To see the other types of publications on this topic, follow the link: Water-in-Oil Dispersion (W/O).

Dissertations / Theses on the topic 'Water-in-Oil Dispersion (W/O)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Water-in-Oil Dispersion (W/O).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Deshpande, Kiran B. "Studies On Phase Inversion." Thesis, Indian Institute of Science, 2001. https://etd.iisc.ac.in/handle/2005/285.

Full text
Abstract:
Agitated dispersions of one liquid in another immiscible liquid are widely used in chemical industry in operations such as liquid-liquid extraction, suspension polymerisation, and blending of polymers. When holdup of the dispersed phase is increased, in an effort to increase the productivity, at a critical holdup, the dispersed phase catastrophically becomes the continuous phase and vice versa. This phenomenon is known as phase inversion. Although the inversion phenomenon has been studied off and on over the past few decades, the mechanism of phase inversion (PI) has yet not become clear. These studies have however brought out many interesting aspects of PI, besides unravelling the effect of physical and operational variables on PL Experiments show that oil-in-water (o/w) and water-in-oil (w/o) dispersions behave very differently, e.g water drops in w/o dispersions contain oil droplets in them, but oil drops in o/w dispersions contain none, dispersed phase hold up at which inversion occurs increases with agitation speed for w/o dispersions but decreases for o/w dispersions. A common feature of both types of dispersions however is that as agitation speed is increased to high values, inversion holdups reach a constant value. A further increase in agitation speed does not change inversion hold up. Although this finding was first reported a long time ago, the implications it may have not received any attentions. In fact, the work reported in the literature since then does not even mention it. The present work shows that this finding has profound implications. Starting with the finding that at high agitation speed inversion hold up does not change with agitation speed, the present work shows that inversion hold up also does not change with agitator diameter, type of agitator and vessel diameter. In these experiments, carried out in agitated vessel, energy was introduced as a point source. The experiments carried out with turbulent flow in annular region of two coaxial cylinders, inner one rotating, in which energy is introduced nearly uniformly throughout the system, show that the inversion holdup remains unchanged. These results indicate that constant values of inversion holdups for a given liquid-liquid systems (o/w and w/o) are properties of the liquid-liquid systems alone, independent of geometrical and operational parameters. A new hypothesis is proposed to explain the new findings. Phase inversion is considered to occur as a result of imbalance between breakup and coalescence of drops. Electrolytes, which affect only coalescence of drops, were therefore added to the system to investigate the effect of altering coalescence of drops on phase inversion. The experiments performed in the presence of electrolyte KI at various concentrations indicate that addition of electrolyte increases the inversion holdup for both o/w and w/o dispersions for three types of systems: non polar-water, polar-water and immiscible organic-organic. Higher the concentration of electrolyte used, higher was the holdup required for phase inversion. These findings indicate that while the addition of electrolyte increases coalescence of drops in lean dispersions, it has exactly opposite effect on imbalance of breakage and coalescence of drops at high holdups near phase inversion point. The opposite effect of electrolytes in lean and concentrated dispersions could be explained qualitatively, but only in part in the light of a new theory, involving multi-particle interactions. The phase inversion phenomenon is quantified in a simple manner by testing the breakage and coalescence rate expressions available in literature. It has been found that, equilibrium drop size (where breakage and coalescence events are in dynamic equilibrium) approaches infinity near phase inversion holdup which is not an ex perimentally observed fact. To capture the catastrophic nature of phase inversion, two steady state approach is proposed. The two steady states namely the stable steady state and unstable steady state, are achieved by modifying the expression for coalescence frequency on the basis of (i) shear coalescence mechanism and, (ii) recognising the fact that at high dispersed phase holdup the droplets are already in contact with each other at all times and hence rendering the second order coales cence process to a first order one. Using two steady states approach, catastrophic phase inversion is shown to occur at finite drop size.
APA, Harvard, Vancouver, ISO, and other styles
2

Deshpande, Kiran B. "Studies On Phase Inversion." Thesis, Indian Institute of Science, 2001. http://hdl.handle.net/2005/285.

Full text
Abstract:
Agitated dispersions of one liquid in another immiscible liquid are widely used in chemical industry in operations such as liquid-liquid extraction, suspension polymerisation, and blending of polymers. When holdup of the dispersed phase is increased, in an effort to increase the productivity, at a critical holdup, the dispersed phase catastrophically becomes the continuous phase and vice versa. This phenomenon is known as phase inversion. Although the inversion phenomenon has been studied off and on over the past few decades, the mechanism of phase inversion (PI) has yet not become clear. These studies have however brought out many interesting aspects of PI, besides unravelling the effect of physical and operational variables on PL Experiments show that oil-in-water (o/w) and water-in-oil (w/o) dispersions behave very differently, e.g water drops in w/o dispersions contain oil droplets in them, but oil drops in o/w dispersions contain none, dispersed phase hold up at which inversion occurs increases with agitation speed for w/o dispersions but decreases for o/w dispersions. A common feature of both types of dispersions however is that as agitation speed is increased to high values, inversion holdups reach a constant value. A further increase in agitation speed does not change inversion hold up. Although this finding was first reported a long time ago, the implications it may have not received any attentions. In fact, the work reported in the literature since then does not even mention it. The present work shows that this finding has profound implications. Starting with the finding that at high agitation speed inversion hold up does not change with agitation speed, the present work shows that inversion hold up also does not change with agitator diameter, type of agitator and vessel diameter. In these experiments, carried out in agitated vessel, energy was introduced as a point source. The experiments carried out with turbulent flow in annular region of two coaxial cylinders, inner one rotating, in which energy is introduced nearly uniformly throughout the system, show that the inversion holdup remains unchanged. These results indicate that constant values of inversion holdups for a given liquid-liquid systems (o/w and w/o) are properties of the liquid-liquid systems alone, independent of geometrical and operational parameters. A new hypothesis is proposed to explain the new findings. Phase inversion is considered to occur as a result of imbalance between breakup and coalescence of drops. Electrolytes, which affect only coalescence of drops, were therefore added to the system to investigate the effect of altering coalescence of drops on phase inversion. The experiments performed in the presence of electrolyte KI at various concentrations indicate that addition of electrolyte increases the inversion holdup for both o/w and w/o dispersions for three types of systems: non polar-water, polar-water and immiscible organic-organic. Higher the concentration of electrolyte used, higher was the holdup required for phase inversion. These findings indicate that while the addition of electrolyte increases coalescence of drops in lean dispersions, it has exactly opposite effect on imbalance of breakage and coalescence of drops at high holdups near phase inversion point. The opposite effect of electrolytes in lean and concentrated dispersions could be explained qualitatively, but only in part in the light of a new theory, involving multi-particle interactions. The phase inversion phenomenon is quantified in a simple manner by testing the breakage and coalescence rate expressions available in literature. It has been found that, equilibrium drop size (where breakage and coalescence events are in dynamic equilibrium) approaches infinity near phase inversion holdup which is not an ex perimentally observed fact. To capture the catastrophic nature of phase inversion, two steady state approach is proposed. The two steady states namely the stable steady state and unstable steady state, are achieved by modifying the expression for coalescence frequency on the basis of (i) shear coalescence mechanism and, (ii) recognising the fact that at high dispersed phase holdup the droplets are already in contact with each other at all times and hence rendering the second order coales cence process to a first order one. Using two steady states approach, catastrophic phase inversion is shown to occur at finite drop size.
APA, Harvard, Vancouver, ISO, and other styles
3

Bucciarelli, Elia. "Liquid-liquid dispersion in mechanically agitated vessel." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
L’argomento trattato è lo studio di due liquidi immiscibili all’interno di un recipiente agitato. Una nuova tecnica di misura delle dimensioni delle particelle viene presentata, la tecnica sperimentata è non invasiva in quanto tutti gli strumenti di misura sono stati posizionati esternamente al vessel. Il recipiente conteneva una dispersione di olio siliconico in acqua, i test sono stati condotti in assenza di coalescenza. Il sistema è agitato in un primo test da una girante Rushton e in un secondo da una girante con denti; esso consiste in un recipiente cilindrico dal diametro T=300mm in vetro, questo vessel è stato inserito in un secondo recipiente, anch’esso in vetro ma dalla geometria cubica, riempito di acqua per ridurre problemi legati alla distorsione ottica dovuta alla cilindricità delle pareti del vessel agitato. Il recipiente è stato posto tra una fotocamera ad alta velocità e una lampada avente lo scopo di illuminare la dispersione. Sono state quindi relazionate le reali dimensioni in mm delle gocce, con i pixel della fotocamera nella fase di calibrazione; la taratura è stata effettuata tramite l’utilizzo di speciali sfere solide monodimensionali. L’analisi della dispersione in esame consisteva nella cattura di più set di immagini ad intervalli di tempo prestabiliti, solo dopo che la dispersione fosse arrivata all’equilibrio. La foto sono state quindi salvate in stack ed analizzate da un apposito codice che è stato scritto per il programma di analisi di immagini utilizzato: ImageJ. La possibilità di implementare macro in ImageJ rende molto flessibile questo programma, caratteristica fondamentale in questo lavoro in quanto lo studio di questi liquidi ha richiesto un notevole numero di test per ottenere una corretta interpretazione delle dimensioni delle gocce. Segue infine l’analisi dei dati ottenuti, alcune correlazioni riportate in letteratura sono state verificate statisticamente a partire dai risultati ottenuti.
APA, Harvard, Vancouver, ISO, and other styles
4

Carlile, Katherine. "Lipase-catalysed reactions in W/O microemulsion systems." Thesis, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kennelly, Timothy Robert. "An investigation of the combustion of oil sand derived bitumen-in-water emulsions." Thesis, University of Iowa, 2009. https://ir.uiowa.edu/etd/246.

Full text
Abstract:
Dwindling conventional oil resources has caused exploration efforts to focus elsewhere. Bitumen from oil sands has emerged as one of the primary unconventional oil resources in use today. Quadrise Canada Corporation has harnessed this unconventional oil by developing their bitumen-in-water emulsion known as MSAR (Multi-Phase Superfine Atomized Residue). Fuel-in-water emulsions are linked to a combustion phenomenon known as micro-explosion, which are associated with an increase in combustion efficiency and decrease in harmful emissions. A study has been conducted of the MSAR fuel to help advance the optimization and modeling of its use in spray combustors so as to best harness the potential. Quantitative and qualitative data has been obtained during combustion experiments of the fuel that will attribute to this end. Additionally, a simplified statistical model is presented based on the governing equations to describe the atomization that occur as a result of micro-explosions of the MSAR fuel as well as a simple model to represent internal force needed for a micro-explosion to occur. The results of this study continue to reinforce the understanding that micro-explosions cannot be attributed to one overriding physical principal, but rather are th result from variations in turbulent, dynamic, and thermal forces.
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Tiezheng. "Oxidation Kinetics of Methyl Linoleate and α-Linolenate in Bulk and Oil-in-water Emulsion Systems." Kyoto University, 2014. http://hdl.handle.net/2433/188751.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第18313号
農博第2038号
新制||農||1020(附属図書館)
学位論文||H26||N4820(農学部図書室)
31171
京都大学大学院農学研究科食品生物科学専攻
(主査)教授 安達 修二, 教授 河田 照雄, 教授 保川 清
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
7

Fürtjes, Theresa Verfasser], and Stephan [Akademischer Betreuer] [Schreml. "Impact of a pH 5 Oil-in-Water (O/W) Emulsion on Skin Surface pH / Theresa Fürtjes ; Betreuer: Stephan Schreml." Regensburg : Universitätsbibliothek Regensburg, 2018. http://nbn-resolving.de/urn:nbn:de:bvb:355-epub-367214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fürtjes, Theresa [Verfasser], and Stephan [Akademischer Betreuer] Schreml. "Impact of a pH 5 Oil-in-Water (O/W) Emulsion on Skin Surface pH / Theresa Fürtjes ; Betreuer: Stephan Schreml." Regensburg : Universitätsbibliothek Regensburg, 2018. http://d-nb.info/1152437542/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tenghe, Lovette Asobo. "Formulation and evaluation of polymeric micelles for improved oral delivery of tenofovir disoproxil fumarate and zidovudine using poly-lactic-co-glycolic acid nanoparticles." University of the Western Cape, 2018. http://hdl.handle.net/11394/6770.

Full text
Abstract:
Magister Pharmaceuticae - MPharm
Background: Tenofovir disoproxil fumarate (TDF) and Zidovudine (AZT) are both nucleotide and nucleoside analogue reverse transcriptase inhibitors (NtRTIs and NRTIs), respectively. They are used for the management and prevention of the Human Immunodeficiency Virus (HIV) infection. These drugs are faced with oral delivery challenges such as low intestinal permeability and extensive first pass liver metabolism for TDF and AZT, respectively. Their use may also be limited by dose-dependent adverse effects, which may result in treatment failure when patients become non-compliant and non-adherent to their prescribed antiretroviral (ARV) regimen. Non-compliance and non-adherence to ARV regimen may lead to drug resistance and a need for change in regimen, which can be very expensive, not only financially but in terms of morbidity and mortality. To solve such issues, a new drug can be formulated, or an existing drug can be modified. The development and formulation of a new drug is time consuming and expensive, especially with no available data and a high probability of failure. Modifying existing drugs is a cheaper, less time-consuming option with lower probability of failure. Such modification can be achieved via non-covalent interactions using various methods such as preparation of nano-particulates with polymeric micelles (a non-covalent interaction). Polymeric micelles offer a variety of polymers to choose from for drug modification purposes. Purpose: The aim of this study was to formulate polymeric nanoparticles of TDF and AZT using different ratios of poly-lactic-co-glycolic acid (PLGA), characterize the formulated nanoparticles (using the following analyses: particle size, zeta potential, encapsulation efficiency, hot stage microscopy, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy and scanning electron microscopy), analyze for stability during storage (2-8˚C) and determine the release rate of the active pharmaceutical ingredients in the formulated nanoparticles. Methods: Nanoparticles were prepared using a modified version of the double emulsion (water-in-oil-in-water) solvent evaporation and diffusion method. Two ratios of PLGA (50:50 and 85:15) were used to prepare four formulations (two each of TDF and AZT). Thereafter, the physicochemical and pharmaceutical properties of the formulations were assessed by characterizing the nanoparticles for particle size, zeta potential, polydispersity index, percentage yield, release profile and particle morphology, using the suggested analytical techniques. Results: For TDF-PLGA 85:15, TDF-PLGA 50:50, AZT-PLGA 85:15 and AZT-PLGA 50:50, nanoparticles of 160.4±1.7 nm,154.3±3.1 nm,127.0±2.32 nm and 153.2±4.3 nm, respectively, were recovered after washing. The polydispersity index (PDI) values were ≤0.418±0.004 after washing, indicating that the formulations were monodispersed. The zeta potential of the particles was -5.72±1 mV, -19.1 mV, -12.2±0.6 mV and -15.3±0.5 mV for TDF-PLGA 85:15, TDF-PLGA 50:50, AZT-PLGA 85:15 and AZT-PLGA 50:50 respectively after washing. The highest percentage yield was calculated to be 79.14% and the highest encapsulation efficiency obtained was 73.82% for AZT-PLGA 50:50, while the particle morphology showed spherical nanoparticles with signs of coalescence and aggregation for all formulated nanoparticles. The release profiles were biphasic; that is, an initial burst which indicated the presence of surface API followed by sustained release. Comparing the release profiles of AZT and TDF at pH 1.2 and 7.4, it was indicative that more AZT was released at pH 1.2 while more TDF was released at pH 7.4. On computing the release data further into various mathematical models, the Weibull model was found to be the best fit. The loaded nanoparticles showed an increase in stability after washing; however, they showed signs of gradual decrease in stability after 10 days of storage at 2-8°C. Conclusions: Relatively small, spherical and smooth nanoparticles were formulated. The nanoparticle release profile was indicative of sustained release; however, there was no conclusive indication that 48 hours duration was sufficient to release all encapsulated drug. Further studies with an increased API or polymer ratio in the formulation needs to be performed to determine if the encapsulation efficiency can be improved and in-vivo studies are required for a better understanding of the API release from formulations as well as its absorption in the body.
APA, Harvard, Vancouver, ISO, and other styles
10

Simon, Miriam [Verfasser], Michael [Akademischer Betreuer] Gradzielski, Michael [Gutachter] Gradzielski, and Dominique [Gutachter] Langevin. "Formation and characterization of complexes of oppositely charged oil-in-water (O/W) microemulsion droplets and polyelectrolytes / Miriam Simon ; Gutachter: Michael Gradzielski, Dominique Langevin ; Betreuer: Michael Gradzielski." Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1212928210/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lin, Lu. "Characterizations of oil-in-water (O/W) emulsions containing different types of milk fats prepared using rhamnolipids as emulsifiers : [a thesis presented in partial fulfillment of the requirements for the degree of Master of Technology in Food Technology at Massey University, Auckland, New Zealand] EMBARGOED UNTIL 1 MARCH 2011." Massey University, 2009. http://hdl.handle.net/10179/1323.

Full text
Abstract:
Emulsions containing three different types of milk fat fractions (MF13, MF27 and MF42) and anhydrous milk fat (AMF) were prepared at oil to water (O/W) ratios of 1:9, 3:7, 5:5 and 7:3 using rhamnolipids as emulsifiers. The prepared emulsions were analyzed for their storage stability and properties (colour, particle size, zeta potential and rheology). The effects of various factors (freezing/thawing, heating, pH, salts and ionic strength) on the stability of emulsions were also investigated. All emulsions prepared with an O/W ratio of 7:3, regardless of the type of milk fat, rendered a highly condensed, semi solid and cream-like substance whereas other emulsions containing less oil were in a liquid form. Among the four different O/W ratios tested, the highest emulsion stability during the storage of 12 weeks was observed from the emulsions containing 1:9 O/W ratios, due to a combine effect of smaller emulsion particle size and lower collision frequency between droplets. Interestingly, the emulsions with 7:3 O/W ratios were found to be more stable than the ones with 5:5 O/W ratios. This might be due to the limited movements of closely-packed emulsion droplets induced by the high oil concentration of 7:3 O/W ratios. The emulsion stability was significantly affected by low pH, especially at lower than pH 4, due to the loss of electrostatic repulsions between droplets leading to droplet coalescence and also possibly due to hydrolysis of rhamnolipid molecules. The presence of salts (NaCl, KCl and CaCl2) also rendered the emulsion unstable. The degree of instability was gradually increased with increasing salt concentrations. CaCl2 had the most significant effect even at a very low concentration. The viscosity of emulsions increased with increasing oil concentration but was not affected by the types of milk fats. Emulsions with 3:7, 5:5 and 7:3 O/W ratios exhibited non-Newtonian and shear thinning flow behaviour. At 7:3 O/W ratios, MF13 exhibited gel-like properties whereas both MF42 and AMF emulsions became more solid-like at higher frequency.
APA, Harvard, Vancouver, ISO, and other styles
12

Massel, Valerie. "Factors Influencing the Stability and Encapsulation Efficiency of Water-in-Oil and Water-in-Oil-in-Water Emulsions Stabilized by PGPR and Sodium Caseinate." Thesis, 2011. http://hdl.handle.net/10214/3064.

Full text
Abstract:
Water-in-oil (W/O) emulsions were investigated using light scattering and rheology to determine the effect of polyglycerol polyricinoleate (PGPR) concentration and inner aqueous phase composition on stability. Using high-pressure homogenization and 2% PGPR it was possible to obtain small and stable W/O emulsion droplets with 30% water. The emulsions were then incorporated in a water-in-oil-in-water (W/O/W) emulsion, and droplets were still present in the inner phase after one month of storage, as clearly shown by confocal microscopy. Encapsulation efficiencies were tested using a water-soluble dye, brilliant blue and a divalent cation, magnesium chloride. The encapsulation efficiency and stability of the encapsulated material depended on the nature of the material being encapsulated.
APA, Harvard, Vancouver, ISO, and other styles
13

Plikat, Christoph. "Optimierte w/o Pickering Emulsionen für Mehrphasen-Biokatalyse." 2019. https://tud.qucosa.de/id/qucosa%3A75585.

Full text
Abstract:
In der heutigen chemisch-pharmazeutischen Industrie sind Biokatalysen nicht mehr wegzudenken. Abhängig von der zu realisierenden Biotransformation, wurden signifikante Limitationen vor allem bei der Umwandlung von hydrophoben Substraten identifiziert. Wässrige und organische Einphasenreaktionssysteme treffen hier sehr schnell an ihre Grenzen, sodass nur geringe Ausbeuten realisierbar sind. Eine Alternative stellen mehrphasige Reaktionssysteme dar, wobei hier grundlegend klassische 2-Phasensysteme und Emulsionen unterschieden werden können. Mit Hilfe dieser alternativen Systeme können die bereits genannten Limitationen überwunden werden. Pickering Emulsionen stellen einen Spezialfall der klassischen Tensid stabilisierten Emulsion dar, wobei hier Nano- und Mikropartikel als Stabilisatoren die Tenside an der Tröpfchengrenzfläche ersetzen. Pickering Emulsionen stellen hoch dynamische Systeme dar und trotz kontinuierlicher Forschung auf diesem Gebiet bleiben bisher grundlegende Frage ungeklärt: Welche Parameter für bioaktive w/o Pickering Emulsionen wie Lösungsmittelkomposition, deren Phasenverhältnis, Partikelcharakteristika und -menge, Dispergierverfahren, als auch die Biokatalysatorkonzentration haben auf die Dispersität und Stabilität der Pickering Emulsionen den größten Effekt? Lässt sich eine Vielzahl von Biokatalysatoren in diesem Reaktionssystem einsetzen? Kurzum, eignen sich Wasser in Öl (w/o) Pickering Emulsionen als universelle Reaktionssysteme für effiziente Biokatalysen und stellen somit eine Plattformtechnologie dar? In dieser Studie konnte gezeigt werden, nahezu alle organischen Lösungsmittel, insbesondere leicht wassermischbare Vertreter, können w/o Pickering Emulsionen ausbilden. Ebenso ist eine Stabilisierung sowohl durch Naturstoffpartikel als auch durch hydrophobe und hydrophile Silicon-Compositpartikel realisierbar. In einer umfassenden Charakterisierung der typischen Stellräder für Emulsionen wurden kommerziell erhältliche Lipasen als bioaktive Komponenten zugesetzt, da diese die meistgenutzten Biokatalysatoren in diesem System darstellen. Die Veränderungen der Emulsionsstabilität und Tröpfchengrößen, als Maß der Dispersität, wurden über 24 Stunden erfasst. Hierbei wurde ein maßgebender Einfluss der Proteinkomponente gegenüber allen anderen Parametern wie Partikelmenge, Phasenverhältnis und Dispersionsgeschwindigkeit festgestellt. Proteine mit ihrer amphiphilen Oberflächenbeschaffenheit sind somit nicht nur als Biokatalysatoren, sondern auch als zusätzliche Nanopartikel zu betrachten, die gemeinsam mit hydrophoben Partikeln einen synergetischen und normalisierenden Effekt auf Tröpfchengrößen und Emulsionsstabilität ausüben. Jedoch waren durch Proteinzugabe auch negative Effekte wie Nicht-Etablierung der Emulsion oder eine Phasenumkehr im zeitlichen Verlauf auslösbar, wenn eine Grenzkonzentration überschritten wurde. Hinsichtlich der (bio)chemischen Charakterisierung von enzymbeladenen w/o Pickering Emulsionen konnte deutlich gezeigt werden, kleinere Tröpfchendurchmesser führen zu erhöhten Enzymaktivitäten und besseren Ausbeuten. Im moderat gerührten Batchreaktor wurde die volumetrische Raum-Zeit-Ausbeute um 500% bis 1100% gegenüber dem konventionellen 2 Phasen- und mikroaquatischen Reaktionssystem verbessert. Beim Einsatz von ganzen Zellen im Vergleich zum freien Enzym wurde mit normierter Biokatalysatoraktivität eine Verbesserung auf 130% bis 220% erzielt. Als beste Herstellungsmethodiken konnten das Dispergieren über Schütteln und Zahnkranzdispergierer ermittelt werden. Grenzflächentoxizität, als oft diskutierter Vorgang in Mehrphasensystemen, spielte auch in bioaktiven w/o Pickering Emulsionen eine wichtige Rolle. Es konnte gezeigt werden, hydrophilere Lösungsmittel, wie 2 Methyltetrahydrofuran, sorgten für eine minimierte Grenzflächendenaturierung der Proteine. Hingegen denaturierten hydrophobere Vertreter wie Cyclopentylmethylether und Cyclooctadien einen erheblichen Anteil des gelösten Proteins an der Grenzfläche. Eine eventuelle Kontamination der organischen Produktphase mit gentechnisch veränderten Enzymen durch assimiliertes Protein wurde ebenfalls untersucht. Es konnten geringe gelöste Proteinmengen festgestellt werden, wobei die Spannweite der gelösten Mengen 1 – 4% der Proteingesamtmenge betrug. Hydrophobere Lösungsmittel nahmen generell weniger Protein auf. Für die Evaluation der Verteilung von Substraten und Produkten zwischen beiden flüssigen und der festen Phase der Pickering Emulsion wurden exemplarisch das hydrophilste Substrat und das hydrophobste Produkt getestet. Es wurde keine signifikante Diffusion der gelösten Stoffe in die wässrige bzw. feste Phase ermittelt, insofern konnte eine dauerhaft hohe Bioverfügbarkeit der Substrate in der organischen Phase angenommen werden. Im gerührten Batch konnte eine Übertragung von Ionen zwischen den Dispersionströpfchen nur mit Hilfe von gelstabilisierten Dispersionströpfchen Einhalt geboten werden. Über derartige Modifikationen kann nun auch der Einsatz von mehreren Biokatalysatoren mit verschiedenen pH-Optima und Puffer-Präferenzen verwirklicht werden. Weiterhin konnte die disperse Phase auch gegen stark eutektische Lösungsmittel ausgetauscht werden, sodass Pickering Emulsionen auch als annähernd wasserfreie Reaktionssysteme nutzbar erschienen. In der Risiko- und Anwendungsanalyse über drei Enzymklassen mit drei als „grüner“ klassifizierten Lösungsmitteln in abgestuften Hydrophobizitäten, erwies sich Cyclopentylmethylether als das Lösungsmittel der Wahl für die Etablierung bioaktiver w/o Pickering Emulsionen. Bei der Anwendung verschiedener Biokatalysator-Phänotypen in verschiedenen Reaktionssystemen und Lösungsmitteln, kristallisierten sich bioaktive w/o Pickering Emulsion in Cyclopentylmethylether als produktivstes System heraus. Jedoch wurden bei allen Versuchen inaktivierende Vorgänge auf die verschiedenen Biokatalysatoren beobachtet, wobei Enzyme mit einer augenscheinlichen Gleichverteilung von hydrophoben und hydrophilen Aminosäureresten auf ihrer Oberfläche deutlich bessere Ergebnisse zeigten. In der Anwendung von freiem Enzym und Ganzzell-Biokatalysator, bei normierter Gesamtaktivität, resultierten für den Einsatz in bioaktiven Pickering Emulsionen die ganzen Zellen als beste Biokatalysator-Formulierung. Es wurde signifikant höhere Produktivität sowie auch 300% kleinere Tröpfchen der dispergierten Phase erreicht. Die Modularisierung von Biokatalysen gegenüber One-Pot-Synthesen zeigte ebenfalls deutliche Vorteile in den Kennzahlen der durchgeführten Biotransformation, wobei der jeweilige Prozessschritt an den Biokatalysator angepasst und so ein Optimum an Effizienz erreicht werden kann. Auf diese Weise können biokatalytische Umwandlungen kombiniert werden, die sich im One-Pot-System durch Inhibierungen der angewandten Biokatalysatoren ausschließen würden.:Vorwort/ Danksagung I Zusammenfassung III Abstract VII Liste der Publikationen XIV Abkürzungsverzeichnis und Symbole XIV 1 Einleitung 1 1.1 Biokatalysatoren – Generelle Aspekte und spezielle Vertreter 1 1.2 Angewandte Biokatalyse in Ein-und Mehrphasen-Reaktionssystemen 6 1.3 Pickering Emulsionen - Stand der Technik 14 1.4 Zielstellung der Arbeit: Optimierte bioaktive w/o Pickering Emulsionen 16 2 Material & Methoden 17 2.1 Material 17 2.1.1 Geräte & Zubehör 17 2.1.2 Chemikalien & Kits 19 2.1.3 Puffer 21 2.1.4 Enzyme 22 2.2 Proteinchemische Methoden 22 2.2.1 Bestimmung der Proteinkonzentration - BCA-Test 22 2.2.2 Bestimmung der Proteingröße und -reinheit - SDS-Polyacrylamidgelelektro- phorese (SDS – PAGE) 23 2.2.3 Photometrische Aktivitätsbestimmungen in wässrigem Milieu 24 2.2.4 Zusammenfassung Enzym-Charakteristika 27 2.3 w/o Pickering Emulsion – Essentielle Komponenten und Modifikationen 29 2.3.1 Definition des w/o PE-Standardsystems 29 2.3.2 Partikel zur Stabilisierung von w/o Pickering Emulsionen 29 2.3.3 Siliconbeschichtung von hydrophilen Partikeln und Bakterien 31 2.3.4 Bestimmung der Morphologie und Tröpfchengrößenverteilung 32 2.3.5 Lösungsmittelscreening 33 2.3.6 Phasen-Migration von Proteinen 34 2.3.7 Verteilungskoeffizienten von Substraten und Produkten im triphasischen Reaktionssystem Pickering Emulsion 34 2.4 Biokatalyse in Pickering Emulsionen 35 2.4.1 Bioaktive w/o PE - Definition des Standard-Reaktionssystems 35 2.4.2 Biokompatibilität „grüner“ Lösungsmittel 36 2.4.3 GC – Analytik 38 2.5 Statistische Auswertung der Experimente 40 2.5.1 Gewichteter Mittelwert, interne und externe Konsistenz 40 2.5.2 Lösungsmittelscreening: statistische Auswertung 41 3 Ergebnisse und Diskussion 42 3.1 Modifizierung von Nano-, Mikro- und Naturstoffpartikeln durch Siliconbeschichtung und Anwendungsscreening in w/o PE 42 3.1.1 Hydrophobizität der Silicon-Polymere 42 3.1.2 Morphologie von anorganischen Partikel-Materialien mit und ohne Silicon- Beschichtung 43 3.1.3 Morphologie von Naturstoff-Partikeln mit und ohne Silicon-Beschichtung 47 3.1.4 Partikel-Aggregation und Gegenmaßnahmen 51 3.1.5 Partikel-Screening 53 3.2 Charakterisierung von w/o Pickering Emulsionen im gerührten Batch 59 3.2.1 Pickering Emulsionen in biokatalytisch relevanten organischen Lösungs- mitteln 59 3.2.2 Bioaktive w/o PE - Auswirkung von Enzym – und Proteinmengen 66 3.2.3 Bioaktive w/o PE - Effekte der eingesetzten Partikelkonzentrationen 68 3.2.4 Bioaktive w/o PE - Einfluss der Phasenverhältnisse 70 3.2.5 Bioaktive w/o PE - Einfluss der angewandten Dispergiergeschwindigkeit 71 3.2.6 Bioaktive w/o PE - Herstellungsverfahren und Einfluss auf das Enzym 73 3.2.7 Vergleich 2-Phasensystem und bioaktive w/o Pickering Emulsion im gerührten Batch 75 3.2.8 Tröpfchengröße und Einfluss auf Produktbildung des PE-Systems 77 3.2.9 Phasen-Migration von Proteinen - Evaluation von Enzymwechselwirkungen mit dem Reaktionssystem 79 3.2.10 Verteilungskoeffizienten von Substraten und Produkten in den Standard– Reaktionssystemen 81 3.2.11 Protonen-Transfer zwischen zwei dispergierten Phasen in w/o Pickering Emulsionen 82 3.2.12 Alternative DES/o Pickering Emulsionen für wasserfreie Systeme 83 3.3 Bioaktive w/o Pickering Emulsion: Einschritt-Synthesen 84 3.3.1 Lipasenkatalysierte Umesterung in wässrigem Milieu 84 3.3.2 Carboligation mittels Benzaldehydlyase 86 3.3.3 Reduktionen via Alkoholdehydrogenasen 95 3.3.4 Transaminase 106 3.4 Bioaktive w/o Pickering Emulsionen: Mehrschritt-Synthesen 112 3.4.1 One-Pot-Biokatalyse gegen modularisierte Mehrschritt-Chemo-Biokatalyse 112 4 Bioaktive w/o Pickering Emulsionen als Reaktionssystem für Biokatalysen: Zusammenfassung & Bewertung 117 5 Plattform w/o Pickering Emulsion: Schlussfolgerung und Ausblick 130 6 Literatur 131 Anhang 150 Versicherung 150 Abbildungsverzeichnis 151 Tabellenverzeichnis 158 Download Datensammlung 164 A3.1.5 TMODS-Silicat-NP-Benchmark 165 A3.2.1-1 Lösungsmittel-Screening: physiko-chemische Eigenschaften 167 A3.2.1-2 Regressionsanalyse: Qualität PE gegen alle physiko-chemischen Eigenschaften 171 A3.2.1-3 Optimierte Regressionsanalyse: Qualität PE gegen Molekulargewicht, Dichte und Dampfdruck 173 A3.2.3 Auswirkungen von Protein- und Enzymmengen 175 A3.2.4 Effekte der eingesetzten Partikelmengen 175 A3.2.5 Einfluss der Phasenverhältnisse 176 A3.2.6 Einfluss der angewandten Dispersionsgeschwindigkeit/ -energie 176 A3.3.1 Lipasenkatalysierte Umesterung 177
APA, Harvard, Vancouver, ISO, and other styles
14

Großmann, Anja [Verfasser]. "Influence of manufacturing process parameters on the physical properties of an oil-in-water cream = Einfluss der Herstellungsfaktoren auf die physikalischen Eigenschaften einer O-W-Creme / vorgelegt von Anja Großmann." 2008. http://d-nb.info/98880090X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Abdollah, Pour Roohollah. "Development and application of a 3D equation-of-state compositional fluid-flow simulator in cylindrical coordinates for near-wellbore phenomena." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-12-4701.

Full text
Abstract:
Well logs and formation testers are routinely used for detection and quantification of hydrocarbon reserves. Overbalanced drilling causes invasion of mud filtrate into permeable rocks, hence radial displacement of in-situ saturating fluids away from the wellbore. The spatial distribution of fluids in the near-wellbore region remains affected by a multitude of petrophysical and fluid factors originating from the process of mud-filtrate invasion. Consequently, depending on the type of drilling mud (e.g. water- and oil-base muds) and the influence of mud filtrate, well logs and formation-tester measurements are sensitive to a combination of in-situ (original) fluids and mud filtrate in addition to petrophysical properties of the invaded formations. This behavior can often impair the reliable assessment of hydrocarbon saturation and formation storage/mobility. The effect of mud-filtrate invasion on well logs and formation-tester measurements acquired in vertical wells has been extensively documented in the past. Much work is still needed to understand and quantify the influence of mud-filtrate invasion on well logs acquired in horizontal and deviated wells, where the spatial distribution of fluids in the near-wellbore region is not axial-symmetric in general, and can be appreciably affected by gravity segregation, permeability anisotropy, capillary pressure, and flow barriers. This dissertation develops a general algorithm to simulate the process of mud-filtrate invasion in vertical and deviated wells for drilling conditions that involve water- and oil-base mud. The algorithm is formulated in cylindrical coordinates to take advantage of the geometrical embedding imposed by the wellbore in the spatial distribution of fluids within invaded formations. In addition, the algorithm reproduces the formation of mudcake due to invasion in permeable formations and allows the simulation of pressure and fractional flow-rate measurements acquired with dual-packer and point-probe formation testers after the onset of invasion. An equation-of-state (EOS) formulation is invoked to simulate invasion with both water- and oil-base muds into rock formations saturated with water, oil, gas, or stable combinations of the three fluids. The algorithm also allows the simulation of physical dispersion, fluid miscibility, and wettability alteration. Discretized fluid flow equations are solved with an implicit pressure and explicit concentration (IMPEC) scheme. Thermodynamic equilibrium and mass balance, together with volume constraint equations govern the time-space evolution of molar and fluid-phase concentrations. Calculations of pressure-volume-temperature (PVT) properties of the hydrocarbon phase are performed with Peng-Robinson's equation of state. A full-tensor permeability formulation is implemented with mass balance equations to accurately model fluid flow behavior in horizontal and deviated wells. The simulator is rigorously and successfully verified with both analytical solutions and commercial simulators. Numerical simulations performed over a wide range of fluid and petrophysical conditions confirm the strong influence that well deviation angle can have on the spatial distribution of fluid saturation resulting from invasion, especially in the vicinity of flow barriers. Analysis on the effect of physical dispersion on the radial distribution of salt concentration shows that electrical resistivity logs could be greatly affected by salt dispersivity when the invading fluid has lower salinity than in-situ water. The effect of emulsifiers and oil-wetting agents present in oil-base mud was studied to quantify wettability alteration and changes in residual water saturation. It was found that wettability alteration releases a fraction of otherwise irreducible water during invasion and this causes electrical resistivity logs to exhibit an abnormal trend from shallow- to deep-sensing apparent resistivity. Simulation of formation-tester measurements acquired in deviated wells indicates that (i) invasion increases the pressure drop during both drawdown and buildup regimes, (ii) bed-boundary effects increase as the wellbore deviation angle increases, and (iii) a probe facing upward around the perimeter of the wellbore achieves the fastest fluid clean-up when the density of invading fluid is larger than that of in-situ fluid.
text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography