Academic literature on the topic 'Waste processors of electronic equipment'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Waste processors of electronic equipment.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Waste processors of electronic equipment"
Arias, N. Rojas, S. F. Rojas Arias, L. A. Medrano Rivera, and M. E. Mendoza Oliveros. "Recovery of copper through concentration processes from ashes produced by WEEE pyrolysis." Journal of Applied Research and Technology 19, no. 2 (April 30, 2021): 163–71. http://dx.doi.org/10.22201/icat.24486736e.2021.19.2.1583.
Full textLv, Jun, and Shichang Du. "Kriging Method-Based Return Prediction of Waste Electrical and Electronic Equipment in Reverse Logistics." Applied Sciences 11, no. 8 (April 15, 2021): 3536. http://dx.doi.org/10.3390/app11083536.
Full textTange, Lein, and Dieter Drohmann. "Waste electrical and electronic equipment plastics with brominated flame retardants – from legislation to separate treatment – thermal processes." Polymer Degradation and Stability 88, no. 1 (April 2005): 35–40. http://dx.doi.org/10.1016/j.polymdegradstab.2004.03.025.
Full textSilva, Leandro H. de S., Agostinho A. F. Júnior, George O. A. Azevedo, Sergio C. Oliveira, and Bruno J. T. Fernandes. "Estimating Recycling Return of Integrated Circuits Using Computer Vision on Printed Circuit Boards." Applied Sciences 11, no. 6 (March 22, 2021): 2808. http://dx.doi.org/10.3390/app11062808.
Full textIsernia, Raffaele, Renato Passaro, Ivana Quinto, and Antonio Thomas. "The Reverse Supply Chain of the E-Waste Management Processes in a Circular Economy Framework: Evidence from Italy." Sustainability 11, no. 8 (April 24, 2019): 2430. http://dx.doi.org/10.3390/su11082430.
Full textChauhan, Garima, Prashant Ram Jadhao, K. K. Pant, and K. D. P. Nigam. "Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: Challenges & opportunities – A review." Journal of Environmental Chemical Engineering 6, no. 1 (February 2018): 1288–304. http://dx.doi.org/10.1016/j.jece.2018.01.032.
Full textMATSUHASHI, HIROKI. "Waste conveyance equipment in Yokohama Landmark Tower.MITSUBISHI waste evacuated transport equipment." SHINKU 35, no. 4 (1992): 442–44. http://dx.doi.org/10.3131/jvsj.35.442.
Full textFayustov, A. A., and P. M. Gureev. "Electrical and Electronic Equipment Waste Management Problems." Ecology and Industry of Russia 24, no. 6 (June 17, 2020): 60–66. http://dx.doi.org/10.18412/1816-0395-2020-6-60-66.
Full textCucchiella, Federica, Idiano D’Adamo, S. C. Lenny Koh, and Paolo Rosa. "A profitability assessment of European recycling processes treating printed circuit boards from waste electrical and electronic equipments." Renewable and Sustainable Energy Reviews 64 (October 2016): 749–60. http://dx.doi.org/10.1016/j.rser.2016.06.057.
Full textStefanut, Mariana Nela, Zoltan Urmosi, Firuta Fitigau, Adina Cata, Paula Sfirloaga, Raluca Pop, Cristian Tanasie, and Daniel Boc. "RECOVERY OF PRECIOUS METALS FROM WASTE ELECTRONIC EQUIPMENT." Environmental Engineering and Management Journal 12, no. 5 (2013): 1023–29. http://dx.doi.org/10.30638/eemj.2013.126.
Full textDissertations / Theses on the topic "Waste processors of electronic equipment"
Kunrath, Jorge Luiz. "Resíduos eletroeletrônicos : um diagnóstico da cadeia de processamento." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/118849.
Full textRecognized as a world problem, the increasing volume of electronic waste gives rise to as much concern as the practice of discarding this equipment because, in its fabrication, toxic metals are used, which causes possible health risks for human beings and for the environment. Electronic equipment waste also has precious metals within its composition, such as gold and silver, besides significant levels of copper, which represents a source of commercial interest in terms of the recuperation of these materials and a subsequent reduction in the necessity of exploration of these natural resources. These factors, together with the rapid transformation into obsolescence and later disposal of the equipment, has stimulated a complex production chain made up of companies who collect, separate, break up, recuperate, store and recycle these materials. In this interchange, various interactions occur between the companies and the society with a consequent social, economic and environmental impact. The present research has made a diagnosis of one part of this chain, as in the “waste processors”, that means the companies which carry out the collection, storage, separation and transformation of the equipment. The majority of the processes are manual with a few cases of mechanical processes in some stages. They operate at the pre-processing stage as input suppliers for the rest of the chain. These companies do not carry out the more complex procedures of recycling, such as pyrometallurgy, hydrometallurgy or electrometallurgy. To achieve the proposed objective, a semi-structured questionnaire was used, directed towards previously selected companies on a national scale. The collected data were tabled and analyzed within their qualitative and quantitative context with a cross-check information. The results of the research produced information in relation to the productive system, the volume which is processed, the economic aspects and the sector management. It was possible to identify the various levels of maturation and management, where some companies operate with a consistent administrative structure, knowledge, compliance with the law and environmental consciousness but where others operate with deficient management and a lack of formality. They have an average capacity of waste processing of residues of 100 tons per month with 50% utilization of this capacity. The recycled part of the waste represents an average of 80% of the total amount of collected material. The sectors that more generate this kind of waste are the industrial sector, with 41.25%, followed by the commercial and domestic sectors. Within an economic context, 70% of the income originates from Printed Circuit Boards (PCBs). Regarding the commercialization of the products, 75.39% are destined for other recycling plants in both Brazil and abroad. The collected data were not satisfactory in relation to the processing costs because of the low number of replies, demonstrating that the questions in relation to this could have been better formulated or the information collecting method should be improved. The main contributions resulting from this study are: create a vision of the volume flux of processed waste and allow for comprehension of the economical interactions between the various interested parties and the difficulties which the sector faces to achieve a sustainable management system for electronic waste.
Yura, Erika Tatiane Ferreira. "Processo de implantação dos sistemas de logística reversa de equipamentos eletroeletrônicos previstos na Política Nacional de Resíduos Sólidos: uma visão dos gestores." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/6/6134/tde-14102014-122039/.
Full textIntroduction: The feasibility of collection and proper disposal of post-consumer waste is provided by the National Solid Waste Policy (PNRS) - Law n° 12.305 2010-important regulatory framework for environmental management in Brazil. Among several aspects listed, highlight the principle of shared responsibility for the lifecycle of products and reverse logistics tool. The art. 33 of this law considers a priority the implementation of reverse logistics systems (SLR) for six classes of waste, including waste electrical and electronic equipment (WEEE). Objectives: To analyze and characterize the speech of managers of trade, industry, public authorities and cooperatives, related to consumer electronics over the implementation of SLR. Methods: Semi-structured interviews were conducted with nine managers involved in the implementation of electronic SLR process. Data were transcribed, categorized and analyzed using the software Classification Hierarchique Classificatoire et Cohésitive - CHIC®. The model of \"multiple streams\" was used to assist in understanding the process of formation of PNRS. Results: seven hierarchical trees of similarity and four groups with different forces of implication were obtained. Conclusion: The relevant points identified show that: 1) the \'Sectoral Agreement\' was the instrument chosen for the implementation of the WEEEs SLR, but there are barriers between the private and public sectors, generating delays in signing the agreement; 2) the cost of products \"orphans\" is a conflicting issue where industry and commerce not agree to bear the costs; 3) the government\'s role as an educator and inspector of the \"orphans\"; 4) the inclusion of recycling cooperatives is a complex issue that involves the resolution of structural issues and training of human resources; 5) consumer participation is critical to the effectiveness of the reverse logistics.
Campolina, Juliana Mendes. "Inventário do ciclo de vida do processo de reciclagem de plásticos de resíduos de equipamentos elétricos e eletrônicos (REEE): um estudo de caso." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/8348.
Full textApproved for entry into archive by Maria de Lourdes Mariano (lmariano@ufscar.br) on 2017-01-06T14:27:26Z (GMT) No. of bitstreams: 1 CAMPOLINA_Juliana_Mendes_2015.pdf: 2462186 bytes, checksum: 5b3b525f1fd5ce8e7396d2e332063a8e (MD5)
Approved for entry into archive by Maria de Lourdes Mariano (lmariano@ufscar.br) on 2017-01-06T14:27:33Z (GMT) No. of bitstreams: 1 CAMPOLINA_Juliana_Mendes_2015.pdf: 2462186 bytes, checksum: 5b3b525f1fd5ce8e7396d2e332063a8e (MD5)
Made available in DSpace on 2017-01-06T14:27:40Z (GMT). No. of bitstreams: 1 CAMPOLINA_Juliana_Mendes_2015.pdf: 2462186 bytes, checksum: 5b3b525f1fd5ce8e7396d2e332063a8e (MD5) Previous issue date: 2015-08-06
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
The consumption of electrical and electronic equipment (EEE) has rapidly increased due to the increasing technological advances and the desire of society of using these products. Therefore, the generation of wastes electrical and electronic equipment l (WEEE) is increasing consistently. WEEE contain components that are harmful to human health and the environment because they have in their composition various dangerous substances, such as heavy metals and flame retardants. In order to manage such wastes, the Brazilian law number 12,305 / 2010 known as the National Policy on Solid Waste (NPSW), entered into force in August 2014. The law provides guidelines for the integrated and solid waste management through the allocation and appropriate treatment by reverse logistics following a hierarchy consisting of non-generation, reduction, reuse, recycling, treatment and final disposal in landfills. Considering this context, this research uses an environmental management tool known as Life Cycle Assessment (LCA) that identifies, quantifies and assesses the environmental aspects associated with products, processes and services throughout their lifecycle. The life cycle begins when resources are required (raw materials, energy and water) for a particular product manufacturing and ends after the end of its life returning to the environment. Some benefits that LCA provides are the environmental impact assessment and identification of critical points associated with a particular product and or process, or in comparing two or more products and or similar processes guiding decision-making. It is also effective in the selection of relevant environmental indicators for products and or processes, quantification of environmental emissions for each stage of the life cycle of a product and or process and evaluation of human and ecological effects of consuming materials. The set of data and calculation procedures that define the inputs and outputs of a system aiming to quantify energy consumption, raw material and other physical inputs and outputs consist of products, air emissions, water waste, solid waste and other environmental aspects is known as Life Cycle Inventory (LCI). This study aimed to the preparation of Life Cycle Inventory (LCI) of WEEE plastic recycling process at a company in the region of Sorocaba/SP focusing on waste related to Information and Communication Technology (ICT). The results observed provided to identify and quantify environmental aspects generated in WEEE recycling steps and can thus, in the future, continue the study through the stages of Evaluation and Interpretation of results for obtention of every category of environmental impact and their respective contribution. The results obtained allowed the comparison of the production process of high-impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS), both recycled with the same of virgin raw material source, which was founded that the studied system saves about 90% of energy for recycling HIPS and ABS and provided a 84% reduction in CO2 emissions into the atmosphere for the recycling of HIPS and 87% of CO2 into the recycling of ABS. The study showed that the WEEE plastic recycling process provided benefits for the environment and human health by reducing the consumption of natural resources and energy, and contributed to the guidelines proposed in NPSW, which settles a requirement of reverse logistics for WEEE. The research also contributed to the expansion of the LCA database in Brazil and the world can be used in future work of the same nature.
O consumo de equipamentos elétricos e eletrônicos (EEE) tem aumentado rapidamente devido ao crescente avanço tecnológico e ao desejo da sociedade pelo uso desses produtos. Desta forma, a geração de resíduos de equipamentos elétricos e eletrônicos (REEE) está cada vez mais em ascensão. Os REEE possuem componentes que fazem mal a saúde humana e ao meio ambiente por apresentarem em sua composição diversas substâncias perigosas, como por exemplo, metais pesados e retardantes de chama. Com o objetivo de gerenciar os resíduos, em agosto de 2014, entrou em vigor a lei de número 12.305/2010 conhecida como a Política Nacional de Resíduos Sólidos (PNRS). A lei apresenta diretrizes relativas à gestão integrada e ao gerenciamento de resíduos sólidos através da destinação e tratamento adequado mediante a logística reversa seguindo uma hierarquia que consiste em não geração, redução, reutilização, reciclagem, tratamento e disposição final em aterros. Considerando esse contexto, utilizou-se nessa pesquisa uma ferramenta de gestão ambiental conhecida como Avaliação do Ciclo de Vida (ACV) que identifica, quantifica e avalia os aspectos ambientais associados aos produtos, processos e serviços durante todo o seu ciclo de vida. O ciclo de vida inicia-se quando os recursos são requeridos (matérias primas, energia e água) para a manufatura de determinado produto e finalizase após o fim de vida ao retornar para o meio ambiente. Alguns benefícios que a ACV proporciona são a avaliação dos impactos ambientais e identificação de pontos críticos associados a um determinado produto e/ou processo ou na comparação de dois ou mais produtos e/ou processos similares orientando na tomada de decisões, seleção de indicadores ambientais relevantes de produtos e/ou processos, quantificação de liberações ambientais em relação a cada estágio do ciclo de vida de um produto e/ou processo e avaliação dos efeitos humanos e ecológicos do consumo de materiais. O conjunto de dados e procedimentos de cálculos que definem as entradas e saídas de um sistema com o objetivo de quantificar o consumo de energia, matériaprima e outras entradas físicas e as saídas constituído por produtos, emissões atmosféricas, efluentes líquidos, resíduos sólidos e outros aspectos ambientais é conhecido como Inventário do Ciclo de Vida (ICV). O presente estudo teve como objetivo a elaboração do Inventário do Ciclo de Vida (ICV) de um processo de reciclagem de plástico de REEE em uma empresa na região deSorocaba/SP. Com os resultados obtidos foi possível identificar e quantificar aspectos ambientais gerados nas etapas de reciclagem de REEE, podendo, assim, no futuro dar continuidade ao estudo através das etapas de Avaliação e Interpretação dos resultados para a obtenção de todas as categorias de impactos ambientais e a suas respectivas contribuições. Os resultados obtidos permitiram a comparação do processo de produção do poliestireno de alto impacto (HIPS) e do acrilonitrilo-butadieno-estireno (ABS) reciclados com os mesmos de origem de matéria prima virgem, onde foi verificado que o sistema estudado economiza aproximadamente 90% de energia para a reciclagem do HIPS e do ABS e apresentaram uma redução de 84% na emissão de CO2 para a atmosfera para a reciclagem do HIPS e uma redução de 87% de CO2 para a reciclagem do ABS. O estudo mostrou que o processo de reciclagem de plásticos de REEE proporcionou benefícios para o meio ambiente e à saúde humana através da redução do consumo de recursos naturais e energia, e contribuiu com as diretrizes propostas na PNRS, onde estabelece a obrigatoriedade da logística reversa dos REEE. A pesquisa, também, contribuiu para a ampliação do banco de dados de ACV no Brasil e no mundo podendo ser utilizado em futuros trabalhos de mesma natureza.
Cheng, Xiufang. "Recycling of plastics derived from end-of-life (EOL) electronic equipment." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3689.
Full textTitle from document title page. Document formatted into pages; contains viii, 75 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 71-73).
Feszty, Katalin. "An economic appraisal of collection systems for waste electrical and electronic equipment (WEEE)." Thesis, Glasgow Caledonian University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289505.
Full textVasudevan, Vivek. "Evaluation of the separation involved in recycling end-of-life (EOL) electronic equipment." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=45.
Full textTitle from document title page. Document formatted into pages; contains xi, 92 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 74-76).
Micheaux, Helen. "Le retour du commun au cœur de l’action collective : le cas de la Responsabilité Élargie du Producteur comme processus de responsabilisation et de co-régulation." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM030/document.
Full textThe Linear Economy is structured on: extraction, production, product use and landfill. This model prevails although it is a threat to the preservation of natural resources. Whereas, Waste Electrical and Electronic Equipment (WEEE) constitute “Urban Mines” that are rich in valuable metals. Public policies from the 70s, based on regulatory constraints, have proved to be inefficient in instigating innovative and collective processes.In this thesis, we study an alternative approach based on the responsabilization of producers through co-regulated action between public and private actors. While responsibility is often linked to individualism, this work scrutinizes the substance of collective responsibility. Furthermore, in consideration of responsabilization as a mode of political governance, we examine the processes and the instruments which could be engaged to bestow collective responsibility on private actors.Through an exploratory, qualitative and longitudinal approach in the context of the WEEE sector, we propose new co-regulation principles. The research is based on the literature of the commons in which the conditions of a collective governance are discussed. The theoretical propositions are considered in the perspective of a comparative analysis at the European level
Md, Ali Umi Fazara. "Electrochemical separation and purification of metals from waste electrical and electronic equipment (WEEE)." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/7108.
Full textAsvestas, Ioannis. "Pyrolysis of Waste Electrical and Electronic Equipment (WEEE) Plastics for Energy and Material Recovery." Thesis, KTH, Energi- och ugnsteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240087.
Full textSamhället strävar efter att ta itu med överutvinningen av jordens resurser på grund av den pågåendebefolkningsökningen. De ökade behoven hos energi och materiella resurser leder till en ökandemängd materialavfall, vilket inkluderar en mängd farliga föroreningar bland dem. Avfall av elektriskoch elektronisk utrustning utgör ett universellt problem på grund av sin stora mängd, ansvarig förmiljöföroreningar och många sjukdomar hos människor och djur. Den stora efterfrågan på elektriskoch elektronisk utrustning tillsammans med den korta livslängden på grund av dess föryngring ledertill utvidgningen av WEEE-avfallsströmmen. Energi och materialåtervinning från WEEE kanbetydligt minska över-extraktion av ädelmetaller och mineraler tillsammans med bränslen mot en merhållbar framtid. För närvarande finns det flera sätt att behandla WEEE och återvinna materialfraktioner tillsammansmed energi, såsom förbränning och deponering. Termokemisk behandling av WEEE erbjudermöjlighet att omvandla avfall till energi och material samtidigt, på ett miljövänligare sätt, vilketresulterar i en mer hållbar avfallshantering.I denna forskning undersöks pyrolys som en metod för energi och materialåtervinning från WEEE.Bromerad plast tillsammans med polyetylenplastblandningar har förvärvats från Stena och BolidenAB separationsprocesser. Båda materialen utsätts för pyrolys i en fast bädd och en skruvreaktor.Pyrolysprodukterna visar deras starka förhållande till pyrolys-temperaturen, reaktortypen och denursprungliga sammansättningen av råmaterialet. De utförda experimenten visar den uppåtgåendetrenden hos de gasformiga produkterna till förmån för oljorna som pyrolystemperaturökningen.Mängden fast substans förblev nästan vid samma nivåer genom temperaturintervallet, vilket innebäratt inga högre temperaturer behövs för att uppnå högre sönderdelningshastigheter för det testadematerialet. Oreagerat kol och oorganiska föreningar hamnar i den fasta återstoden som kan användassom bränsle vid förbränningsprocessen. Metallfraktionen kan separeras och återvinnas, eftersom denhar kommersiellt värde. De angivna huvudolja-föreningarna var styren, toluen, etylbensen, alfa-metylstyrenbensen, fenol.Föreningar såsom bensen, inden och p-xylen framställdes när de organiska föreningarnasönderdelades vidare under försöken vid de högsta temperaturerna. Klor och brominnehåll måstesepareras för att vara ett formidabelt bränsle.Mängden brännbara gaser ökade och deras energipotential med temperaturökningen. Den gasformigafraktionen består huvudsakligen av: H2, CO, CH4, CO2, C2H2, C2H4, C2H6, C3H6, C3H8. Bådegasformiga och oljeföreningar kan användas som bränslen i en förbränningsprocess. Mängdenhalogener mättes vid låga halter inom produktsortimentet, fastän deras separation är viktig.Pyrolys av WEEE är en lovande metod för energi och materialåtervinning som kan öka vårt samhälleshållbarhet.
Gottberg, Annika. "Producer responsibility for WEEE as a driver of ecodesign: Case studies of business responses to producer responsibility charges." Thesis, Cranfield University, 2003. http://hdl.handle.net/1826/745.
Full textBooks on the topic "Waste processors of electronic equipment"
Roy, Ratul. End-of-life electronic equipment waste. London: Centre for Exploitation of Science and Technology, 1991.
Find full textWaste electrical and electronic equipment (WEEE) handbook. Cambridge: Woodhead Publishing, 2012.
Find full textC, Great Britain Parliament House of Commons European Standing Committee. Waste electrical and electronic equipment: Wednesday 28 March 2001. London: Stationery Office, 2001.
Find full textIllinois. Bureau of Energy and Recycling. Managing used computers & electronic equipment. Springfield, Ill: Illinois Dept. of Commerce and Economic Opportunity, Bureau of Energy and Recycling, 2003.
Find full textGreat Britain. Parliament. House of Commons. European Standing Committee C. Waste from electrical and electronic equipment, Wednesday 17 July 2002. London: Stationery Office, 2002.
Find full textSinha, Satish. Waste electrical and electronic equipment: The EU and India, sharing best practices. New Delhi: Toxics Link, 2011.
Find full textOgilvie, S. M. Recovery of waste from electrical & electronic equipment: Economic & environmental impacts : a report produced for European Commission DG XI. Abingdon: AEA Technology, 1997.
Find full textNoel, Duffy, Cork Institute of Technology. Clean Technology Centre., Ireland Environmental Protection Agency, and Environmental Research Technological Development and Innovation Programme., eds. Waste electrical and electronic equipment (WEEE) collection trials in Ireland (2001-WM/MS1-M1): Synthesis report. Johnstown Castle, Co. Wexford: Environmental Protection Agency, 2004.
Find full textGreat Britain. Parliament. House of Commons. Environment, Food and Rural Affairs Committee. End of Life Vehicles Directive and Waste Electrical and Electronic Equipment Directive: Government reply to the committee's report : eighth special report. London: Stationery Office, 2004.
Find full textIndustry, Great Britain Department of Trade and. Consultation paper of 30 July 2004 by the UK Government, Scottish Executive, Welsh Assembly Government and Northern Ireland Administration on the implementation of directives of the European Council and Parliament: 2002/96/EC of 17 January 2003, Waste electricl and electronic equipment (The WEEE directive) & 2202/95/EC of 27 Janary 2003, Restriction of the use of certain hazardous substances in electricl and electronic equipment (The ROHS directive). London: The Department, 2004.
Find full textBook chapters on the topic "Waste processors of electronic equipment"
Luling, Yu, He Wenzhi, and Li Guangming. "Processes and Mechanisms in Hydrothermal Degradation of Waste Electric and Electronic Equipment." In Reactions and Mechanisms in Thermal Analysis of Advanced Materials, 411–35. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119117711.ch17.
Full textPoudelet, Louison, Anna Castellví, and Laura Calvo. "An Innovative (DIW-Based) Additive Manufacturing Process." In New Business Models for the Reuse of Secondary Resources from WEEEs, 65–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74886-9_6.
Full textBigum, Marianne, and Thomas H. Christensen. "Waste Electrical and Electronic Equipment." In Solid Waste Technology & Management, 960–70. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470666883.ch59.
Full textZiegler, Oliver. "Waste Electrical and Electronic Equipment." In EU Regulatory Decision Making and the Role of the United States, 93–141. Wiesbaden: Springer Fachmedien Wiesbaden, 2012. http://dx.doi.org/10.1007/978-3-658-00054-7_4.
Full textChandrappa, Ramesha, and Diganta Bhusan Das. "Waste From Electrical and Electronic Equipment." In Solid Waste Management, 197–216. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28681-0_8.
Full textJha, Manis Kumar, Pankaj Choubey, Archana Kumari, Rakesh Kumar, Vinay Kumar, and Jae-chun Lee. "Leaching of Lead from Solder Material Used in Electrical and Electronic Equipment." In Recycling of Electronic Waste II, 25–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118086391.ch4.
Full textMinimol, M., Vidya Shetty K, and M. B. Saidutta. "Biohydrometallurgical methods and the processes involved in the bioleaching of WEEE." In Environmental Management of Waste Electrical and Electronic Equipment, 89–107. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822474-8.00005-2.
Full textMenad, N. E. "Physical Separation Processes in Waste Electrical and Electronic Equipment Recycling." In WEEE Recycling, 53–74. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-803363-0.00003-1.
Full textHernandez, Alexander A. "Green IT Adoption Practices in Education Sector." In Waste Management, 1379–95. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1210-4.ch063.
Full textSinioros, Panagiotis, Abas Amir Haidari, Nikolaos Manousakis, Michael Lasithiotakis, and Ourania Tzoraki. "Renovation and Reuse of Waste Electrical and Electronic Equipment in the Direction of Eco-Design." In Product Design. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91376.
Full textConference papers on the topic "Waste processors of electronic equipment"
Tumkor, Serdar, John W. Sutherland, and Vishesh V. Kumar. "Electrical and Electronic Equipment Recovery and Recycling in Turkey." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81358.
Full textXia, Kai, Liang Gao, Weidong Li, Lihui Wang, and Kuo-Ming Chao. "A Q-Learning Based Selective Disassembly Planning Service in the Cloud Based Remanufacturing System for WEEE." In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4008.
Full textWang, Xi Vincent, Brenda N. Lopez N., Lihui Wang, Jinhui Li, and Winifred Ijomah. "A Smart Cloud-Based System for the WEEE Recovery/Recycling." In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4109.
Full textIshchenko, Vitalii. "WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT MANAGEMENT IN UKRAINE." In GEOLINKS 2019 Multidisciplinary International Scientific Conference. SAIMA CONSULT LTD, 2019. http://dx.doi.org/10.32008/geolinks2019/b3/v1/23.
Full textCapecci, Simone, Eduardo Cassisi, Giuseppe Granatiero, Cristiano Scavongelli, Simone Orcioni, and Massimo Conti. "Cloud-based system for waste electrical and electronic equipment." In 2017 13th Workshop on Intelligent Solutions in Embedded Systems (WISES). IEEE, 2017. http://dx.doi.org/10.1109/wises.2017.7986930.
Full textMachado, V. H., A. P. Barroso, A. R. Barros, and V. Cruz Machado. "Waste Electrical and Electronic Equipment Management. A case study." In EM). IEEE, 2010. http://dx.doi.org/10.1109/ieem.2010.5674459.
Full textBarletta, Ilaria, Bjorn Johansson, Klas Cullbrand, Max Bjorkman, and Johanna Reimers. "Fostering sustainable electronic waste management through intelligent sorting equipment." In 2015 IEEE International Conference on Automation Science and Engineering (CASE). IEEE, 2015. http://dx.doi.org/10.1109/coase.2015.7294122.
Full textLi, Danyang. "Review of Recycling and Processing of Waste Electronic Equipment." In International Conference on Education, Management and Computing Technology (ICEMCT-16). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icemct-16.2016.219.
Full textJinglei Yu, Meiting Ju, and Eric Williams. "Waste electrical and electronic equipment recycling in China: Practices and strategies." In 2009 IEEE International Symposium on Sustainable Systems and Technology (ISSST). IEEE, 2009. http://dx.doi.org/10.1109/issst.2009.5156728.
Full textSun, Jing, Yinsheng Li, and Kuo-Ming Chao. "A RFID-based tracking service of Waste Electrical and Electronic Equipment." In 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2013. http://dx.doi.org/10.1109/cscwd.2013.6581038.
Full textReports on the topic "Waste processors of electronic equipment"
Baxter, John, Margareta Wahlstrom, Malin Zu Castell-Rüdenhausen, and Anna Fråne. Plastic value chains: Case: WEEE (Waste Electrical and Electronic Equipment). Nordic Council of Ministers, February 2015. http://dx.doi.org/10.6027/tn2015-510.
Full text