Journal articles on the topic 'Water-ammonia absorption chillers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Water-ammonia absorption chillers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Agung, Desy, Gabriel Garcia Genta, Arnas Lubis, M. Idrus Alhamid, and Nasruddin Nasruddin. "Development of Key Components for 5 kW Ammonia–Water Absorption Chiller with Air-Cooled Absorber and Condenser." Energies 17, no. 17 (2024): 4376. http://dx.doi.org/10.3390/en17174376.
Full textLima, Alvaro A. S., Gustavo de N. P. Leite, Alvaro A. V. Ochoa, et al. "Absorption Refrigeration Systems Based on Ammonia as Refrigerant Using Different Absorbents: Review and Applications." Energies 14, no. 1 (2020): 48. http://dx.doi.org/10.3390/en14010048.
Full textEnoki, Koji, Fumi Watanabe, Atsushi Akisawa, and Toshitaka Takei. "Experimental Investigation of the Effect of Generator Temperature on the Performance of Solution Transportation Absorption Chiller." International Journal of Air-Conditioning and Refrigeration 25, no. 03 (2017): 1750028. http://dx.doi.org/10.1142/s2010132517500286.
Full textLazzarin, R. M., A. Gasparella, and P. Romagnoni. "Experimental report on the reliability of ammonia-water absorption chillers." International Journal of Refrigeration 19, no. 4 (1996): 247–56. http://dx.doi.org/10.1016/0140-7007(96)00017-5.
Full textTao, Xuan, Dhinesh Thanganadar, and Kumar Patchigolla. "Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance." Energies 15, no. 18 (2022): 6511. http://dx.doi.org/10.3390/en15186511.
Full textSteiu, Simona, Daniel Salavera, Joan Carles Bruno, and Alberto Coronas. "A basis for the development of new ammonia–water–sodium hydroxide absorption chillers." International Journal of Refrigeration 32, no. 4 (2009): 577–87. http://dx.doi.org/10.1016/j.ijrefrig.2009.02.017.
Full textWeber, Christine, Michael Berger, Florian Mehling, Alexander Heinrich, and Tomas Núñez. "Solar cooling with water–ammonia absorption chillers and concentrating solar collector – Operational experience." International Journal of Refrigeration 39 (March 2014): 57–76. http://dx.doi.org/10.1016/j.ijrefrig.2013.08.022.
Full textZacarias, Alejandro, J. A. Quiroz, Geydy Luz Gutiérrez-Urueta, M. Venegas, Ignacio Carvajal, and J. Rubio. "COMPARISON BETWEEN ADIABATIC AND NONADIABATIC ABSORPTION CHILLERS USING AMMONIA-LITHIUM NITRATE AND WATER-LITHIUM BROMIDE SOLUTIONS." Heat Transfer Research 51, no. 7 (2020): 609–21. http://dx.doi.org/10.1615/heattransres.2019026621.
Full textSteiu, Simona, Joan Carles Bruno, Alberto Coronas, Ma Fresnedo San Roman, and Inmaculada Ortiz. "Separation of Ammonia/Water/Sodium Hydroxide Mixtures Using Reverse Osmosis Membranes for Low Temperature Driven Absorption Chillers." Industrial & Engineering Chemistry Research 47, no. 24 (2008): 10020–26. http://dx.doi.org/10.1021/ie8004012.
Full textBoudéhenn, François, Sylvain Bonnot, Hélène Demasles, Florent Lefrançois, Maxime Perier-Muzet, and Delphine Triché. "Development and Performances Overview of Ammonia-water Absorption Chillers with Cooling Capacities from 5 to 100 kW." Energy Procedia 91 (June 2016): 707–16. http://dx.doi.org/10.1016/j.egypro.2016.06.234.
Full textSteiu, Simona, David Martínez-Maradiaga, Daniel Salavera, Joan Carles Bruno, and Alberto Coronas. "Effect of Alkaline Hydroxides on the Vapor−Liquid Equilibrium of Ammonia/Water and the Performance of Absorption Chillers." Industrial & Engineering Chemistry Research 50, no. 23 (2011): 13037–44. http://dx.doi.org/10.1021/ie200183n.
Full textZamora, Miguel, Mahmoud Bourouis, Alberto Coronas, and Manel Vallès. "Pre-industrial development and experimental characterization of new air-cooled and water-cooled ammonia/lithium nitrate absorption chillers." International Journal of Refrigeration 45 (September 2014): 189–97. http://dx.doi.org/10.1016/j.ijrefrig.2014.06.005.
Full textSouza, G. D. G., D. L. Sousa, F. J. S. Silva, W. Balmant, and A. B. Mariano. "EXERGETIC OPTIMIZATION OF AN ABSORPTION REFRIGERATION." Revista de Engenharia Térmica 21, no. 1 (2022): 40. http://dx.doi.org/10.5380/reterm.v21i1.86691.
Full textAlexander, Titlov, Vasyliv Oleg, Abdelkader Alnamer, and Morozov Alexey. "ANALYSIS OF ENERGY CHARACTERISTICS OF ABSORPTION WATER-AMMONIA REFRIGERATION MACHINES IN THE WASTE HEAT RECOVERY SYSTEMS OF GAS TURBINE INSTALLATIONS ON GAS MAIN PIPELINES." Technology audit and production reserves 5, no. 1 (49) (2019): 36–40. https://doi.org/10.15587/2312-8372.2019.183853.
Full textAhmad Ansari, Ezaz, and Sohail Bux. "Study of Ammonia Water Vapour Absorption Refrigeration Chiller Run by Solar Thermal Energy." International Journal of Scientific Engineering and Research 5, no. 7 (2017): 385–88. https://doi.org/10.70729/22071701.
Full textLe Lostec, Brice, Nicolas Galanis, and Jocelyn Millette. "Simulation of an ammonia–water absorption chiller." Renewable Energy 60 (December 2013): 269–83. http://dx.doi.org/10.1016/j.renene.2013.05.027.
Full textErickson, Donald C., Gopalakrishnan Anand, and Ellen Makar. "Absorption Refrigeration Cycle Turbine Inlet Conditioning." International Journal of Air-Conditioning and Refrigeration 23, no. 01 (2015): 1550003. http://dx.doi.org/10.1142/s2010132515500030.
Full textAnand, Gopalakrishnan, Donald C. Erickson, and Ellen Makar. "Characterization of Ammonia–Water Absorption Chiller and Application." International Journal of Air-Conditioning and Refrigeration 26, no. 04 (2018): 1850035. http://dx.doi.org/10.1142/s2010132518500359.
Full textChua, H. T., H. K. Toh, and K. C. Ng. "Thermodynamic modeling of an ammonia–water absorption chiller." International Journal of Refrigeration 25, no. 7 (2002): 896–906. http://dx.doi.org/10.1016/s0140-7007(01)00101-3.
Full textLe Lostec, Brice, Nicolas Galanis, and Jocelyn Millette. "Experimental study of an ammonia-water absorption chiller." International Journal of Refrigeration 35, no. 8 (2012): 2275–86. http://dx.doi.org/10.1016/j.ijrefrig.2012.05.012.
Full textUllah, Ahmed, Asim Mushtaq, Rizwan Ahmed Qamar, and Uddin Ali. "Designing of advanced solar absorption chilling unit." International Journal of Engineering & Technology 9, no. 2 (2020): 284. http://dx.doi.org/10.14419/ijet.v9i2.30410.
Full textKong, Dingfeng, Jianhua Liu, Liang Zhang, Hang He, and Zhiyun Fang. "Thermodynamic and Experimental Analysis of an Ammonia-Water Absorption Chiller." Energy and Power Engineering 02, no. 04 (2010): 298–305. http://dx.doi.org/10.4236/epe.2010.24042.
Full textViswanathan, Vinodh K., Alexander S. Rattner, Matthew D. Determan, and Srinivas Garimella. "Dynamic model for a small-capacity ammonia–water absorption chiller." HVAC&R Research 19, no. 7 (2013): 865–81. http://dx.doi.org/10.1080/10789669.2013.833974.
Full textGoyal, Anurag, Alexander S. Rattner, and Srinivas Garimella. "Model-based feedback control of an ammonia-water absorption chiller." Science and Technology for the Built Environment 21, no. 3 (2015): 357–64. http://dx.doi.org/10.1080/10789669.2014.982412.
Full textKim, Byongjoo, and Jongil Park. "Dynamic simulation of a single-effect ammonia–water absorption chiller." International Journal of Refrigeration 30, no. 3 (2007): 535–45. http://dx.doi.org/10.1016/j.ijrefrig.2006.07.004.
Full textChekir, Nihel, Ali Snoussi, and Ammar Ben Brahim. "Alternative Refrigerants for Solar Absorption Air-Conditioning." International Journal of Air-Conditioning and Refrigeration 28, no. 01 (2019): 2050001. http://dx.doi.org/10.1142/s2010132520500017.
Full textMay, S. El, I. Boukholda, and A. Bellagi. "Energetic and exergetic analysis of a commercial ammonia water absorption chiller." International Journal of Exergy 8, no. 1 (2011): 33. http://dx.doi.org/10.1504/ijex.2011.037213.
Full textGarimella, Srinivas, Mikko J. Ponkala, Anurag Goyal, and Marcel A. Staedter. "Waste-heat driven ammonia-water absorption chiller for severe ambient operation." Applied Thermal Engineering 154 (May 2019): 442–49. http://dx.doi.org/10.1016/j.applthermaleng.2019.03.098.
Full textGoyal, Anurag, Marcel A. Staedter, Dhruv C. Hoysall, Mikko J. Ponkala, and Srinivas Garimella. "Experimental evaluation of a small-capacity, waste-heat driven ammonia-water absorption chiller." International Journal of Refrigeration 79 (July 2017): 89–100. http://dx.doi.org/10.1016/j.ijrefrig.2017.04.006.
Full textPriedeman, Douglas K., Michael A. Garrabrant, James A. Mathias, Roger E. Stout, and Richard N. Christensen. "Performance of a Residential-Sized GAX Absorption Chiller." Journal of Energy Resources Technology 123, no. 3 (2001): 236–41. http://dx.doi.org/10.1115/1.1385519.
Full textMoreira, José Luciano Batista, Adriano da Silva Marques, Taynara Geysa Silva do Lago, Victor Carlos de Lima Arruda, and Monica Carvalho. "Thermoeconomic Evaluation of a High-Performance Solar Biogas Polygeneration System." Energies 17, no. 16 (2024): 4172. http://dx.doi.org/10.3390/en17164172.
Full textKabalu, Wamunyima, and Luwaya Edwin. "Utilization of Geothermal Fluid as a Heat Source for Absorption Refrigeration System for Food Preservation – A Case of Bwanda and Gwisho Hotsprings." Engineering and Technology Journal 9, no. 05 (2024): 3988–99. https://doi.org/10.5281/zenodo.11234612.
Full textStaedter, Marcel A., and Srinivas Garimella. "Development of a micro-scale heat exchanger based, residential capacity ammonia–water absorption chiller." International Journal of Refrigeration 89 (May 2018): 93–103. http://dx.doi.org/10.1016/j.ijrefrig.2018.02.016.
Full textLima, Lucas, and Carlos Keutenedjian Mady. "Energy and Exergy Analysis of an Absorption and Mechanical System for a Dehumidification Unit in a Gelatin Factory." Entropy 23, no. 4 (2021): 415. http://dx.doi.org/10.3390/e23040415.
Full textHIRAYAMA, Kaoru, Atsushi AKISAWA, Yuki UEDA, Kazumichi ARAKI, and Toshitaka TAKEI. "418 Heat storage by solution concentration difference based on absorption chiller cycle with ammonia/water." Proceedings of the Symposium on Environmental Engineering 2013.23 (2013): 324–27. http://dx.doi.org/10.1299/jsmeenv.2013.23.324.
Full textBoudéhenn, François, Hélène Demasles, Joël Wyttenbach, Xavier Jobard, David Chèze, and Philippe Papillon. "Development of a 5 kW Cooling Capacity Ammonia-water Absorption Chiller for Solar Cooling Applications." Energy Procedia 30 (2012): 35–43. http://dx.doi.org/10.1016/j.egypro.2012.11.006.
Full textTriché, Delphine, Sylvain Bonnot, Maxime Perier-Muzet, François Boudéhenn, Hélène Demasles, and Nadia Caney. "Experimental and numerical study of a falling film absorber in an ammonia-water absorption chiller." International Journal of Heat and Mass Transfer 111 (August 2017): 374–85. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.008.
Full textEzzine, N. Ben, M. Barhoumi, Kh Mejbri, S. Chemkhi, and A. Bellagi. "Solar cooling with the absorption principle: first and Second Law analysis of an ammonia—water double-generator absorption chiller." Desalination 168 (August 2004): 137–44. http://dx.doi.org/10.1016/j.desal.2004.06.179.
Full textSoto-Herranz, María, Mercedes Sánchez-Báscones, Juan Manuel Antolín-Rodríguez, Matías B. Vanotti, and Pablo Martín-Ramos. "Effect of Acid Flow Rate, Membrane Surface Area, and Capture Solution on the Effectiveness of Suspended GPM Systems to Recover Ammonia." Membranes 11, no. 7 (2021): 538. http://dx.doi.org/10.3390/membranes11070538.
Full textBeccali, Marco, Maurizio Cellura, Sonia Longo, Bettina Nocke, and Pietro Finocchiaro. "LCA of a solar heating and cooling system equipped with a small water–ammonia absorption chiller." Solar Energy 86, no. 5 (2012): 1491–503. http://dx.doi.org/10.1016/j.solener.2012.02.010.
Full textMansouri, Rami, Ismail Boukholda, Mahmoud Bourouis, and Ahmed Bellagi. "Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform." Energy 93 (December 2015): 2374–83. http://dx.doi.org/10.1016/j.energy.2015.10.081.
Full textСинцов and A. Sintsov. "Improving the Efficiency of Cold Production." Safety in Technosphere 3, no. 4 (2014): 45–50. http://dx.doi.org/10.12737/5303.
Full textNguyen, Phu Minh. "Energy and exergy estimation for a combined cycle of solid CO2 production and NH3-H2O single effect absorption chiller." Science and Technology Development Journal 19, no. 1 (2016): 61–69. http://dx.doi.org/10.32508/stdj.v19i1.611.
Full textPalacios-Lorenzo, María Esther, and José Daniel Marcos. "Downsizing strategy for an air-cooled indirect-fired single-effect ammonia-water absorption chiller in part-load operation in hot climates." Case Studies in Thermal Engineering 53 (January 2024): 103911. http://dx.doi.org/10.1016/j.csite.2023.103911.
Full textSutter, Daniel, Matteo Gazzani, and Marco Mazzotti. "A low-energy chilled ammonia process exploiting controlled solid formation for post-combustion CO2capture." Faraday Discussions 192 (2016): 59–83. http://dx.doi.org/10.1039/c6fd00044d.
Full textGarimella, S., and V. S. Garimella. "Commercial Boiler Waste-Heat Utilization for Air Conditioning in Developing Countries." Journal of Energy Resources Technology 121, no. 3 (1999): 203–8. http://dx.doi.org/10.1115/1.2795983.
Full textAltun, Ayşe Fidan. "A Conceptual Design and Analysis of a Novel Trigeneration System Consisting of a Gas Turbine Power Cycle with Intercooling, Ammonia–Water Absorption Refrigeration, and Hot Water Production." Sustainability 14, no. 19 (2022): 11820. http://dx.doi.org/10.3390/su141911820.
Full textMoya, M., J. C. Bruno, P. Eguia, E. Torres, I. Zamora, and A. Coronas. "Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia–water absorption chiller." Applied Energy 88, no. 12 (2011): 4424–40. http://dx.doi.org/10.1016/j.apenergy.2011.05.021.
Full textMarques, Adriano da S., Monica Carvalho, Álvaro A. V. Ochoa, Ronelly J. Souza, and Carlos A. C. dos Santos. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit." Energies 13, no. 20 (2020): 5417. http://dx.doi.org/10.3390/en13205417.
Full textMarques, Adriano, Yipsy Benito, Alvaro Ochoa, and Monica Carvalho. "Thermoeconomic analysis of a microcogeneration system using the theory of exergetic cost." Thermal Science, no. 00 (2023): 23. http://dx.doi.org/10.2298/tsci220806023m.
Full text