempo di risveglio di 60ms la potenza media necessaria al funzionamento della rete è di 12 uW, paragonabile a quella ottenuta in altri progetti in letteratura.
APA, Harvard, Vancouver, ISO, and other styles
8

Monti, Michele. "Ottimizzazione di sistemi Wake-Up Radio per applicazioni RFID basate su microcontrollori ultra-low power." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13265/.

Full text
Abstract:
Oggetto di studio di questa tesi di laurea è la realizzazione di un firmware dedicato alla sezione logica di controllo di una Wake-up Radio implementata su tag RFID, realizzata attraverso l'utilizzo di un microcontrollore ultra-low power. Per la realizzazione del sistema, si é deciso di utilizzare il microcontrollore Apollo prodotto da Ambiq Micro. Tale dispositivo, basandosi sull'architettura Subthreshold Power Optimized Technology (SPOT) brevettata da Ambiq, utilizza transistori polarizzati in regione di sottosoglia, presentando i migliori valori di consumo dichiarati sul mercato.
APA, Harvard, Vancouver, ISO, and other styles
9

Renzini, Francesco <1990&gt. "Design techniques to enhance low-power wireless communication soc with reconfigurability and wake up radio." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amsdottorato.unibo.it/9416/1/final.pdf.

Full text
Abstract:
Nowadays, Internet of things applications are increasing, and each end-node has more demanding requirements such as energy efficiency and speed. The thesis proposes a heterogeneous elaboration unit for smart power applications, that consists of an ultra-low-power microcontroller coupled with a small (around 1k equivalent gates) soft-core of embedded FPGA. This digital system is implemented in 90-nm BCD technology of STMicroelectronics, and through the analysis presented in this thesis proves to have good performance in terms of power consumption and latency. The idea is to increase the system performance exploiting the embedded FPGA to managing smart power tasks. For the intended applications, a remarkable computational load is not required, it is just required the implementation of simple finite state machines, since they are event-driven applications. In this way, while the microcontroller deals with other system computations such as high-level communications, the eFPGA can efficiently manage smart power applications. An added value of the proposed elaboration unit is that a soft-core approach is applied to the whole digital system including the eFPGA, and hence, it is portable to different technologies. On the other hand, the configurability improvement has a straightforward drawback of about a 20–27% area overhead. The eFPGA usage to manage smart power applications, allows the system to reduce the required energy per task from about 400 to around 800 times compared to a processor implementation. The eFPGA utilization improves also the latency performance of the system reaching from 8 to 145 times less latency in terms of clock cycles. The thesis also introduces the architecture of a nano-watt wake-up radio integrated circuit implemented in 90-nm BCD technology of STMicroelectronics. The wake-up radio is an auxiliary always-on radio for medium-range applications that allows the IoT end-nodes to drastically reduce the power consumption during the node idle-listening communication phase.
APA, Harvard, Vancouver, ISO, and other styles
10

Oller, i. Bosch Joaquim. "Wake-up radio systems : design, development, performance evaluation and comparison to conventional medium access control protocols for wireless sensor networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/288305.

Full text
Abstract:
During the recent years, the research related to Wake-up Radio (WuR) systems has gained noticeable interest. In WuR systems, a node initiating a communication first sends a Wake-up Call (WuC) by means of its Wake-up Transmitter (WuTx), to the Wake-up Receiver (WuRx) of a remote node to activate it in an on-demand manner. Until the reception of the WuC, the node's MCU and main data transceiver are in sleep mode. Hence, WuR drastically reduce the power required by wireless nodes. This thesis provides a complete analysis of several WuR designs vs. conventional MAC protocols for Wireless Sensor Networks (WSN). The research is performed in an incremental fashion and includes hardware, softwar and simulation topics. WuR systems enable energy savings in plenty of different applications, e.g., retrieving information from environmental pollution sensors placed in a city by a mobile collector node, or activating a sleeping wireless AP. They are easy to program in and provide implicit synchronization. However, achieving a good WuRx design may become a challenge because power amplifiers cannot be used for the sake of energy. The system proposed in chapter 2 is a successful WuR system prototype. The so-called SµA-WuRx is less complex than commercial WuR systems, it is cheaper from the monetary point of view, requires several times less energy and allows for up to 15 meters of communication, an adequate value for WuR systems. However, the system can be improved by including several desirable features, such as longer operational ranges and/or addressing mechanisms. The so-called Time-Knocking (TicK) addressing strategy, analyzed in chapter 3, enables energy efficient node addressing by varying the time between WuCs received by a MCU. TicK allows for variable length addresses and multicast. A WuR system may not fit any possible application. Thus, while the SµA-WuRx and TicK efficiently solved many of the requirements of single-hop and data-collector applications, they lack of flexibility. Instead, SCM-WuR systems in chapter 4 feature an outstanding trade-off between hardware complexity, current consumption and operational range, and even enable multi-hop wake-up for long remote sensor measure collection. To contextualize the WuR systems developed, chapter 5 provides an overview of the most important WuR systems as of 2014. Developing a MAC protocol which performs acceptably in a wide range of diverse applications is a very difficult task. Comparatively, SCM-WuR systems perform properly in all the use cases (single and multi-hop) presented in chapter 6. Bluetooth Low Energy, or BLE, appears as a duty-cycled MAC protocol mainly targeting single-hop applications. Because of its clearly defined use cases and its integration with its upper application layers, BLE appears as an extremely energy-efficient protocol that cannot be easily replaced by WuR. Because of all these aspects, the performance of BLE is analyzed in chapter 7. Finally, chapter 8 tries to solve one of the issues affecting WuR systems, that is, the need for extra hardware. While this issue seems difficult to solve for WuRx, the chapter provides ideas to use IEEE 802.11-enabled devices as WuTx.
Durant els últims anys, la investigació relativa als sistemes de Ràdios de Wake-up (de l'anglès Wake-up Radio, WuR) ha experimentat un interès notable. En aquests sistemes, un node inicia la comunicació inal.làmbrica transmetent una Wake-up Call (WuC), per mitjà del seu transmissor de Wake-up (WuTx), dirigida al receptor de Wake-up (WuRx) del node remot. Aquesta WuC activa el node remot, el microcontrolador (MCU) i la ràdio principals del qual han pogut romandre en mode "sleep" fins el moment. Així doncs, els sistemes WuR permeten un estalvi dràstic de l'energia requerida pels nodes sense fils. Aquesta tesi proposa diferents sistemes WuR i els compara amb protocols MAC existents per a xarxes de sensors sense fils (Wireless Sensor Networks, WSN). La investigació es realitza de forma progressiva i inclou hardware, software i simulació. Els sistemes WuR permeten un estalvi energètic notable en moltes aplicacions: recol¿lecció d'informació ambiental, activació remota de punts d'accés wi-fi, etc. Són fàcils de programar en software i comporten una sincronització implícita entre nodes. Malauradament, un consum energètic mínim impossibilita l'ús d'amplificadors de potència, i dissenyar-los esdevé un repte. El sistema presentat en el capítol 2 és un prototip exitós de sistema WuR. De nom SµA-WuR, és més senzill que alternatives comercials, és més econòmic, requereix menys energia i permet distàncies de comunicació WuR majors, de fins a 15 metres. L'estratègia d'adreçament Time-KnocKing, presentada en el capítol 3, permet dotar l'anterior SµA-WuR d'una forma d'especificar el node adreçat, permetent estalvi energètic a nivell de xarxa. TicK opera codificant el temps entre diferents WuC. Depenent del temps entre intervals, es desperten el/s node/s desitjats d'una forma extremadament eficient. Tot i els seus beneficis, hi ha aplicacions no implementables amb el sistema SµA-WuR. Per a aquest motiu, en el capítol 4 es presenta el sistema SCM-WuR, que ofereix un rang d'operació de 40 a 100 metres a canvi d'una mínima complexitat hardware afegida. SCM-WuR cobreix el ventall d'aplicacions del sistema SµA-WuRx, i també les que requereixen multi-hop a nivell WuR. El capítol 5 de la tesi compara els dos sistemes WuR anteriors vers les propostes més importants fins el 2014. El capítol 6 inclou un framework de simulació complet amb les bases per a substituir els sistemes basats en duty-cycling a WuR. Degut a que desenvolupar un protocol MAC que operi acceptablement bé en multitud d'aplicacions esdevé una tasca pràcticament impossible, els sistemes WuR presentats amb anterioritat i modelats en aquest capítol representen una solució versàtil, interessant i molt més eficient des del punt de vista energètic. Bluetooth Low Energy, o Smart, o BLE, representa un cas d'aplicació específica on, degut a la gran integració a nivell d'aplicació, la substitució per sistemes de WuR esdevé difícil Per a aquesta raó, i degut a que es tracta d'un protocol MAC extremadament eficient energèticament, aquesta tesi conté una caracterització completa de BLE en el capítol 7. Finalment, el capítol 8 soluciona un dels inconvenients del sistemes WuR, el disseny de WuTx específics, presentant una estratègia per a transformar qualsevol dispositiu IEEE 802.11 en WuTx.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Wake-Up radio"

1

Mangal, Vivek. Energy-Detecting Receivers for Wake-Up Radio Applications. [New York, N.Y.?]: [publisher not identified], 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Asterjadhi, Alfred, and Steve Shellhammer. IEEE 802. 11ba: Ultra-Low Power Wake-Up Radio Standard. Wiley & Sons, Limited, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Asterjadhi, Alfred, and Steve Shellhammer. IEEE 802. 11ba: Ultra-Low Power Wake-Up Radio Standard. Wiley & Sons, Incorporated, John, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Asterjadhi, Alfred, and Steve Shellhammer. IEEE 802. 11ba: Ultra-Low Power Wake-Up Radio Standard. Wiley & Sons, Incorporated, John, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Asterjadhi, Alfred, and Steve Shellhammer. IEEE 802. 11ba: Ultra-Low Power Wake-Up Radio Standard. Wiley & Sons, Incorporated, John, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Wake-Up radio"

1

Jurdziński, Tomasz, and Dariusz R. Kowalski. "Wake-Up Problem in Multi-Hop Radio Networks." In Encyclopedia of Algorithms, 2352–54. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chlebus, Bogdan S., Leszek Gąsieniec, Dariusz R. Kowalski, and Tomasz Radzik. "On the Wake-Up Problem in Radio Networks." In Automata, Languages and Programming, 347–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11523468_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jurdzinski, Tomasz, and Dariusz R. Kowalski. "The Wake-Up Problem in Multi-Hop Radio Networks." In Encyclopedia of Algorithms, 1–5. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27848-8_536-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chlebus, Bogdan S., Gianluca De Marco, and Dariusz R. Kowalski. "Scalable Wake-up of Multi-channel Single-Hop Radio Networks." In Lecture Notes in Computer Science, 186–201. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14472-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Starkey, Guy. "The Wake-Up Call — The New Dawn and Local Radio’s Place in the New Duopoly." In Local Radio, Going Global, 27–79. London: Palgrave Macmillan UK, 2011. http://dx.doi.org/10.1057/9780230347991_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khoumeri, Aissa, Florin Hutu, Guillaume Villemaud, and Jean-Marie Gorce. "Study of a Wake Up Radio Architecture for Home Multimedia Networks." In Lecture Notes in Electrical Engineering, 63–72. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05440-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gomez, Andres, Michele Magno, Xin Wen, and Luca Benini. "Extending Body Sensor Nodes’ Lifetime Using a Wearable Wake-up Radio." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 108–17. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27072-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghribi, Mayssa, and Aref Meddeb. "Performance Analysis of Wake-Up Radio Based Protocols Considering Non-ideal Transmission Channel." In Advanced Information Networking and Applications, 67–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99584-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chomu, Konstantin, Vladimir Atanasovski, Liljana Gavrilovska, and Michele Magno. "Practical Implementation Aspects of the Data Timed Sending (DTS) Protocol Using Wake-up Radio (WuR)." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 139–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74935-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghribi, Mayssa, and Aref Meddeb. "CaWuQoS-MAC: Collision Avoidance and QoS Based MAC Protocol for Wake-Up Radio Enabled IoT Networks." In Advanced Information Networking and Applications, 79–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99584-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Wake-Up radio"

1

Koskela, Pekka, and Mikko Valta. "Simple wake-up radio prototype." In the 6th Workshop. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1978642.1978645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Basagni, Stefano, Federico Ceccarelli, Chiara Petrioli, Nithila Raman, and Abhimanyu V. Sheshashayee. "Wake-up Radio Ranges: A Performance Study." In 2019 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2019. http://dx.doi.org/10.1109/wcnc.2019.8885974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chlebus, Bogdan S., and Dariusz R. Kowalski. "A better wake-up in radio networks." In the twenty-third annual ACM symposium. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1011767.1011806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jouni, Zalfa, Thomas Soupizet, Siqi Wang, Aziz Benlarbi-Delai, and Pietro M. Ferreira. "1.2 nW Neuromorphic Enhanced Wake-Up Radio." In 2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 2022. http://dx.doi.org/10.1109/sbcci55532.2022.9893247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prabhakar, T. V., N. S. Soumya, Preetha Muralidharan, and H. S. Jamadagni. "A Novel Wake-Up Radio WSN Mote." In 2013 Texas Instruments India Educators' Conference (TIIEC). IEEE, 2013. http://dx.doi.org/10.1109/tiiec.2013.71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hutu, Florin, Aissa Khoumeri, Guillaume Villemaud, and Jean-Marie Gorce. "Wake-up radio architecture for home wireless networks." In 2014 IEEE Radio and Wireless Symposium (RWS). IEEE, 2014. http://dx.doi.org/10.1109/rws.2014.6830103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hutu, Florin, David Kibloff, Guillaume Villemaud, and Jean-Marie Gorce. "Experimental validation of a wake-up radio architecture." In 2016 IEEE Radio and Wireless Symposium (RWS). IEEE, 2016. http://dx.doi.org/10.1109/rws.2016.7444391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chakravarty, Sumit, Andrew Hopkins, and Fangyu Li. "LoRa Wake-up Radio Relay with Beaglebone Black." In SoutheastCon 2021. IEEE, 2021. http://dx.doi.org/10.1109/southeastcon45413.2021.9401901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

de Francisco, Ruben, and Yan Zhang. "An interference robust multi-carrier wake-up radio." In 2011 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2011. http://dx.doi.org/10.1109/wcnc.2011.5779341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lebreton, Jean Mickael, Somasekhar Kandukuri, Nour Murad, Richard Lorion, and Denis Genon-Catalot. "Interference evaluation of WiFi devices over wake-up radio in wireless sensor networks." In 2016 IEEE Radio and Antenna Days of the Indian Ocean (RADIO). IEEE, 2016. http://dx.doi.org/10.1109/radio.2016.7772034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography