Journal articles on the topic 'Wall shear rates'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Wall shear rates.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Duncan, D. D., C. B. Bargeron, S. E. Borchardt, O. J. Deters, S. A. Gearhart, F. F. Mark, and M. H. Friedman. "The Effect of Compliance on Wall Shear in Casts of a Human Aortic Bifurcation." Journal of Biomechanical Engineering 112, no. 2 (May 1, 1990): 183–88. http://dx.doi.org/10.1115/1.2891170.
Full textDeters, O. J., C. B. Bargeron, F. F. Mark, and M. H. Friedman. "Measurement of Wall Motion and Wall Shear in a Compliant Arterial Cast." Journal of Biomechanical Engineering 108, no. 4 (November 1, 1986): 355–58. http://dx.doi.org/10.1115/1.3138628.
Full textStel, HV, KS Sakariassen, PG de Groot, JA van Mourik, and JJ Sixma. "Von Willebrand factor in the vessel wall mediates platelet adherence." Blood 65, no. 1 (January 1, 1985): 85–90. http://dx.doi.org/10.1182/blood.v65.1.85.85.
Full textStel, HV, KS Sakariassen, PG de Groot, JA van Mourik, and JJ Sixma. "Von Willebrand factor in the vessel wall mediates platelet adherence." Blood 65, no. 1 (January 1, 1985): 85–90. http://dx.doi.org/10.1182/blood.v65.1.85.bloodjournal65185.
Full textFatemi, Ray S., and Stanley E. Rittgers. "Derivation of Shear Rates From Near-Wall LDA Measurements Under Steady and Pulsatile Flow Conditions." Journal of Biomechanical Engineering 116, no. 3 (August 1, 1994): 361–68. http://dx.doi.org/10.1115/1.2895743.
Full textWang, Shixin, Haiqing Liu, Yue Wang, Yizhi Qiao, Liang Wang, Jie Bai, Tim K. T. Tse, Cruz Y. Li, and Yunfei Fu. "Experimental Study on the Seismic Performance of Shear Walls with Different Coal Gangue Replacement Rates." Applied Sciences 12, no. 20 (October 20, 2022): 10622. http://dx.doi.org/10.3390/app122010622.
Full textBen Driss, A., J. Benessiano, P. Poitevin, B. I. Levy, and J. B. Michel. "Arterial expansive remodeling induced by high flow rates." American Journal of Physiology-Heart and Circulatory Physiology 272, no. 2 (February 1, 1997): H851—H858. http://dx.doi.org/10.1152/ajpheart.1997.272.2.h851.
Full textBao, Quan, Xin Meng, Mingcheng Hu, Jian Xing, Dan Jin, He Liu, Jie Jiang, and Yanwei Yin. "Simulation analysis of aneurysm embolization surgery: Hemorheology of aneurysms with different embolization rates (CTA)." Bio-Medical Materials and Engineering 32, no. 5 (September 3, 2021): 295–308. http://dx.doi.org/10.3233/bme-211225.
Full textMcNally, Andrew, A. George Akingba, and Philippe Sucosky. "Effect of arteriovenous graft flow rate on vascular access hemodynamics in a novel modular anastomotic valve device." Journal of Vascular Access 19, no. 5 (March 1, 2018): 446–54. http://dx.doi.org/10.1177/1129729818758229.
Full textColace, Thomas Vincent, and Scott L. Diamond. "Direct Observation of Von Willebrand Factor Elongation and Fiber Formation On Collagen During Acute Whole Blood Exposure to Pathological Flow." Blood 120, no. 21 (November 16, 2012): 1070. http://dx.doi.org/10.1182/blood.v120.21.1070.1070.
Full textTalbot, L., and J. J. Steinert. "The Frequency Response of Electrochemical Wall Shear Probes in Pulsatile Flow." Journal of Biomechanical Engineering 109, no. 1 (February 1, 1987): 60–64. http://dx.doi.org/10.1115/1.3138643.
Full textHSU, H. Y., and N. A. PATANKAR. "A continuum approach to reproduce molecular-scale slip behaviour." Journal of Fluid Mechanics 645 (February 2, 2010): 59–80. http://dx.doi.org/10.1017/s0022112009992540.
Full textSiegel, John M., Christos P. Markou, David N. Ku, and S. R. Hanson. "A Scaling Law for Wall Shear Rate Through an Arterial Stenosis." Journal of Biomechanical Engineering 116, no. 4 (November 1, 1994): 446–51. http://dx.doi.org/10.1115/1.2895795.
Full textBadimon, L., JJ Badimon, VT Turitto, and V. Fuster. "Role of von Willebrand factor in mediating platelet-vessel wall interaction at low shear rate; the importance of perfusion conditions." Blood 73, no. 4 (March 1, 1989): 961–67. http://dx.doi.org/10.1182/blood.v73.4.961.961.
Full textBadimon, L., JJ Badimon, VT Turitto, and V. Fuster. "Role of von Willebrand factor in mediating platelet-vessel wall interaction at low shear rate; the importance of perfusion conditions." Blood 73, no. 4 (March 1, 1989): 961–67. http://dx.doi.org/10.1182/blood.v73.4.961.bloodjournal734961.
Full textWilms, Patrick, Jan Wieringa, Theo Blijdenstein, Kees van Malssen, and Reinhard Kohlus. "Quantification of shear viscosity and wall slip velocity of highly concentrated suspensions with non-Newtonian matrices in pressure driven flows." Rheologica Acta 60, no. 8 (June 30, 2021): 423–37. http://dx.doi.org/10.1007/s00397-021-01281-5.
Full textNgai, A. C., and H. R. Winn. "Estimation of shear and flow rates in pial arterioles during somatosensory stimulation." American Journal of Physiology-Heart and Circulatory Physiology 270, no. 5 (May 1, 1996): H1712—H1717. http://dx.doi.org/10.1152/ajpheart.1996.270.5.h1712.
Full textLui, Mathew, Elizabeth E. Gardiner, Jane F. Arthur, Isaac Pinar, Woei Ming Lee, Kris Ryan, Josie Carberry, and Robert K. Andrews. "Novel Stenotic Microchannels to Study Thrombus Formation in Shear Gradients: Influence of Shear Forces and Human Platelet-Related Factors." International Journal of Molecular Sciences 20, no. 12 (June 18, 2019): 2967. http://dx.doi.org/10.3390/ijms20122967.
Full textBasri, Hasan, Jimmy Deswidawansyah Nasution, Ardiyansyah Syahrom, Mohd Ayub Sulong, Amir Putra Md. Saad, Akbar Teguh Prakoso, and Faisal Aminin. "The effect to flow rate characteristic on biodegradation of bone scaffold." Malaysian Journal of Fundamental and Applied Sciences 13, no. 4-2 (December 17, 2017): 546–52. http://dx.doi.org/10.11113/mjfas.v13n4-2.843.
Full textShahid, Salman, Abdul Qader Hasan, Sharul Sham Dol, Mohamed S. Gadala, and Mohd Shiraz Aris. "Effects of Near-Wall Vortices on Wall Shear Stress in a Centrifugal Pump Impeller." WSEAS TRANSACTIONS ON FLUID MECHANICS 16 (March 5, 2021): 37–47. http://dx.doi.org/10.37394/232013.2021.16.5.
Full textWilliams, Dillon C., Mohamed A. Zayed, and Guy Genin. "RS23. Reduction of Wall Shear Strain Rates in Arteriovenous Graft Venous Anastomoses." Journal of Vascular Surgery 69, no. 6 (June 2019): e276-e277. http://dx.doi.org/10.1016/j.jvs.2019.04.426.
Full textAl-Masry, Waheed A., and Malik I. Al-Ahmed. "Effect of scale-up on wall shear rates in circulating bubble columns." Journal of Chemical Technology & Biotechnology 80, no. 11 (2005): 1230–35. http://dx.doi.org/10.1002/jctb.1309.
Full textKeynton, R. S., S. E. Rittgers, and M. C. S. Shu. "The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An In Vitro Model Study." Journal of Biomechanical Engineering 113, no. 4 (November 1, 1991): 458–63. http://dx.doi.org/10.1115/1.2895427.
Full textTangelder, G. J., D. W. Slaaf, T. Arts, and R. S. Reneman. "Wall shear rate in arterioles in vivo: least estimates from platelet velocity profiles." American Journal of Physiology-Heart and Circulatory Physiology 254, no. 6 (June 1, 1988): H1059—H1064. http://dx.doi.org/10.1152/ajpheart.1988.254.6.h1059.
Full textLee, San Min, Won Chang, Hyo-Jin Kang, Su Joa Ahn, Jeong-Hoon Lee, and Jeong Min Lee. "Comparison of four different Shear Wave Elastography platforms according to abdominal wall thickness in liver fibrosis evaluation: a phantom study." Medical Ultrasonography 21, no. 1 (February 17, 2019): 22. http://dx.doi.org/10.11152/mu-1737.
Full textRussell, Janice, Dianne Cooper, Anitaben Tailor, Karen Y. Stokes, and D. Neil Granger. "Low venular shear rates promote leukocyte-dependent recruitment of adherent platelets." American Journal of Physiology-Gastrointestinal and Liver Physiology 284, no. 1 (January 1, 2003): G123—G129. http://dx.doi.org/10.1152/ajpgi.00303.2002.
Full textDemirel, S., D. Chen, Y. Mei, S. Partovi, H. von Tengg-Kobligk, M. Dadrich, D. Böckler, HU Kauczor, and M. Müller-Eschner. "Comparison of morphological and rheological conditions between conventional and eversion carotid endarterectomy using computational fluid dynamics – a pilot study." Vascular 23, no. 5 (October 8, 2014): 474–82. http://dx.doi.org/10.1177/1708538114552836.
Full textWang, Haifeng, Klemens Uhlmann, Vijay Vedula, Daniel Balzani, and Fathollah Varnik. "Fluid-structure interaction simulation of tissue degradation and its effects on intra-aneurysm hemodynamics." Biomechanics and Modeling in Mechanobiology 21, no. 2 (January 13, 2022): 671–83. http://dx.doi.org/10.1007/s10237-022-01556-7.
Full textBaldwin, J. T., J. M. Tarbell, S. Deutsch, D. B. Geselowitz, and G. Rosenberg. "Hot-Film Wall Shear Probe Measurements Inside a Ventricular Assist Device." Journal of Biomechanical Engineering 110, no. 4 (November 1, 1988): 326–33. http://dx.doi.org/10.1115/1.3108449.
Full textMeghdadi, N., and H. Niroomand-Oscuii. "NUMERICAL SIMULATION OF THE EFFECT OF VENOUS NEEDLE'S FLOW RATE AND ANGLE ON FLOW PARAMETERS OF A HEMODIALYSIS GRAFT." Biomedical Engineering: Applications, Basis and Communications 27, no. 05 (October 2015): 1550048. http://dx.doi.org/10.4015/s1016237215500489.
Full textLawler, Karen, Gerardene Meade, Gerald O'Sullivan, and Dermot Kenny. "Shear stress modulates the interaction of platelet-secreted matrix proteins with tumor cells through the integrin αvβ3." American Journal of Physiology-Cell Physiology 287, no. 5 (November 2004): C1320—C1327. http://dx.doi.org/10.1152/ajpcell.00159.2004.
Full textYeo, K. S., and A. P. Dowling. "The stability of inviscid flows over passive compliant walls." Journal of Fluid Mechanics 183 (October 1987): 265–92. http://dx.doi.org/10.1017/s0022112087002635.
Full textUttam, Shubham, Piru Mohan Khan, Md Irshad Alam, and Somnath Roy. "BEHAVIOR OF WALL SHEAR STRESS NEAR CAROTID ARTERY BIFURCATION AT ELEVATED PULSE RATES." Journal of Flow Visualization and Image Processing 27, no. 3 (2020): 249–67. http://dx.doi.org/10.1615/jflowvisimageproc.2020031021.
Full textDumont, Eric, Francine Fayolle, and Jack Legrand. "Flow regimes and wall shear rates determination within a scraped surface heat exchanger." Journal of Food Engineering 45, no. 4 (September 2000): 195–207. http://dx.doi.org/10.1016/s0260-8774(00)00056-x.
Full textWeydahl, Erlend S., and James E. Moore. "Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model." Journal of Biomechanics 34, no. 9 (September 2001): 1189–96. http://dx.doi.org/10.1016/s0021-9290(01)00051-3.
Full textAwati, K. M., Y. Park, E. Weisser, and M. E. Mackay. "Wall slip and shear stresses of polymer melts at high shear rates without pressure and viscous heating effects." Journal of Non-Newtonian Fluid Mechanics 89, no. 1-2 (February 2000): 117–31. http://dx.doi.org/10.1016/s0377-0257(99)00037-3.
Full textLoosli, Christian, Stephan Rupp, Bente Thamsen, Mathias Rebholz, Gerald Kress, Mirko Meboldt, and Paolo Ermanni. "High-frequency operation of pulsatile ventricular assist devices: A computational study on circular and elliptically shaped pumps." International Journal of Artificial Organs 42, no. 12 (July 5, 2019): 725–34. http://dx.doi.org/10.1177/0391398819857442.
Full textNazemi, M., C. Kleinstreuer, J. P. Archie, and F. Y. Sorrell. "Fluid Flow and Plaque Formation in an Aortic Bifurcation." Journal of Biomechanical Engineering 111, no. 4 (November 1, 1989): 316–24. http://dx.doi.org/10.1115/1.3168385.
Full textMoore,, James E., Erlend S. Weydahl, and Aland Santamarina. "Frequency Dependence of Dynamic Curvature Effects on Flow Through Coronary Arteries." Journal of Biomechanical Engineering 123, no. 2 (November 1, 2000): 129–33. http://dx.doi.org/10.1115/1.1351806.
Full textWüstenhagen, Carolin, Sylvia Pfensig, Stefan Siewert, Sebastian Kaule, Niels Grabow, Klaus-Peter Schmitz, and Michael Stiehm. "Optimization of stent designs regarding the thrombosis risk using computational fluid dynamics." Current Directions in Biomedical Engineering 4, no. 1 (September 1, 2018): 93–96. http://dx.doi.org/10.1515/cdbme-2018-0024.
Full textRooman, Muhammad, Zahir Shah, Ebenezer Bonyah, Muhammad Asif Jan, and Wejdan Deebani. "Mathematical Modeling of Carreau Fluid Flow and Heat Transfer Characteristics in the Renal Tubule." Journal of Mathematics 2022 (May 10, 2022): 1–14. http://dx.doi.org/10.1155/2022/2517933.
Full textKiesow, Robert O., and Michael W. Plesniak. "Modification of Near-Wall Structure in a Shear-Driven 3-D Turbulent Boundary Layer." Journal of Fluids Engineering 124, no. 1 (August 24, 2001): 118–26. http://dx.doi.org/10.1115/1.1431269.
Full textJiroušková, Markéta, Jan Evangelista Dyr, Jiří Suttnar, Karel Holada, and Bohuslava Trnková. "Platelet Adhesion to Fibrinogen, Fibrin Monomer, and Fibrin Protofibrils in Flowing Blood - The Effect of Fibrinogen Immobilization and Fibrin Formation." Thrombosis and Haemostasis 78, no. 03 (1997): 1125–31. http://dx.doi.org/10.1055/s-0038-1657698.
Full textBahrami, Saeed, and Mahmood Norouzi. "Hemodynamic impacts of hematocrit level by two-way coupled FSI in the left coronary bifurcation." Clinical Hemorheology and Microcirculation 76, no. 1 (October 15, 2020): 9–26. http://dx.doi.org/10.3233/ch-200854.
Full textYe, Huilin, Zhiqiang Shen, and Ying Li. "Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow." Soft Matter 14, no. 36 (2018): 7401–19. http://dx.doi.org/10.1039/c8sm01304g.
Full textSofialidis, D., and P. Prinos. "Wall Suction Effects on the Structure of Fully Developed Turbulent Pipe Flow." Journal of Fluids Engineering 118, no. 1 (March 1, 1996): 33–39. http://dx.doi.org/10.1115/1.2817507.
Full textVan Buren, Tyler, Owen Williams, and Alexander J. Smits. "Turbulent boundary layer response to the introduction of stable stratification." Journal of Fluid Mechanics 811 (December 13, 2016): 569–81. http://dx.doi.org/10.1017/jfm.2016.775.
Full textHochareon, Pramote, Keefe B. Manning, Arnold A. Fontaine, John M. Tarbell, and Steven Deutsch. "Wall Shear-Rate Estimation Within the 50cc Penn State Artificial Heart Using Particle Image Velocimetry." Journal of Biomechanical Engineering 126, no. 4 (August 1, 2004): 430–37. http://dx.doi.org/10.1115/1.1784477.
Full textZaidi, TN, LV McIntire, DH Farrell, and P. Thiagarajan. "Adhesion of platelets to surface-bound fibrinogen under flow." Blood 88, no. 8 (October 15, 1996): 2967–72. http://dx.doi.org/10.1182/blood.v88.8.2967.bloodjournal8882967.
Full textHantgan, RR, G. Hindriks, RG Taylor, JJ Sixma, and PG de Groot. "Glycoprotein Ib, von Willebrand factor, and glycoprotein IIb:IIIa are all involved in platelet adhesion to fibrin in flowing whole blood." Blood 76, no. 2 (July 15, 1990): 345–53. http://dx.doi.org/10.1182/blood.v76.2.345.345.
Full text