Dissertations / Theses on the topic 'Water Electrolysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Water Electrolysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Stemp, Michael C. "Homogeneous catalysis in alkaline water electrolysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0019/MQ45844.pdf.
Full textEngel, Johanna Ph D. Massachusetts Institute of Technology. "Advanced photoanodes for photoassisted water electrolysis." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89856.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
127
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 189-199).
With continuously growing energy demands, alternative, emission-free solar energy solutions become ever more attractive. However, to achieve sustainability, efficient conversion and storage of solar energy is imperative. Photoelectrolysis harnesses solar energy to evolve hydrogen and oxygen from water, thereby enabling energy storage via chemical means. Hematite or [alpha]-Fe₂O₃ has emerged as a highly promising photoanode candidate for photoelectrochemical cells. While significant improvements in its performance have recently been achieved, it remains unclear why the maximum photocurrents still remain well below their theoretical predictions. This study investigates the defect chemistry and conduction mechanism of hematite in order to understand and improve this material's shortcomings. A defect model for donor doped hematite was derived and its predictions conformed by the electrical conductivity of ilmenite hematite solid solution bulk samples as a function of temperature and oxygen partial pressure. The enthalpies of the Schottky defect formation and the reduction reaction for hematite were determined as 13.4 eV and 5.4 eV, respectively. In addition, a temperature independent value for the electron mobility of 0.10 cm2/Vs for 1% Ti donor doped hematite was derived. Furthermore, the electrical conductivity of nanometer scale, epitaxially grown thin films of the ilmenite hematite solid solution system was characterized by electrical impedance spectroscopy. This work reports a detailed correlation between the electrical conductivity of the undoped hematite, the 1 atom% Ti doped hematite and the thin films with higher ilmenite content and the conditions under which they were annealed (20° C=/< T =/< 800° c and 10-4 atm =/< po2 =/< atm). Hematite's room temperature conductivity can be increased from ~10-11 S/cm for undoped hematite films by as much as nine orders of magnitude by doping with the Ti donor. Furthermore, by controlling the non-stoichiometry of Ti-doped hematite, one can tune its conductivity by up to five orders of magnitude. Depending on processing conditions, donor dopants in hematite may be compensated largely by electrons or by ionic defects (Fe vacancies). The electron mobility of the film was determined to be temperature independent at 0.01 cm2/Vs for the < 0001 > epitaxial film containing a Ti donor density of 4.0 x 1020 cm-3. Finally, the photoelectrochemical performance of these materials was tested by cyclic voltammetry and measurements of their quantum efficiencies. The 1% Ti doped hematite thin film exhibited the highest photocurrent density of these dense, thin films at 0.9mA/cm2 with an applied bias of 1.5V vs. RHE. The IPCE of this sample reached 15% at wavelengths between 300nm and 350nm after an annealing treatment at 580° for 36 h. The solid solution containing 33% ilmenite preformed nearly as well as the doped hematite. The performance decreased with higher ilmenite concentrations in the solid solution. For all samples containing any ilmenite, the onset potential shifted to lower values by ~200mV after the annealing treatment. The increase in charge carrier density upon reduction of Ti doped hematite was conformed by a Mott-Schottky analysis of the hematite/electrolyte interface. In contrast, only minor changes in the carrier density were observed when reducing an undoped hematite photoanode. Changes in slope of the Mott-Schottky plots revealed the presence of deep trap states in the hematite films. In-situ UV-vis spectroscopy displayed a pronounced optical signature corresponding to the existence of such deep levels. These results highlight the importance of carefully controlling photoanode processing conditions, even when operating within the material's extrinsic dopant regime, and more generally, provide a model for the electronic properties of semiconducting metal oxide photoanodes.
by Johanna Engel.
Ph. D.
Kopecek, Radovan. "Electrolysis of Titanium in Heavy Water." PDXScholar, 1995. https://pdxscholar.library.pdx.edu/open_access_etds/5023.
Full textZaczek, Christoph. "Electrolysis of Palladium in Heavy Water." PDXScholar, 1995. https://pdxscholar.library.pdx.edu/open_access_etds/5051.
Full textSathe, Nilesh. "Assessment of coal and graphite electrolysis." Ohio : Ohio University, 2006. http://www.ohiolink.edu/etd/view.cgi?ohiou1147975951.
Full textRasten, Egil. "Electrocatalysis in water electrolysis with solid polymerelectrolyte." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, 2001. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1177.
Full textDevelopment and optimization of the electrodes in a water electrolysis system using a polymer membrane as electrolyte have been carried out in this work. A cell voltage of 1.59 V (energy consumption of about 3.8 kWh/Nm3 H2) has been obtained at practical operation conditions of the electrolysis cell (10 kA ·m−2, 90 ◦C) using a total noble metal loading of less than 2.4 mg·cm−2 and a Nafion ® -115 membrane. It is further shown that a cell voltage of less than 1.5 V is possible at the same conditions by combination of the best electrodes obtained in this work.
The most important limitation of the electrolysis system using polymer membrane as electrolyte has proven to be the electrical conductivity of the catalysts due to the porous backing/current collector system, which increases the length of the current path and decreases the cross section compared to the apparent one. A careful compromise must therefore be obtained between electrical conductivity and active surface area, which can be taylored by preparation and annealing conditions of the metal oxide catalysts.
Anode catalysts of different properties have been developed. The mixed oxide of Ir-Ta (85 mole% Ir) was found to exhibit highest voltage efficiency at a current density of 10 kA · m−2 or below, whereas the mixed oxide of Ir and Ru (60-80 mole% Ir) was found to give the highest voltage efficiency for current densities of above 10 kA · m−2.
Pt on carbon particles, was found to be less suitable as cathode catalyst in water electrolysis. The large carbon particles introduced an unnecessary porosity into the catalytic layer, which resulted in a high ohmic drop. Much better voltage efficiency was obtained by using Pt-black as cathode catalyst, which showed a far better electrical conductivity.
Ru-oxide as cathode catalyst in water electrolysis systems using a polymer electrolyte was not found to be of particular interest due to insufficient electrochemical activity and too low electrical conductivity.
Gurrik, Stian. "Performance of supported catalysts for water electrolysis." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18880.
Full textLumanauw, Daniel. "Hydrogen bubble characterization in alkaline water electrolysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0017/MQ54129.pdf.
Full textIacomini, Christine Schroeder. "Combined carbon dioxide/water solid oxide electrolysis." Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/290073.
Full textNi, Meng, and 倪萌. "Mathematical modeling of solid oxide steam electrolyzer for hydrogen production." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39011409.
Full textOwe, Lars-Erik. "Characterisation of Iridium Oxides for Acidic Water Electrolysis." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14450.
Full textSutherland, Richard Daniel. "Performance of different proton exchange membrane water electrolyser components / cRichard Daniel Sutherland." Thesis, North-West University, 2012. http://hdl.handle.net/10394/9214.
Full textThesis (MIng (Chemical Engineering))--North-West University, Potchefstroom Campus, 2013.
Fiorentini, Diego. "Development of a polymeric diaphragm for Alkaline Water Electrolysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textRichardson, Peter. "Oxygen evolution electrocatalysts for proton exchange membrane water electrolysis." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/374786/.
Full textGojela, Ntombekaya. "Hydrogen economy : MEA manufacturing for PEM electrolysers." Thesis, Nelson Mandela Metropolitan University, 2011. http://hdl.handle.net/10948/1483.
Full textMangombo, Zelo. "The electrogeneration of hydroxyl radicals for water disinfection." Thesis, University of the Western Cape, 2006. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5745_1190373027.
Full textThis study has shown that OHË radicals can be generated in an Fe/O2 cell from the electrode products via Fenton&rsquo
s reaction and used for water disinfection. The cell system in which the experiments were carried out was open and undivided and contained two electrodes with iron (Fe) as the anode and oxygen (O2) gas diffusion electrode. Typically, 100 ml of Na2SO4.10H2O (0.5M) solution was used as a background electrolyte. OHË radicals were produced in-situ in an acidic solution aqueous by oxidation of iron (II), formed by dissolving of the anode, with hydrogen peroxide (H2O2). The H2O2 was electrogenerated by reduction of oxygen using porous reticulated vitreous carbon (RVC) as a catalyst.
Petrik, Leslie F. "Pt Nanophase supported catalysts and electrode systems for water electrolysis." Thesis, University of the Western Cape, 2008. http://hdl.handle.net/11394/2743.
Full textIn this study novel composite electrodes were developed, in which the catalytic components were deposited in nanoparticulate form. The efficiency of the nanophase catalysts and membrane electrodes were tested in an important electrocatalytic process, namely hydrogen production by water electrolysis, for renewable energy systems. The activity of electrocatalytic nanostructured electrodes for hydrogen production by water electrolysis were compared with that of more conventional electrodes. Development of the methodology of preparing nanophase materials in a rapid, efficient and simple manner was investigated for potential application at industrial scale. Comparisons with industry standards were performed and electrodes with incorporated nanophases were characterized and evaluated for activity and durability.
South Africa
Delgado, Dario. "Electrochemical properties of earth abundant catalysts for efficient water electrolysis." Thesis, Delgado, Dario (2016) Electrochemical properties of earth abundant catalysts for efficient water electrolysis. PhD thesis, Murdoch University, 2016. https://researchrepository.murdoch.edu.au/id/eprint/30718/.
Full textValat, Mathieu Jean. "Elemental and Isotopic Measurements on Palladium After Heavy Water Electrolysis." PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/60.
Full textZwaschka, Gregor [Verfasser]. "Shining New Light on Water Electrolysis: Probing Electrolytic Water Splitting on Au and Pt with Micron Spatial and Femtosecond Temporal Resolution / Gregor Zwaschka." Berlin : Freie Universität Berlin, 2021. http://d-nb.info/1224883977/34.
Full textSiguba, Maxhobandile. "The development of appropriate brine electrolysers for disinfection of rural water supplies." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=init_6284_1180438520.
Full textA comparative study of electrolysers using different anodic materials for the electrolysis of brine (sodium chloride) for the production of sodium hypochlorite as a source of available chlorine for disinfection of rural water supplies has been undertaken. The electrolyser design used was tubular in form, having two chambers i.e. anode inside and cathode outside, separated by a tubular inorganic ceramic membrane. The anode was made of titanium rod coated with a thin layer of platinum and a further coat of metal oxide. The cathode was made of stainless steel wire. An assessment of these electrolysers was undertaken by studying the effects of some variable parameters i.e.current, voltage and sodium chloride concentration. The cobalt electrolyser has been shown to be superior as compared to the ruthenium dioxide and manganese dioxide electrolysers in terms of hypochlorite generation. Analysis of hydroxyl radicals was undertaken since there were claims that these are produced during brine electrolysis. Hydroxyl radical analysis was not successful, since sodium hypochlorite and hypochlorous acid interfere using the analytical method described in this study.
Kinney, Chris 1982. "Water modeling the solid oxide membrane electrolysis with rotating cathode process." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32729.
Full textVita.
Includes bibliographical references (leaf 35).
The Kroll process for refining titanium is an expensive batch process which produces a final product that still requires intensive post processing to create usable titanium. A new process, Solid Oxide Membrane Electrolysis with Rotating Cathode (SOMERC) process is being explored. The SOMERC process is a continuous process that could produce large quantities of high quality titanium at a fraction of the cost of the Kroll process. This paper examines the fluid flow around the ingot in the SOMERC Process. A large shear between the ingot and surrounding fluid will create a fully-dense ingot instead of dendrites, because dendrites are undesirable. Using a camera, a plane of light and titanium dioxide particles, videos and pictures of the water were taken and analyzed to find how to create a large amount of shear between the ingot and the fluid. Out of the speeds tested, a rotation rate of 900Ê»/s for the ingot proved to create the most shear, and therefore the shear between the ingot and fluid increases with increasing rotation rate, making it more likely to suppress the formation of dendrites.
by Chris Kinney.
S.B.
Smith, Richard. "RuO2 Nanorods as an Electrocatalyst for Proton Exchange Membrane Water Electrolysis." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/527.
Full textCheng, Yi. "Carbon nanotubes based nanostructured catalysts for water electrolysis and fuel cells." Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/972.
Full textMersch, Dirk. "Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709273.
Full textGenova-Koleva, Radostina Vasileva. "Electrocatalyst development for PEM water electrolysis and DMFC: towards the methanol economy." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/462861.
Full textLa economía del metanol contempla el uso de dicho alcohol como combustible, obtenido a partir de hidrógeno y CO2 capturado de la combustión de combustibles fósiles, ayudando a mitigar el cambio climático. Para ello se han preparado nanopartículas y nanotubos de TiO2 y de TiO2 dopados con Nb como soportes de catalizadores para electrolizadores de agua PEM. El Nb permitió aumentar la superficie específica de los soportes hasta 300 m2 g-1 (nanotubos). Mediante XPS se demostró un aumento local de la densidad electrónica sobre el Pt soportado sobre TiO2 dopado con Nb, resultando el de contenido del 3 at. % en Nb el de mejores prestaciones para la reducción del hidrógeno, con valores superiores a los descritos en la literatura. Para el desprendimiento de oxígeno se sintetizaron los catalizadores IrO2 e IrRuOx (Ir: Ru de 60:40 at. %), también aplicados sobre nanotubos de TiO2. Se encontró una mejor actividad para IrO2 soportado sobre nanotubos de TiO2 dopados con Nb debido a una mejor dispersión del catalizador sobre el soporte. Se prepararon MEAs con los mejores electrodos para un electrolizador PEM mediante un nuevo método de calcomanía de baja temperatura. El mejor rendimiento correspondió al IrO2 (50 % en peso) soportado sobre nanotubos de TiO2 dopados con Nb en el ánodo, con escaso impacto económico con respecto al uso del IrO2 sin soportar. En cuanto a la pila de combustible DMFC, se prepararon electrodos de PtRu sin soportar, empleando tintas con Nafion y dos disolventes diferentes, con distinta polaridad, acetato de n-butilo (NBA) y 2-propanol (IPA). El tamaño de los agregados y la porosidad fue superior en NBA debido a su menor polaridad, obteniéndose también en este caso una mayor superficie activa. Las curvas de polarización en CH3OH 2 mol dm-3 y aire a 60 °C de los MEAs formulados con NBA, catalizados mediante negro de PtRu y negro de Pt en ánodo y cátodo, respectivamente, indicaron también mejores prestaciones cuando los MEAs se formularon con NBA en el ánodo en lugar de IPA. La densidad de corriente límite con NBA fue unas tres veces mayor y la densidad de potencia un 75% superior.
Law, Joseph. "The role of vanadium as a homogeneous catalyst in alkaline water electrolysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0020/MQ54216.pdf.
Full textTanaka, Yoshinori. "Studies on dissolution and characteristics of hydrogen bubble generated by water electrolysis." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144556.
Full text0048
新制・課程博士
博士(工学)
甲第11885号
工博第2578号
新制||工||1361(附属図書館)
23665
UT51-2005-N719
京都大学大学院工学研究科物質エネルギー化学専攻
(主査)教授 小久見 善八, 教授 垣内 隆, 教授 粟倉 泰弘
学位規則第4条第1項該当
Zhang, Zhihao. "The Development of Three Dimensional Porous Nickel Materials and their Catalytic Performance towards Oxygen Evolution Reaction in Alkaline Media." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40636.
Full textEccleston, Kelcey L. "Solid oxide steam electrolysis for high temperature hydrogen production." Thesis, University of St Andrews, 2007. http://hdl.handle.net/10023/322.
Full textEccleston, Kelcey Lynne. "Solid oxide steam electrolysis for high temperature hydrogen production /." St Andrews, 2007. http://hdl.handle.net/10023/322.
Full textHaug, Philipp [Verfasser]. "Experimental and theoretical investigation of gas purity in alkaline water electrolysis / Philipp Haug." München : Verlag Dr. Hut, 2019. http://d-nb.info/1181514061/34.
Full textSalazar, Gustavo, Wilmer Solis, and Leonardo Vinces. "A Mechanical Development of a Dry Cell to Obtain HHO from Water Electrolysis." Universidad Peruana de Ciencias Aplicadas (UPC), 2021. http://hdl.handle.net/10757/653837.
Full textThis article proposes a mechanical development of a dry cell in order to obtain HHO through water electrolysis. Calculations and technical specifications of the materials used for implementation are supported by mathematical, physical and chemical formulas and theories (Faraday´s Law, electrolysis process and mechanical design). The importance of mechanical design is focused on achieving efficient use of the energy provided to the cell that allows the H2 and O2 molecules to be separated without overheating the cell, evaporating the water, loss of current due to the geometry of the electrodes (Foucault Current). Moreover, choosing materials for proper implementation and physical robustness is mandatory. In addition, the mechanical design is not justified in different articles. Nevertheless, the mechanical design of the cell and the efficiency in the production of HHO are related. Therefore, the mechanical design and the calculations were performed, as well as the construction of the dry cell to obtain HHO. The results of the implementation and production were placed and compared with what theoretically the dry cell should produce from the law of Faraday. Finally, the volumetric flow of HHO obtained was 2.70 L per minute. It means a production efficiency of 98.68%. It is higher than the majority of the dry cells.
Revisión por pares
Mässgård, Hampus, and Arvid Jonsson. "An Industrial Perspective on Ultrapure Water Production for Electrolysis : A techno-economic assessment of membrane distillation for electrolysis - synergies, performance, costs, and value propositions." Thesis, KTH, Industriell ekonomi och organisation (Inst.), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298250.
Full textHållbar utveckling är en av de mest kritiska frågorna i dagens industrisektor, och flera aktörer söker alternativ till fossila bränslen. En av dessa lösningar är väte; en ren, lättantändlig gas som kan användas som bränsle i flera industriella processer, såsom stål- och kraftproduktion. Produktionen av hållbart grönt väte är idag småskalig och därav uppstår ett ökat behov av elektrolys. Elektrolys är ett sätt att producera grönt väte genom att separera vattenmolekyler till väte och syre med hjälp av energi. En avgörande aspekt är att denna process kräver extremt rent inmatningsvatten, även känt som ultrarent vatten. För att producera detta vatten undersöks två metoder; omvänd osmos och membrandestillation, och de jämförs ur en tekno-ekonomisk synvinkel. Projektet inleds med en litteraturundersökning, som ger en teoretisk bakgrund av kärnkoncept såsom olika typer av elektrolys, vattenrening, samt flera ekonomiska modeller och teorier som används i rapporten. Baserat på detta görs beräkningar för att konstatera om spillvärmen från elektrolysprocessen räcker för membrandestillationen. Utifrån de insamlade uppgifterna visar resultaten att membrandestillation kan köras helt på spillvärme från elektrolys, även med en 25% förlustfaktor inkluderad. Efter de tekniska beräkningarna gjordes ekonomiska beräkningar för att direkt jämföra ett system baserat på omvänd osmos och membrandestillation. OPEX och CAPEX för båda systemen beräknades över en 20-årsperiod och summerades, vilket gav ett totalpris för omvänd osmos vid 0,67 €/m3, medan membrandestillation har ett totalpris på 0,60 €/m3.Analysen av elektrolysörerna konstaterar att ’Proton-Exchange Membrane’ och ’Alkaline Water’ är två lämpliga metoder att kombinera med membrandestillation. Analysen av omvänd osmos och membrandestillation innehåller en längre diskussion om ekonomisk lönsamhet. I den jämförande analysen mellan omvänd osmos och membrandestillation hålls en längre diskussion om ekonomisk bärkraft. Det viktigaste med detta är att membrandestillation är billigare, både totalt och vid beräkning av nuvärdet. Slutligen görs en fallstudie av ett membrandestillationsföretag. Slutsatsen är att marknaden fortfarande befinner sig i de tidigare utvecklingsstadierna, och därför är kundrelationer avgörande. Detta förstärks genom modellen för värdeerbjudande, som visar att företaget bör fokusera på dessa relationer.
Ottosson, Anton. "Integration of Hydrogen Production via Water Electrolysis at a CHP Plant : A feasibility study." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83717.
Full textDayama, Parth Omprakash. "A Comparative Study of Electrodes and Membranes for Anion Exchange Membrane Water Electrolysis Systems." Thesis, KTH, Tillämpad elektrokemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300182.
Full textHydrogen can be produced from renewable energy sources using a novel anion exchange membrane water electrolysis (AEMWE) system. AEMWE has some benefits over the currently used state-of-the-art alkaline and proton exchange membrane water electrolysis systems. For instance, there is a possibility of using alkaline electrolytes (even pure water) and low-cost platinum-group-metal free catalysts together with an ion exchange membrane. However, the main challenge is that the AEMWE system should show excellent and stable performance, depending on the stability of the membrane and the electrodes. AemionTM anion exchange membranes (AEMs) of different thickness and water uptake capacity were investigated using a 5 cm2 AEMWE system. The electrochemical behaviour of these commercial AEMs was studied using nickel (Ni) felt electrodes. Among the investigated AEMs, the AF2-HWP8-75-X showed stable performance with a high frequency resistance (HFR) of 90 mΩ•cm2 and was able to reach a current density of 0.8 A/cm2 at 2.38 V using 1 M KOH at 60 ˚C. AEMWE systems based on AF2-HWP8-75-X and different electrode combinations were examined under the same operating conditions. An electrode combination with Raney-Ni and NiFeO as cathode and anode, respectively, showed the best performance during the degradation test and provided a current density of 1.06 and 3.08 A/cm2 at 2.00 and 2.32 V, respectively. The operating temperature and concentration of the KOH solution were reduced to 45 ˚C and 0.1 M, respectively, to study the effect of operating parameters on the flow cell performance. The flow cell showed good stability under the new operating conditions, but its performance was reduced significantly. It reached a current density of 0.8 A/cm2 at 2.25 V.
KNOB, DANIEL. "Geração de hidrogênio por eletrólise da água utilizando energia solar fotovoltaica." reponame:Repositório Institucional do IPEN, 2014. http://repositorio.ipen.br:8080/xmlui/handle/123456789/23300.
Full textMade available in DSpace on 2015-01-21T10:10:35Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
McCraven, Elizabeth Kathleen. "Electro-disinfection of Ballast Water." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/1095.
Full textBollineni, Shilpa. "Hydrogen production via carbon-assisted water electrolysis at room temperature effects of catalyst and carbon type /." Morgantown, W. Va. : [West Virginia University Libraries], 2008. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=6025.
Full textTitle from document title page. Document formatted into pages; contains x, 67 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 63-67).
Flores, Hernández José Roberto. "Optimization of membrane-electrode assemblies for SPE water electrolysis by means of design of experiments /." Stuttgart : Fraunhofer-IRB-Verl, 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014175428&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textGoñi, Urtiaga Asier. "Cesium dihydrogen phosphate as electrolyte for intermediate temperature proton exchange membrane water electrolysis (IT-PEMWE)." Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/2490.
Full textJia, Jingshu. "Fabrication of high quality one material anode and cathode for water electrolysis in alkaline solution /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?EVNG%202008%20JIA.
Full textSvengren, Henrik. "Water splitting by heterogeneous catalysis." Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-148181.
Full textBou-Saleh, Ziad. "Nickel-based 3D electrocatalyst layers for production of hydrogen by water electrolysis in an acidic medium." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112559.
Full textIt was demonstrated that patterning of a glassy carbon electrode substrate with a 3D polyaniline (PANI) matrix is a convenient way of increasing the electrocatalytically active surface area of electrodeposited Ni, and hence its apparent electrocatalytic activity. The optimized PANI/Ni electrocatalyst layer showed a significantly higher activity in the hydrogen evolution reaction (HER) then a commercially available Ni-plate surface (control surface).
It was also demonstrated that it is possible to produce a Ni-based HER electrocatalyst layer by synthesizing Ni nanoparticles and supporting them on Vulcan carbon. This electrocatalyst also offered a significantly higher electrocatalytic activity in the HER then the control surface, but lower then the optimized PANI/Ni electrocatalyst.
The electrocatalytic activity of the optimized PANI/Ni layer was also compared to the activity of a 3D catalyst produced by electro-coating a porous reticulated vitreous carbon (RVC) substrate with Ni. This electrocatalyst showed the highest HER electrocatalytic activity among the investigated layers when tested under potentiodynamic polarization conditions. However, under the potentiostatic conditions, the optimized PANI/Ni layer showed the highest electrocatalytic activity.
The mechanisms and kinetics of the HER on the produced electrocatalysts was also investigated, as well as the electrocatalyst layers' surface morphology and crystalline structure.
Haug, Philipp [Verfasser], and Thomas [Akademischer Betreuer] Turek. "Experimental and theoretical investigation of gas purity in alkaline water electrolysis / Philipp Haug ; Betreuer: Thomas Turek." Clausthal-Zellerfeld : Technische Universität Clausthal, 2019. http://d-nb.info/1231363312/34.
Full textEkspong, Joakim. "Hydrogen Fuel from Water - An Advanced Electrocatalyst based on Nitrogen doped Carbon Nanotubes." Thesis, Umeå universitet, Institutionen för fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-105553.
Full textFan, Kaicai. "Development of High Performance Electrocatalyst for Water Splitting Application." Thesis, Griffith University, 2018. http://hdl.handle.net/10072/382229.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Claudel, Fabien. "Vers le développement d’électrocatalyseurs de dégagement d’oxygène actifs et stables." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI052.
Full textThis thesis focuses on the study and the development of iridium-based electrocatalysts for the oxygen evolution reaction (OER) in proton exchange membrane water electrolyzers. This work investigates in particular electrocatalyst degradation phenomena and aims at reaching an optimal OER activity-stability ratio. Various electrocatalysts (supported on high-surface area carbon, supported on doped-metal oxides and unsupported) have been synthetized and characterized by electrochemical and physico-chemical methods such as X-ray photoelectron spectroscopy, identical-location transmission electron microscopy and inductively coupled plasma mass spectrometry. Supported electrocatalysts feature stability limitations in OER conditions as revealed by agglomeration, coalescence, dissolution, and detachment of iridium oxide nanoparticles, these last two degradation mechanisms being amplified by corrosion of the carbon supports and dissolution of the elements composing the doped metal oxide supports. Unsupported electrocatalysts currently represent the best compromise between OER activity and stability. Ir(III) and Ir(V) oxides were shown to be the most active towards the OER while Ir(IV) oxide is the most stable, the least stable species being metallic iridium Ir(0). In real PEM water electrolyzers, the global electrolysis performance seems to be less impacted by the degradation of catalytic layers than the degradation of current collectors
Yu, Wenchao. "Development of nanostructured materials based on manganese oxides and produced by an electrochemical method for water electrolysis." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066383/document.
Full textThe basic electrodeposition mechanism of MnO2 films was studied first on bulk Pt electrodes in various aqueous electrolytes. It was revealed that MnO2 electrodeposition is a multi-step reaction that is sensitive to pH and ionic strength. Chronoamperometry coupled to low concentration neutral aqueous solutions favors the electrodeposition of stable MnO2 films. FTO was found to be a better substrate than ITO, because it has a higher electrochemical activity and could enhance the mechanical stability of electrodeposited MnO2 films. Moreover, the potential used for electrodeposition has great influence on both the structure and the morphology of MnO2 films. Amorphous MnO2 films obtained at high potential possess higher electrocatalytic activity and stability than the birnessite-type MnO2 variety. The heat treatment can greatly enhance the electrocatalytic activity and mechanical stability. A phase transition of MnO2 films appears at 500 °C. The morphology changes dramatically after heating above this temperature. Samples heated at 500 °C are found to have the best electrocatalytic activity towards OER. Na+, K+, Ca2+ and Mg2+ cations were found to be inserted in small amounts into the structure of MnO2 films during the electrodeposition procedure but they influence the structure and morphology of the films. Finally, birnessite type and amorphous MnO2 films appear to be promising candidates as catalysts for photoelectrochemical water splitting, as they are able to generate considerable photocurrents under solar light illumination. In this purpose, thick and amorphous films with 500 °C heat treatment are supposed to produce the best performances
Pan, Hsiao-yung, and 潘孝勇. "Waste Water Treatment by Electrolysis." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/91226453036104617171.
Full text國立臺灣大學
生物產業機電工程學研究所
92
The aim of this study is to apply electrolysis in waste water treatment focusing on removal of total suspended non-metal solids(TSS). Relations among applied voltage, current, area of electrodes and distance between electrodes were quantified. Two experimental tanks including water re-circulating type and fixed batch type were set up and amount of waste water were both 100 liter. Electrodes were made from stainless steel. 6 plates of 1.4m x 1cm x 1mm and 4 plates of 60cm x 1cm x 1mm were used in the re-circulating and fixed batch tanks, respectively. The removal rate at the first 10 minutes for the waste water at 500μS/cm EC and initial TSS of 200-500 ppm in the re-circulating tank was about 30-40 %. For the waste water at 250-750μS/cm EC and initial TSS of 500 ppm, the highest removal rate at the first 10 minutes was 56.7 %. The TSS removal rates in direct relation to the EC values of the waste water. The removal rate at the first 10 minutes for the waste water at initial TSS of 200-500 ppm and 2 mS/cm EC in the fixed batch tank was 40-50 %. Compare both systems using waste water at 750μS/cm EC and initial TSS of 500 ppm, the removal rate for the fixed batch type at the first 20 minutes was less than the re-circulating type. However, the situation reverse after 1 hour of treatment. The final TSS for the fixed batch type and re-circulating type treatments were 40 and 100 ppm, respectively.