Academic literature on the topic 'Water/Oil Separation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Water/Oil Separation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Water/Oil Separation"
Sinha, Shayandev, Khaled A. Mahmoud, and Siddhartha Das. "Conditions for spontaneous oil–water separation with oil–water separators." RSC Advances 5, no. 98 (2015): 80184–91. http://dx.doi.org/10.1039/c5ra16096k.
Full textZhong, Xing Fu, Ying Xiang Wu, Song Mei Li, and Peng Ju Wei. "Investigation of Pipe Separation Technology in the Oilfield." Advanced Materials Research 616-618 (December 2012): 833–36. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.833.
Full textYang, Lele, Jing Wang, Yong Ma, Sen Liu, Jun Tang, and Yongbing Zhu. "Oil-Water-Gas Three-Phase Separation in Multitube T-Junction Separators." Water 11, no. 12 (December 16, 2019): 2655. http://dx.doi.org/10.3390/w11122655.
Full textvan Schie, Louis. "Oil/water separation: Suparator meets the oil/water challenge." Filtration + Separation 50, no. 3 (May 2013): 50–51. http://dx.doi.org/10.1016/s0015-1882(13)70132-0.
Full textYong, Jiale, Qing Yang, Jinglan Huo, Xun Hou, and Feng Chen. "Superwettability‐based separation: From oil/water separation to polymer/water separation and bubble/water separation." Nano Select 2, no. 8 (February 20, 2021): 1580–88. http://dx.doi.org/10.1002/nano.202000246.
Full textCai, Wen Bin, Yuan Gang Xu, and Qi Zhang. "Design of Downhloe Oil-Water Cyclone Separator and the Study of Laboratory Experiment." Advanced Materials Research 339 (September 2011): 630–33. http://dx.doi.org/10.4028/www.scientific.net/amr.339.630.
Full textSokolovic, S., R. Secerov-Sokolovic, and S. Sevic. "Two-Stage Coalescer for Oil/Water Separation." Water Science and Technology 26, no. 9-11 (November 1, 1992): 2073–76. http://dx.doi.org/10.2166/wst.1992.0664.
Full textKharkov, Nikita, Olga Ermak, and Olesya Aver’yanova. "Numerical Simulation of the Centrifugal Separator for Oil-Water Emulsion." Advanced Materials Research 945-949 (June 2014): 944–50. http://dx.doi.org/10.4028/www.scientific.net/amr.945-949.944.
Full textLeitão, Antonio A., and Carla M. P. Rangel. "Analysis of the Copesul Water-Oil Separation System." Water Science and Technology 20, no. 10 (October 1, 1988): 91–100. http://dx.doi.org/10.2166/wst.1988.0128.
Full textCalcagnile, Paola, Despina Fragouli, Ilker S. Bayer, George C. Anyfantis, and Athanassia Athanassiou. "Magnetoactive Superhydrophobic Foams for Oil-Water Separation." Advances in Science and Technology 77 (September 2012): 159–64. http://dx.doi.org/10.4028/www.scientific.net/ast.77.159.
Full textDissertations / Theses on the topic "Water/Oil Separation"
Stone, Andrew Colin. "Oil/water separation in a novel cyclone separator." Thesis, Cranfield University, 2007. http://dspace.lib.cranfield.ac.uk/handle/1826/5202.
Full textBanchik, Leonardo David. "Advances in membrane-based oil/water separation." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108950.
Full textCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 117-124).
Oil is a widespread pollutant from oil spills to industrial oily wastewater in the oil and gas, metalworking, textile and paper, food processing, cosmetics, and pharmaceutical industries. A wastewater of particular concern is produced water, an oily waste stream from hydrocarbon extraction activities. Worldwide, over 2.4 billion US gallons of produced water is generated every day. Membrane technologies have emerged as the preferred method for treating these wastewaters; this has allowed operators to reclaim and reuse fresh water for potable, industrial, and agricultural use and to meet waste discharge regulations. Yet, despite their technological predominance, membranes can become severely fouled and irreversibly damaged when bulk and small stabilized oil droplets, emulsions, are present in intake streams. In this thesis, we seek to mitigate these deleterious effects through several means. First we seek to better understand fouling by oil-in-water emulsions on conventional polymeric ultrafiltration membranes. We investigate the decrease in water production over time using model and actual produced water samples with varying solution zeta potentials and make meaningful recommendations to operators based on our observations. Next, we develop a robust multifunctional membrane which can in one step degrade organic pollutants and separate bulk and surfactant-stabilized oil/water mixtures while achieving high fluxes, high oil rejection, and high degradation efficiencies. Finally, we investigate the potential of novel in-air hydrophilic/oleophobic microfiltration and reverse osmosis membranes for their anti-oil fouling performance relative to conventional hydrophilic/oleophilic membranes. Contrary to claims in literature of superior performance, we find that in-air oleophobicity does not aid in underwater anti-fouling due to surface reconstruction of mobile perfluoroalkyl chains in the presence of water. Based on these observations, we discuss opportunities for future research on oil anti-fouling membranes using fluorinated moieties.
by Leonardo David Banchik.
Ph. D.
Paolini, Fabrizio Dario Re de. "Development of a membrane filtration process for oil/water separation." Thesis, University of Surrey, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301099.
Full textIbrahim, Sabah Y. "The separation of secondary oil-water dispersions in particulate beds." Thesis, Aston University, 1986. http://publications.aston.ac.uk/10225/.
Full textJimeno, Nieves. "Effect of demulsifiers on the separation of water-in-oil emulsion /." [S.l.] : [s.n.], 1987. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8347.
Full textAbia-Biteo, Belope Miguel-Angel. "The design and performance of offshore gas/oil water separation processes." Thesis, University of Surrey, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.521719.
Full textAl-Shamrani, Abdullah A. M. "Destabilisation of oil-water emulsions and separation using dissolved air flotation." Thesis, University of Manchester, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488142.
Full textAndre, Antonio Luzaiadio Buco. "Investigation of the stability and separation of water-in-oil emulsion." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2267.
Full textENGLISH ABSTRACT: The study of water-in-oil emulsion stability and separation was carried out for this thesis. The main objectives were as follows: to rank crude oil samples in terms of creating stable emulsions; to assess the effect of the brine pH on emulsion stability; to investigate the influence of different organic acids on emulsion stability; and to determine the efficiency of an electric separator in removing water droplets from a flowing organic liquid. Seven crude oil samples from different sources such as A, C, H, M, P, U, and V were used to investigate the water-in-crude-oil emulsion. Two crude oil blends were also used. Brine solution comprising 4 wt% NaCl and 1 wt% CaCl2 was used. In this study the gravity settling, critical electric field (CEF) and centrifuge test methods were used to estimate the emulsion stability created by the crude oil and crude oil blend samples. The experiments were carried out at 60°C. In the gravity test method, the brine pH, stirring speed, stirring time and water-cut (the fraction of water in the emulsion) were changed in 2IV-1 factorial design. The parameters for the centrifuge and CEF test methods were selected on the basis of the gravity test method. The crude oil samples were ranked in terms of creating stable emulsion in the following order V, U, P, H, A, M and C. The crude oil blends created more stable emulsions than their respective constituents. The ranking order of the crude oil samples did not correlate to asphaltenes, resins, wax or total acid number (TAN). There was a good correlation between the test methods used. There was an increase and decrease in the brine pH when different crude oil samples were in contact with the brine. It is believed that the structure of the surfactants present in crude oil may explain the emulsion-forming characteristics of different crude oil deposits around the world. To account for the effect of organic acids on emulsion stability, different organic acids were used. In this case, a mixture of equal volumes of heptane and toluene (here referred to as heptol) was used as the model for crude oil. The brine solution composition was the same as the one used in the crude oil experiments. Equal volumes of heptol and brine were mixed for a period of time and then separated. The brine pH was changed from acidic to basic. In this regard, gas chromatography and liquid chromatography were used to analyse the concentration of the acids in the brine and heptol samples. It was found that the partitioning coefficient for acids containing a straight-chain hydrocarbon moiety decreased with an increase in molecular weight. However, the partitioning coefficient depended on the structure of the acid. The presence of a benzene ring in the organic acid increased the partitioning coefficient. Organic acids with rings created an interface layer when the heptol sample was mixed with basic brine solution. This confirmed that the emulsion of water and crude oil starts with the formation of a film, and it also provides insight into the formation of naphthenate soap. It is believed that the naphthenic acids that cause stable emulsions have rings. More organic acids should be tested. It is recommended that the interaction of asphaltenes, resins and naphthenic acids should be investigated at different pH levels, temperatures and pressures. The separation of water droplets from a flowing organic liquid was carried out using a direct current (d.c.) electric separator. The separator used centrifugal forces and a d.c. electric field to enhance the removal of water drops from a flowing organic liquid. For this, vegetable oil, crude oil blend and heptane were used as the continuous phase. The experiments were carried out at room temperature (for heptane and vegetable oil) and at 70°C (for vegetable oil and crude oil blend). The flow rate to the separator was kept constant. The separator removed water droplets from flowing organic liquids. A maximum of 97% (at 100 V)of water droplets was removed from the heptane liquid; a maximum of 28% (at 100 V) of water droplets was removed from the vegetable oil at 70°C and 5% (at 100 V) of water droplets was removed from the crude oil blend. The d.c. electric field enhanced the efficiency of the separator in removing water droplets. The break-up of the droplets is suspected to decrease the efficiency of the separator. This separator can easily be installed into existing process lines and does not require much space. However, further improvements are needed in the design of this separator. Emulsions created in the petroleum industries are quite complex to deal with. The identification of the structure of the components in crude oil is a matter that still has to be investigated. An improvement in the techniques may lead to a better understanding of the cause of the ultra-stable emulsion encountered in the petroleum and related industries.
AFRIKAANSE OPSOMMING: Die studie van die stabiliteit en skeiding van water-in-olie-emulsies is vir hierdie tesis uitgevoer. Die hoofdoelstellings was as volg: om ruolie-monsters in terme van die skepping van stabiele emulsies te klassifiseer; om die effek van die pekel-pH op emulsie-stabiliteit te assesseer; om die invloed van verskillende organiese sure op emulsie-stabiliteit te ondersoek; en om die doeltreffendheid van ’n elektriese skeier in die verwydering van waterdruppels uit ’n vloeiende organiese vloeistof te bepaal. Sewe ruolie-monsters uit verskillende bronne soos was A, C, H, M, P, U en V gebruik om die water-in-ruolie-emulsie te ondersoek. Twee ruolie-mengels is ook gebruik. ’n Pekeloplossing wat 4 wt% NaCl en 1 wt% CaCl2 bevat, is gebruik. In hierdie studie is die gravitasie-afsakkings-, kritieke elektriese veld- (KEV-) en sentrifuge-toetsmetodes gebruik om die emulsie-stabiliteit te beraam wat deur die ruolie- en ruolie-mengsel-monsters geskep is. Die eksperimente is teen 60°C uitgevoer. In die gravitasietoetsmetode is die pekel-pH, roertempo en watersnyding (die fraksie van water in die emulsie) is in ‘n 2IV-1-faktoriaalontwerp ondersoek. Die parameters vir die sentrifuge- en KEV-toetsmetodes is op grond van die gravitasietoetsmetode resultate gekies. Die ruolie-monsters is in terme van die skepping van ’n emulsie stabiliteit geklassifiseer in die volyende orde V, U, P, H, A, M, en C. Die rudie-menysels het meer stabiele emulsies gerorm as die respektiewe samestellende dele. Die rangorde van emulsie stabiliteit van die ruolie-monsters het nie met asfaltene, hars, waks of totale suurgetal gekorreleer nie. Daar was ’n goeie korrelasie tussen die toetsmetodes wat gebruik is. Daar was ’n toename of afname in die pekel-pH wanneer verskillende ruolie-monsters in kontak met die pekel was. Die aanname is dat die struktuur van die surfaktante wat in die ruolie teenwoordig is, die emulsievormende karaktereienskappe van verskillende ruolie-neerslae regoor die wêreld kan verklaar. Om die effek van organiese sure op emulsie-stabiliteit te verklaar, is verskillende organiese sure gebruik. In hierdie geval is ’n mengsel van gelyke hoeveelhede heptaan en tolueen (voortaan verwys na as heptol) as die model vir ruolie gebruik. Die pekeloplossing-samestelling was dieselfde as die een wat in die ruolie-eksperimente gebruik is. Gelyke hoeveelhede heptol en pekel is vir ’n tydperk gemeng en toe geskei. Die pekel-pH is van suurvormend tot basies verander. Gaschromatografie en vloeistofchromatografie is gebruik om die konsentrasie van die sure in die pekel- en heptoloplossings te analiseer. Daar is gevind dat die verdelingskoëffisiënt vir sure wat ’n reguitketting-koolwaterstofhelfte bevat met ’n toename in molekulêre gewig afneem. Die verdelingskoëffisiënt het egter van die struktuur van die suur afgehang. Die teenwoordigheid van ’n benseenring in die organiese suur het die verdelingskoëffisiënt verhoog. Organiese sure met ringe het ’n tussenvlaklaag geskep toe die heptolmonster met die basiese pekeloplossing gemeng is. Dit het bevestig dat die emulsie van water en ruolie met die vorming van ’n vlies begin, en gee ook insig in die vorming van naftenaatseep. Dit blyk dat die naftenaatsure wat stabiele emulsies veroorsaak, ringe het. Meer organiese sure moet getoets word. Daar word aanbeveel dat die interaksie van asfaltene, hars en naftenaatsure teen verskillende pH-vlakke, temperature en drukke getoets word. Die skeiding van waterdruppels uit ’n vloeiende organiese vloeistof is uitgevoer met behulp van ’n gelykstroom- elektriese skeier. Die skeier het sentrifugiese kragte en ’n wisselstroomelektriese veld gebruik om die verwydering van waterdruppels uit ’n vloeiende organiese vloeistof te verhoog. Hiervoor is plantolie, ’n ruoliemengsel en heptaan gebruik as die deurlopende fase. Die eksperimente is teen kamertemperatuur (vir heptaan en plantolie) en teen 70°C (vir plantolie en ruolie-mengsel) uitgevoer. Die vloeitempo na die skeier is konstant gehou. Die skeier het waterdruppels uit die vloeiende organiese vloeistowwe verwyder. N’ maksimum van 97% (by 100 V) van die water drupples is verweider van die heptaan vloeistof; a maksimum van 28% (by 100 V) van die water druppels was verweider van die plantolie by 70°C en 5% (by 100 V) van die water druppels was verweider van die rudie mengsel. Die gelykstroom- elektriese veld het die doeltreffendheid van die skeier om waterdruppels te verwyder, verhoog. Daar word vermoed dat die afbreek van die waterdruppels die doeltreffendheid van die skeier verlaag. Die skeier kan met gemak in bestaande proseslyne geïnstalleer word en benodig nie veel spasie nie. Verdere verbeterings is egter nodig ten opsigte van die ontwerp van hierdie skeier. Emulsies wat in die petroleumbedrywe geskep word, is kompleks om te hanteer. Die identifikasie van die struktuur van die komponente in ruolie verg verdere ondersoek. ’n Verbetering in hierdie tegnieke kan tot beter begrip lei van die oorsaak van die ultrastabiele emulsie wat in die petroleum- en verwante bedrywe aangetref word.
Donnelly, Alan Paul. "On-line concentration measurement and separation of oil from produced water." Thesis, Heriot-Watt University, 2001. http://hdl.handle.net/10399/506.
Full textSolomon, Brian R. (Brian Richmond). "Fabrication and characterization of nano-engineered membranes for oil-water separation." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85450.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-58).
The focus of this thesis is the design and testing of membranes for separation of water-in- oil (w/o) emulsions. A polycarbonate membrane treated with octadecyltrichlorosilane (OTS) is used to filter a 3 wt% w/o emulsion. The permeate is characterized to have no measurable water content by microscopy, dynamic light scattering (DLS) and differential scanning calorimetry (DSC). To extend this work, a method for fabricating an asymmetric polysulfone membranes is presented. The polysulfone membrane has the feature of allowing much higher flow rates for a given applied pressure. The research is largely motivated by a need for low cost methods for separating o/w and w/o emulsions. The largest source of wastewater is generated by the petroleum industry as o/w emulsions. Currently, industry has a number of methods for cleaning produced water. The inherent problem is that the smaller dispersed droplets are the more expensive they are to separate. In addition, the fundamental equations and models that govern interfacial phenomena and hydrophobic/oleophilic membranes are developed. In all, this work present a method for successfully separating oil droplets smaller than a micron from water by a novel methodology.
by Brian R. Solomon.
S.M.
Books on the topic "Water/Oil Separation"
Bhushan, Bharat. Bioinspired Water Harvesting, Purification, and Oil-Water Separation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42132-8.
Full textHollingsworth, S. A study of crossflow separation of oil-water dispersions. Manchester: UMIST, 1993.
Find full textIbrahim, Sabah Yassin. The separation of secondary oil-water dispersions in particulate beds. Birmingham: Aston University. Department of Chemical Engineering, 1986.
Find full textLehprasert, A. The influence of surface active chemicals on the separation of dilute oil/water mixtures by usingfibre bed coalescers. Manchester: UMIST, 1996.
Find full textBhushan, Bharat. Bioinspired Water Harvesting, Purification, and Oil-Water Separation. Springer, 2020.
Find full textDowling, Peter Damian. Optimisation of electrically augmented liquid phase separation: Divergent electrostatic fields are used to coalesce vertically flowing water-in-oil type dispersions. Equipment for assessing on-line entrainment sensors is used to evaluate a microwave device. Bradford, 1986.
Find full textAveyard, Bob. Surfactants. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828600.001.0001.
Full textBook chapters on the topic "Water/Oil Separation"
Kajitvichyanukul, Puangrat, Yung-Tse Hung, and Lawrence K. Wang. "Oil Water Separation." In Advanced Physicochemical Treatment Processes, 521–48. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59745-029-4_16.
Full textGore, Prakash M., Anukrishna Purushothaman, Minoo Naebe, Xungai Wang, and Balasubramanian Kandasubramanian. "Nanotechnology for Oil-Water Separation." In Advanced Research in Nanosciences for Water Technology, 299–339. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02381-2_14.
Full textShirazi, Mohammad Mahdi A., and Morteza Asghari. "Electrospun Filters for Oil–Water Separation." In Filtering Media by Electrospinning, 151–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78163-1_7.
Full textKajitvichyanukul, Puangrat, Yung-Tse Hung, and Lawrence K. Wang. "Membrane Technologies for Oil–Water Separation." In Membrane and Desalination Technologies, 639–68. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-59745-278-6_15.
Full textBhushan, Bharat. "Selected Oil-Water Separation Techniques—Lessons from Living Nature." In Bioinspired Water Harvesting, Purification, and Oil-Water Separation, 175–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42132-8_8.
Full textBhushan, Bharat. "Bioinspired Water Desalination and Water Purification Approaches Using Membranes." In Bioinspired Water Harvesting, Purification, and Oil-Water Separation, 161–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42132-8_7.
Full textLechthaler, Simone E., Georg Stauch, and Holger Schüttrumpf. "Oil Extraction as Separation Method for Microplastic in Sediment Samples." In Springer Water, 282–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45909-3_45.
Full textBhushan, Bharat. "Introduction: Water Supply and Management." In Bioinspired Water Harvesting, Purification, and Oil-Water Separation, 1–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42132-8_1.
Full textBhushan, Bharat. "Closure." In Bioinspired Water Harvesting, Purification, and Oil-Water Separation, 225–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42132-8_10.
Full textBhushan, Bharat. "Overview of Arid Desert Conditions, Water Sources, and Desert Plants and Animals." In Bioinspired Water Harvesting, Purification, and Oil-Water Separation, 11–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42132-8_2.
Full textConference papers on the topic "Water/Oil Separation"
Fard, Ahmad Kayvani, Gordon McKay, and Muataz A. Atieh. "Hybrid Separator-Adsorbent Inorganic Membrane for Oil-Water Separation." In The 3rd World Congress on Civil, Structural, and Environmental Engineering. Avestia Publishing, 2018. http://dx.doi.org/10.11159/awspt18.122.
Full textKokal, Sunil Lalchand, and Abdulla Al Ghamdi. "Oil-Water Separation Experience From A Large Oil Field." In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/93386-ms.
Full textZhiguo Zhao and Boqiang Shi. "Numerical simulation of oil-water separation process in disc separator." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5964107.
Full textPeachey, B. R. "The Economics of Downhole Oil/Water Separation." In Annual Technical Meeting. Petroleum Society of Canada, 1997. http://dx.doi.org/10.2118/97-92.
Full textHafskjold, Bjorn, Thomas B. Morrow, Harald K. B. Celius, and David R. Johnson. "Drop-Drop Coalescence In Oil/Water Separation." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/28536-ms.
Full textVivacqua, Vincenzino, Sameer Mhatre, Mojtaba Ghadiri, Aboubakr Abdullah, Ali Hassanpour, Mohammed Al-marri, Barry Azzopardi, Buddhika Hewakandamby, and Bijan Kermani. "Enhancement Of Water-oil Separation By Electrocoalescence." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2014. http://dx.doi.org/10.5339/qfarc.2014.eepp0495.
Full textZhang, Qing, and Yingjie Xing. "Superhydrophilic Straw Fibers for Oil/Water Separation." In 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA). IEEE, 2020. http://dx.doi.org/10.1109/aiea51086.2020.00142.
Full textChristiansen, Bjorn, Dag Kvamsdal, and Henrik Dannstrom. "Centrifugal Wellstream Separation Of Water And Sand." In SPE Asia Pacific Oil and Gas Conference. Society of Petroleum Engineers, 1995. http://dx.doi.org/10.2118/29298-ms.
Full textHolmes, Michael, Subodh Gupta, Patrick McKay, and Suchang Ren. "Integrated One-Step Process for Oil Water Separation and Produced-Water Treatment." In SPE Canada Heavy Oil Technical Conference. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/180691-ms.
Full textJokhio, S. A., M. R. Berry, and Y. K. Bangash. "DOWS (Downhole Oil-Water Separation) Cross-Waterflood Economics." In SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/75273-ms.
Full textReports on the topic "Water/Oil Separation"
Skone, Timothy J. Oilfield Gas, Water, and Oil Separation. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1509428.
Full textGiddings, T., and B. Farnand. Sludge derived oil fractional separation and water content report no. i. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/304455.
Full textVeil, J. A., B. G. Langhus, and S. Belieu. Feasibility evaluation of downhole oil/water separator (DOWS) technology. Office of Scientific and Technical Information (OSTI), January 1999. http://dx.doi.org/10.2172/917614.
Full textNielsen, R. M. Operations and maintenance manual for the water/oil separator (F-2014). Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/463560.
Full textVeil, J. A., and B. Langhus. Analysis of data from a downhole oil/water separator field trial in east Texas. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799860.
Full textVeil, John A., and Arthur Langhus Layne. Analysis of Data from a Downhole Oil/Water Separator Field Trial in East Texas. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/777913.
Full textVeil, John A. Summary of Data from DOE-Subsidized Field Trial No.1 of Downhole Oil/Water Separator Technology, Texas Well Bilbrey 30-Federal No. 5 Lea County, New Mexico. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/777907.
Full textPARSONS ENGINEERING SCIENCE INC DENVER CO. Redmedial Action Plan for the Risk-Based Remediation of Site ST14 (SWMU 68), LPSTID 104819; the Former Base Refueling Area (A0C7); the French Underdrain System (SWMU 64); and the North Oil/Water Separator (SWMU 67), Carswell Air Force Base, Naval Air Station Fort Worth Joint Reserve Base, Texas. Volume 1: Report. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada381545.
Full text