Academic literature on the topic 'Water – Purification – Photocatalysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Water – Purification – Photocatalysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Water – Purification – Photocatalysis"

1

Le Pivert, Marie, Nathan Martin, and Yamin Leprince-Wang. "Hydrothermally Grown ZnO Nanostructures for Water Purification via Photocatalysis." Crystals 12, no. 3 (February 22, 2022): 308. http://dx.doi.org/10.3390/cryst12030308.

Full text
Abstract:
Semiconductor-based photocatalysis is a well-known and efficient process for achieving water depollution with very limited rejects in the environment. Zinc oxide (ZnO), as a wide-bandgap metallic oxide, is an excellent photocatalyst, able to mineralize a large scale of organic pollutants in water, under UV irradiation, that can be enlarged to visible range by doping nontoxic elements such as Ag and Fe. With high surface/volume ratio, the ZnO nanostructures have been shown to be prominent photocatalyst candidates with enhanced photocatalytic efficiency, owing to their being low-cost, non-toxic, and able to be produced with easy and controllable synthesis. Thus, ZnO nanostructures-based photocatalysis can be considered as an eco-friendly and sustainable process. This paper presents the photocatalytic activity of ZnO nanostructures (NSs) grown on different substrates. The photocatalysis has been carried out both under classic mode and microfluidic mode. All tests show the notable photocatalytic efficiency of ZnO NSs with remarkable results obtained from a ZnO-NSs-integrated microfluidic reactor, which exhibited an important enhancement of photocatalytic activity by drastically reducing the photodegradation time. UV-visible spectrometry and high-performance liquid chromatography, coupled with mass spectrometry (HPLC-MS), are simultaneously used to follow real-time information, revealing both the photodegradation efficiency and the degradation mechanism of the organic dye methylene blue.
APA, Harvard, Vancouver, ISO, and other styles
2

Alalm, Mohamed Gar, Ridha Djellabi, Daniela Meroni, Carlo Pirola, Claudia Letizia Bianchi, and Daria Camilla Boffito. "Toward Scaling-Up Photocatalytic Process for Multiphase Environmental Applications." Catalysts 11, no. 5 (April 28, 2021): 562. http://dx.doi.org/10.3390/catal11050562.

Full text
Abstract:
Recently, we have witnessed a booming development of composites and multi-dopant metal oxides to be employed as novel photocatalysts. Yet the practical application of photocatalysis for environmental purposes is still elusive. Concerns about the unknown fate and toxicity of nanoparticles, unsatisfactory performance in real conditions, mass transfer limitations and durability issues have so far discouraged investments in full-scale applications of photocatalysis. Herein, we provide a critical overview of the main challenges that are limiting large-scale application of photocatalysis in air and water/wastewater purification. We then discuss the main approaches reported in the literature to tackle these shortcomings, such as the design of photocatalytic reactors that retain the photocatalyst, the study of degradation of micropollutants in different water matrices, and the development of gas-phase reactors with optimized contact time and irradiation. Furthermore, we provide a critical analysis of research–practice gaps such as treatment of real water and air samples, degradation of pollutants with actual environmental concentrations, photocatalyst deactivation, and cost and environmental life-cycle assessment.
APA, Harvard, Vancouver, ISO, and other styles
3

Bedia, Jorge, Virginia Muelas-Ramos, Manuel Peñas-Garzón, Almudena Gómez-Avilés, Juan Rodríguez, and Carolina Belver. "A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification." Catalysts 9, no. 1 (January 7, 2019): 52. http://dx.doi.org/10.3390/catal9010052.

Full text
Abstract:
This review analyzes the preparation and characterization of metal organic frameworks (MOFs) and their application as photocatalysts for water purification. The study begins by highlighting the problem of water scarcity and the different solutions for purification, including photocatalysis with semiconductors, such as MOFs. It also describes the different methodologies that can be used for the synthesis of MOFs, paying attention to the purification and activation steps. The characterization of MOFs and the different approaches that can be followed to learn the photocatalytic processes are also detailed. Finally, the work reviews literature focused on the degradation of contaminants from water using MOF-based photocatalysts under light irradiation.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Yunzhang, Youjia Ma, Kan Li, Suhong Chen, and Dongting Yue. "Photocatalytic Reactor as a Bridge to Link the Commercialization of Photocatalyst in Water and Air Purification." Catalysts 12, no. 7 (June 30, 2022): 724. http://dx.doi.org/10.3390/catal12070724.

Full text
Abstract:
The development of clean and sustainable teleology is vital to treat the critical environmental pollutants. In the last decade, the use of photocatalytic reactors has been widely reported for organic pollutants degradation. From photocatalysis’s application in environmental remediation, the primary technical issue to scientists is always the efficiency. The enhanced photocatalytic efficiency is mainly depended on the materials improvement. However, the design of photoreactors lags behind the development of photocatalysts, which strongly limit the widespread use of photocatalysis technology in environmental remediation. The nanoparticles separation, mass transfer limitation, and photonic efficiency have always been problematic and restrict the high photocatalytic efficiency of photoreactors. To overcome these bottleneck problems, the most popular or newfangled designs of photoreactors employed in air and water treatment has been reviewed. The purpose of this review is to systematize designs and synthesis of innovative TiO2-based photoreactors and provides detailed survey and discussion on the enhanced mechanism of photocatalytic performance in different TiO2-based photoreactors. The most studied photoreactors are the following: packed bed reactor, film reactor and membrane reactor, which have some limitations and advantages. A comprehensive comparison between the different photocatalytic performance of TiO2-based photoreactors is presented. This work aims to summarize the progress of TiO2-based photoreactors and provides useful information for the further research and development of photocatalysis for water and air purification.
APA, Harvard, Vancouver, ISO, and other styles
5

Bielan, Zuzanna, Szymon Dudziak, Adam Kubiak, and Ewa Kowalska. "Application of Spinel and Hexagonal Ferrites in Heterogeneous Photocatalysis." Applied Sciences 11, no. 21 (October 29, 2021): 10160. http://dx.doi.org/10.3390/app112110160.

Full text
Abstract:
Semiconducting materials display unique features that enable their use in a variety of applications, including self-cleaning surfaces, water purification systems, hydrogen generation, solar energy conversion, etc. However, one of the major issues is separation of the used materials from the process suspension. Therefore, chemical compounds with magnetic properties have been proposed as crucial components of photocatalytic composites, facilitating separation and recovery of photocatalysts under magnetic field conditions. This review paper presents the current state of knowledge on the application of spinel and hexagonal ferrites in heterogeneous photocatalysis. The first part focuses on the characterization of magnetic (nano)particles. The next section presents the literature findings on the single-phase magnetic photocatalyst. Finally, the current state of scientific knowledge on the wide variety of magnetic-photocatalytic composites is presented. A key aim of this review is to indicate that spinel and hexagonal ferrites are considered as an important element of heterogeneous photocatalytic systems and are responsible for the effective recycling of the photocatalytic materials.
APA, Harvard, Vancouver, ISO, and other styles
6

Janczarek, Marcin, and Ewa Kowalska. "Computer Simulations of Photocatalytic Reactors." Catalysts 11, no. 2 (February 3, 2021): 198. http://dx.doi.org/10.3390/catal11020198.

Full text
Abstract:
Photocatalysis has been considered future technology for green energy conversion and environmental purification, including carbon dioxide reduction, water splitting, air/water treatment, and antimicrobial purposes. Although various photocatalysts with high activity and stability have already been found, the commercialization of photocatalytic processes seems to be slow; it is thought that the difficulty in scaling up photocatalytic processes might be responsible. Research on the design of photocatalytic reactors using computer simulations has been recently intensive. The computer simulations involve various methods of hydrodynamics, radiation, and mass transport analysis, including the Monte Carlo method, the approximation approach–P1 model, and computational fluid dynamics as a complex simulation tool. This review presents all of these models, which might be efficiently used for the scaling-up of photocatalytic reactors. The challenging aspects and perspectives of computer simulation are also addressed for the future development of applied photocatalysis.
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Pingfan, Siyi Huang, Minghua Liu, Yuancai Lv, Zhonghui Wang, Jinlin Long, Wei Zhang, and Haojun Fan. "Z-Schemed WO3/rGO/SnIn4S8 Sandwich Nanohybrids for Efficient Visible Light Photocatalytic Water Purification." Catalysts 9, no. 2 (February 17, 2019): 187. http://dx.doi.org/10.3390/catal9020187.

Full text
Abstract:
Semiconductor photocatalysis has received much attention as a promising technique to solve energy crisis and environmental pollution. This work demonstrated the rational design of “sandwich” WO3/rGO/SnIn4S8 (WGS) Z-scheme photocatalysts for efficient purification of wastewater emitted from tannery and dyeing industries. Such materials were prepared by a combined protocol of the in situ precipitation method with hydrothermal synthesis, and structurally characterized by XRD, SEM, HRTEM, UV-vis DRS, and PL spectroscopy. Results showed that the Z-schemed nanohybrids significantly enhanced the photocatalytic activity compared to the single component photocatalysts. An optimized case of the WGS-2.5% photocatalysts exhibited the highest Cr(VI) reduction rate, which was ca. 1.8 and 12 times more than those of pure SnIn4S8 (SIS) and WO3, respectively. Moreover, the molecular mechanism of the enhanced photocatalysis was clearly revealed by the radical-trapping control experiments and electron paramagnetic resonance (ESR) spectroscopy. The amount of superoxide and hydroxyl radicals as the major reactive oxygen species performing the redox catalysis was enhanced significantly on the Z-scheme WGS photocatalysts, where the spatial separation of photoinduced electron–hole pairs was therefore accelerated for the reduction of Cr(VI) and degradation of Rhodamine B (RhB). This study provides a novel strategy for the synthesis of all-solid-state Z-scheme photocatalysts for environmental remediation.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Chuan, Hong Liu, and Yanzhen Qu. "TiO2-Based Photocatalytic Process for Purification of Polluted Water: Bridging Fundamentals to Applications." Journal of Nanomaterials 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/319637.

Full text
Abstract:
Recent years have witnessed a rapid accumulation of investigations on TiO2-based photocatalysis, which poses as a greatly promising advanced oxidation technology for water purification. As the ability of this advanced oxidation process is well demonstrated in lab and pilot scales to decompose numerous recalcitrant organic compounds and microorganism as well in water, further overpass of the hurdles that stand before the real application has become increasingly important. This review focuses on the fundamentals that govern the actual water purification process, including the fabrication of engineered TiO2-based photocatalysts, process optimization, reactor design, and economic consideration. The state of the art of photocatalyst preparation, strategies for process optimization, and reactor design determines the enhanced separation of photo-excited electron-hole (e-h) pairs on the TiO2surface. For the process optimization, the kinetic analysis including the rate-determining steps is in need. For large-scale application of the TiO2-based photocatalysis, economics is vital to balance the fundamentals and the applied factors. The fundamentals in this review are addressed from the perspective of a bridge to the real applications. This review would bring valuably alternative paradigm to the scientists and engineers for their associated research and development activities with an attempt to push the TiO2-based photocatalysis towards industrially feasible applications.
APA, Harvard, Vancouver, ISO, and other styles
9

Yan, Xin, Yuanyuan Wang, Bingbing Kang, Zhuo Li, and Yanhui Niu. "Preparation and Characterization of Tubelike g-C3N4/Ag3PO4 Heterojunction with Enhanced Visible-Light Photocatalytic Activity." Crystals 11, no. 11 (November 11, 2021): 1373. http://dx.doi.org/10.3390/cryst11111373.

Full text
Abstract:
Water pollution caused by dye wastewater is a potential threat to human health. Using photocatalysis technology to deal with dye wastewater has the advantages of strong purification and no secondary pollution, so it is greatly significant to look for new visible-light photocatalysts with high photocatalytic ability for dye wastewater degradation. Semiconductor photocatalyst silver phosphate (Ag3PO4) has high quantum efficiency and photocatalytic degradation activity. However, Ag3PO4 is prone to photoelectron corrosion and becomes unstable during photocatalysis, which severely limits its application in this field. In this study, a tubelike g-C3N4/Ag3PO4 heterojunction was constructed by the chemical precipitation method. An Ag3PO4 nanoparticle was loaded onto the surface of the tubelike g-C3N4, forming close contact. The photocatalytic activity of the photocatalyst was evaluated by the degradation of RhB under visible-light irradiation. The tubelike g-C3N4/Ag3PO4-5% heterojunction exhibited optimal photocatalytic performance. In an optimal process, the degradation rate of the RhB is 90% under visible-light irradiation for 40 min. The recycling experiment showed that there was no apparent decrease in the activity of tubelike g-C3N4/Ag3PO4-5% heterojunction after five consecutive runs. A possible Z-type mechanism is proposed to explain the high activity and stability of the heterojunction.
APA, Harvard, Vancouver, ISO, and other styles
10

Subramanian, Yathavan, Anitha Dhanasekaran, Lukman Ahmed Omeiza, Mahendra Rao Somalu, and Abul K. Azad. "A Review on Heteroanionic-Based Materials for Photocatalysis Applications." Catalysts 13, no. 1 (January 11, 2023): 173. http://dx.doi.org/10.3390/catal13010173.

Full text
Abstract:
In the last few decades, photocatalysis has been found to be a practical, environmentally friendly approach for degrading various pollutants into non-toxic products (e.g., H2O and CO2) and generating fuels from water using solar light. Mainly, traditional photocatalysts (such as metal oxides, sulfides, and nitrides) have shown a promising role in various photocatalysis reactions. However, it faces many bottlenecks, such as a wider band gap, low light absorption nature, photo-corrosion issues, and quick recombination rates. Due to these, a big question arises of whether these traditional photocatalysts can meet increasing energy demand and degrade emerging pollutants in the future. Currently, researchers view heteroanionic materials as a feasible alternative to conventional photocatalysts for future energy generation and water purification techniques due to their superior light absorption capacity, narrower band gap, and improved photo-corrosion resistance. Therefore, this article summarizes the recent developments in heteroanionic materials, their classifications based on anionic presence, their synthesis techniques, and their role in photocatalysis. In the end, we present a few recommendations for improving the photocatalytic performance of future heteroanionic materials.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Water – Purification – Photocatalysis"

1

Davies, R. H. "Semiconductor photocatalysis for water purification." Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636399.

Full text
Abstract:
Although many aspects of the semiconductor photocatalysed mineralisation of water contaminants have been studied by researchers over the past decade, there are still certain areas which need further clarification, if the technique is to be used as an alternative to the presently available methods of water purification. It was the objective of the work in this thesis to provide further understanding of some of these remaining areas. One of the greatest inducements for the introduction of the technique of semiconductor photocatalysed pollutant mineralisation, in preference to the currently available technology, would be an efficiency advantage. The work in Chapter 3, studies the effect of many reaction variables (e.g. T, pH, [TiO2]) in order to provide rate enhancements and therefore further efficiency of the technique. In Chapter 4 the model pollutant, 4-chlorophenol, is used to illustrate the role of activation energies in semiconductor photocatalysed mineralisation reactions, an area which has been largely ignored by researchers in this field to date. In order to speed up the process of reactor designs for commercial semiconductor photocatalysis reactors, there was a need for a predictive kinetic model, to provide information on individual pollutant mineralisation rates, under certain reaction conditions. Chapter 5 outlines a kinetic model which is able to accurately model the mineralisation of various pollutants and can also be used as a predictive tool for non-standard conditions. Chapter 6 enhances this work, to provide a model capable of modelling further pollutant systems, previously unable to be modelled. The technique of semiconductor photocatalysed pollutant mineralisation, will only become a plausible alternative to the currently available technology, if it can be scaled up from the batch reactor level. The work in Chapter 7 aims to provide scale up of the batch system used in Chapter 3 from 2.5 ml to 101.
APA, Harvard, Vancouver, ISO, and other styles
2

Belghazi, A. "Heterogeneous semiconductor UV-photocatalysis for water purification." Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636072.

Full text
Abstract:
As traditional disinfection techniques have proved to be inefficient in coping with toxic pollutants, there is a real need to create and develop alternatives such as Advanced Oxidation Processes (AOP's). As one of the most promising AOP's developed to date, heterogeneous semiconductor UV-photocatalysis has been shown to efficiently mineralise and inactivate a wide range of organic, inorganic and biological pollutants. This technique is based on the powerful redox properties of UV-illuminated semiconductors. The photocatalyst (semiconductor), which is insoluble in water, can be used in the form of a dispersion or as a thin coated film over which the pollutant can flow and interact in the liquid as well as in the gas phase. Although many pollutants have been studied, the development of more powerful analytical tools has meant that trace levels of water pollutants such as bromate, a potential carcinogenic by-product of the ozonation process and their destruction needs to be addressed. Chapters Three, Four and Five investigate the development and use of an analytical method for monitoring trace levels of bromate (ppb level or μg.dm-3), in studies involving the use of Granular Activated Carbon (or GAC) and platinised TiO2 (Pt-TiO2) UV-photocatalysis for the removal of this inorganic pollutant. In Chapter Six, a study of TiO2 photocatalysed oxidation of urea-based pesticides is given. Chapter Seven investigates two photoreactor designs for use in flow systems with larger volumes of pollutant which is required if the system is to be commercially viable. These flow photoreactors use thin immobilised films of TiO2 over which the pollutant can flow. Finally, using the flow photoreactor designs studied in Chapter Seven, Chapter Eight presents a study of the photocatalysed oxidation of volatile organic pollutants (or VOC's) in the gas phase.
APA, Harvard, Vancouver, ISO, and other styles
3

Lam, Chun-wai Ringo, and 林俊偉. "Development of photocatalytic oxidation technology for purification ofair and water." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38572382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Xi, and 王熙. "Synthesis of visible light-driven catalysts for photocatalytic hydrogen production and simultaneous wastewater treatment under solarlight." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46592325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

De, Villiers David. "Design and evaluation of photocatalytic reactors for water purification." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52178.

Full text
Abstract:
Thesis (PhD)--Stellenbosch University, 2001.
ENGLISH ABSTRACT: The photo-mineralization of organic compounds (in the combined presence of a Ti02 based semiconductor catalyst, UV radiation and molecular oxygen) represents an advanced oxidation technology with significant potential for environmental pollution abatement. This oxidation process (generally known as photocatalytic oxidation - PCO) is currently the subject of extensive global research, with the main objective being the oxidative removal of organic and inorganic pollutants from water, air and soil. Presently, many barriers still block the way to commercial implementation of this technology, hence a unique (and effective) configuration of catalyst, light source and reactor design needs to identified. In terms of the water treatment scenario (which is the emphasis of this work) the need exists to develop a practical and affordable PCO reactor for water treatment on a large scale. The two laboratory-scale PCO reactors investigated in this work were based on a "falling film" flow reactor design and were constructed with commercially available materials and components. Degussa P-25 Ti02 was used as semiconductor catalyst and two types of low-pressure mercury lamps as the UV light source. Three modes of operation were investigated in order to determine the practical feasibility of the reactors. These included the recirculation, single pass and sequential single pass modes. The reactors were operated either as a Ti02 slurry-phase reactor (Reactor 1), or with Ti02 immobilized on stationary fiber glass and fibrous activated carbon sheet modules (Reactors 2A and 28 respectively). Extensive parametric evaluations were done using conventional one-factor variation and statistical methods according to optimal experimental design principles. The PCO treatment of two model organic pollutants (para-Chlorophenol and cyanobacterial microcystin YA, YR, LR and RR) were investigated. These pollutants were spiked into various water matrices to the desired concentration level. The combined photocatalyticcarbon adsorption treatment of these two pollutants was also investigated in Reactor 28. The experimental results obtained through this work showed that both model pollutants were successfully degraded in several water matrices by means of treatment in the respective PCO reactors. Moreover, this research was the first ever demonstration of the Ti02 photocatalytic degradation of microcystin toxins in the aqueous phase. The large number of parametric and optimization studies yielded the relative contributions of the various process parameters (in terms of the defined photocatalytic efficiency parameters as responses) very effectively. Furthermore, statistical evaluation of the experimental data provided valuable insight into the scientific phenomena associated with Ti02 mediated PCO processes.
AFRIKAANSE OPSOMMING: Die foto-mineralisasie van organiese verbindings (in die gekombineerde teenwoordigheid van 'n Ti02 gebaseerde halfgeleier katalisator, UV straling en molekulêre suurstof) verteenwoordig 'n gevorderde oksidasie-tegnologie met beduidende potensiaal vir bekamping van omgewingsbesoedeling. Hierdie oksidasie-proses (algemeen bekend as fotokatalitiese oksidasie - FKO) is tans wêreldwyd die onderwerp van ekstensiewe navorsing, met hoofdoel die oksidatiewe verwydering van organiese en anorganiese besoedelingstowwe uit water, lug en grond. Huidiglik bestaan daar nog vele struikelblokke wat die weg na kommersiële implementering van hierdie tegnologie blokkeer, gevolglik moet 'n unieke (en effektiewe) konfigurasie van katalisator, ligbron en reaktor-ontwerp nog identifiseer word. In terme van die waterbehandeling situasie (wat die klem van hierdie werk is) bestaan die nodigheid om 'n praktiese en bekostigbare FKO reaktor te ontwikkel vir watersuiwering op 'n groot skaal. Die twee laboratorium-skaal FKO reaktore in hierdie studie was gebaseer op 'n "vallende film" vloeireaktor ontwerp en is gekonstrueer met kommersieël beskikbare materiale en komponente. Degussa P-25 Ti02 is aangewend as halfgeleier katalisator en twee tipes lae-druk kwik lampe as die UV ligbron. Drie bedryfsmodes is ondersoek met die doel om die praktiese haalbaarheid van die reaktore te bepaal. Hierdie het ingesluit die resirkulasie, enkeldeurvloei en enkeldeurvloei-sekwensie modes. Die reaktore is bedryf as óf 'n Ti02 flodder-fase reaktor (Reaktor 1) óf met Ti02 ge-immobiliseer op 'n stasionêre veselglas en veselagtige ge-aktiveerde koolstof blad-modules (Reaktor 2A en 28 onderskeidelik). Omvattende parametriese evaluasies is gedoen deur gebruik te maak van konvensionele een-faktor variasie en statistiese metodes na aanleiding van optimale eksperimentele ontwerp beginsels. Die FKO behandeling van twee modelorganiese besoedelingstowwe (para-Chlorofenol en siano-bakteriese mikrosistien YA, YR, LR en RR) is ondersoek. Hierdie besoedelingstowwe is ge-ent in verskeie watermatrikse tot die verlangde konsentrasievlak. Die gekombineerde fotokatalitiese - aktiveerde koolstof behandeling van die twee besoedelingstowwe is ook ondersoek in Reaktor 28. Die eksperimentele resultate verkry deur hierdie werk het getoon dat beide die modelbesoedelingstowwe suksesvol gedegradeer is in verskeie watermatrikse deur behandeling in die onderskeie FKO reaktore. Trouens, hierdie navorsing was die eerste demonstrasie ooit van die Ti02 fotokatalitiese degradasie van mikrosistien toksiene in die waterige fase. Die groot aantal parametriese en optimiseringstudies het die bydraes van die verskeie proses-parameters (in terme van die gedefinieerde fotokatalitiese effektiwiteitsparameters as response) baie effektief verskaf. Verder, statistiese evaluasie van die eksperimentele data het waardevolle insig verskaf tot die wetenskaplike verskynsels te assosieer met Ti02 gemedieërde FKO prosesse.
APA, Harvard, Vancouver, ISO, and other styles
6

Tsai, Hei-lok, and 蔡希樂. "Parametric study on the fabrication and modification of TiO2 nanotube arrays for photoeletrocatalytic degradation of organic pollutants." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45160259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fowler, Simon Paul. "Design and Application of a 3D Photocatalyst Material for Water Purification." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3648.

Full text
Abstract:
This dissertation presents a method for enhancement of the efficiency and scalability of photocatalytic water purification systems, along with an experimental validation of the concept. A 3-dimensional photocatalyst structure, made from a TiO2-SiO2 composite, has been designed and fabricated for use in a custom designed LED-source illumination chamber of rotational symmetry that corresponds with the symmetry of the photocatalyst material. The design of the photocatalyst material has two defining characteristics: geometrical form and material composition. The design of the material was developed through the creation of a theoretical model for consideration of the system's photonic efficiency. Fabrication of the material was accomplished using a Ti alkoxide solution to coat a novel 3D support structure. The coatings were then heat treated to form a semiconducting thin-film. The resulting films were evaluated by SEM, TEM, UV-vis spectroscopy and Raman spectroscopy. The surface of the material was then modified by implantation of TiO2 and SiO2 nanoparticles in order to increase catalytic surface area and improve the photoactivity of the material, resulting in increased degradation performance by more than 500%. Finally, the efficiency of the photocatalytic reactor was considered with respect to energy usage as defined by the Electrical Energy per Order (EEO) characterization model. The effects of catalyst surface modification and UV-illumination intensity on the EEO value were measured and analyzed. The result of the modifications was an 81.9% reduction in energy usage. The lowest EEO achieved was 54 kWh per cubic meter of water for each order of magnitude reduction in pollutant concentration -- an improvement in EEO over previously reported thin-film based photoreactors.
APA, Harvard, Vancouver, ISO, and other styles
8

Gwele, Zuqaqambe. "Scale-up dynamics for the photocatalytic treatment of textile effluent." Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2761.

Full text
Abstract:
Thesis (Masters of Engineering in Chemical Engineering)--Cape Peninsula University of Technology, [2018].
Enhancing the efficiency of large scale photocatalytic systems has been a concern for decades. Engineering design and modelling for the successful application of laboratory-scale techniques to large scale is obligatory. Among the many fields of research in heterogeneous photocatalysis, photocatalytic reaction engineering can initiate improvement and application of conservative equations for the design and scale-up of photocatalytic reactors. Various reactor configurations were considered, and the geometry of choice was the annular shape. Theory supports the view that annular geometry, in the presence of constant transport flow properties, monochromatic light, and an incompressible flow, will allow a system to respect the law of conservation of mass. The degradation of a simulated dye, methyl orange (MO), by titanium dioxide (TiO2) with a simulated solar light (halogen lamp) in a continuous recirculating batch photoreactor (CRBPR) was studied. A response surface methodology (RSM) based on central composite design (CCD) was applied to study interaction terms and individual terms and the role they play in the photocatalytic degradation of MO. The studied terms were volume (L), TiO2 (g), 2 (mL), and initial dye concentration (mg/L), to optimize these parameters and to obtain their mutual interaction during a photocatalytic process, a 24 full-factorial CCD and RSM with an alpha set to 1.5 were employed. The polynomial models obtained for the chosen responses (% degradation and reaction rate constant, k) were shown to have a good externally studentized vs normal percentage probability fit with R2 values of 0.69 and 0.77 respectively. The two responses had a common significant interaction term which was the H2O2 initial dye concentration term. The optimum degradation that was obtained in this study was a volume of 20 L, TiO2 of 10 g, H2O2 of 200 mL and the initial dye concentration of 5 mg/L which yielded 64.6% and a reaction rate constant of 0.0020 min-1. The model of percentage degradation was validated on a yield of 50% and 80% over a series of set volumes and the model validation was successful.
APA, Harvard, Vancouver, ISO, and other styles
9

Ede, Sarah Melinda. "Infrared and photocatalytic studies of model bacterial species for water treatment." Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/16438/1/Sarah_Ede_Thesis.pdf.

Full text
Abstract:
The use of a CO2 infrared (IR) laser and photocatalysis for water treatment microorganism disinfection purposes was investigated. During CO2 infrared (IR) laser treatment E. cloacae inactivation was comparable to inactivation via ultraviolet (UV) treatment; however no inactivation of the more resistant B. subtilis endospores occurred. Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) spectroscopy of the bacterial cells displayed increased polysaccharide contents after IR treatment. FTIR and Raman spectroscopy of simple carbohydrates before and after IR laser treatment displayed no spectral changes, with the exception of N-acetyl-D-glucosamine (NAG), which was partially attributed to sampling techniques. E. cloacae inactivation during IR treatment was attributed to localised and overall temperature increases within the water. Due to the inability to inactivate B. subtilis endospores this technique is not suitable for water treatment purposes. Photocatalytic water treatment using novel TiO2 colloids prepared via a postsynthetic microwave-modification process (MW-treated) was also examined. These colloids were characterised using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses and compared to Degussa P25 and convection hydrothermally-treated (HT-treated) TiO2. Slurry suspensions displayed comparable E. coli inactivation rates, so the colloids were examined in immobilised form using both a model organic degradant, oxalic acid, and E. coli. Oxalic acid degradation studies showed that the MW-treated colloids displayed similar inactivation rates to the HT-treated TiO2, due to their pure anatase composition, while Degussa P25 displayed higher inactivation rates. Investigations into the effect of shortening UV wavelength were also performed. Degussa P25 was the only catalyst which displayed higher apparent quantum yields upon shortening the UV wavelength, which was attributed to its mixed-phase anatase-rutile composition. As E. coli inactivation was observed using distilled water, photocatalysis in natural river water was trailed. It was discovered that the pH had to be lowered from 7.5 to 5.0 and the initial cell concentration must be approximately 1 x 103 colony forming units (CFU) per cm3 or less for inactivation to be observed during a 5 hour treatment period. At a catalyst loading of 1.0 mg per cm2, Degussa P25 absorbed all the applied UVA irradiation; however the MW- and HT-treated TiO2 colloids did not due to their smaller particle size. Therefore sandwich experiments were devised to evaluate the effect of unabsorbed UV irradiation within the system. Small colony variants were identified after photocatalytic and UV treatment, which pose a potential threat to public health. Further investigation of the different TiO2 colloids was performed using in situ FTIR, both with and without an applied potential and compared to a thermally prepared TiO2 catalyst. The latter displayed potential dependent photocatalysis, while the mesoporous TiO2 catalysts displayed potential independent photocatalysis. All catalyst types displayed increased degradation rates upon the application of a positive bias, which was followed in situ via the production of CO2. Sodium oxalate and NAG was examined for photocatalytic degradation, both of which were degraded to CO2, with proposed break-down products identified when using NAG.
APA, Harvard, Vancouver, ISO, and other styles
10

Ede, Sarah Melinda. "Infrared and photocatalytic studies of model bacterial species for water treatment." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16438/.

Full text
Abstract:
The use of a CO2 infrared (IR) laser and photocatalysis for water treatment microorganism disinfection purposes was investigated. During CO2 infrared (IR) laser treatment E. cloacae inactivation was comparable to inactivation via ultraviolet (UV) treatment; however no inactivation of the more resistant B. subtilis endospores occurred. Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) spectroscopy of the bacterial cells displayed increased polysaccharide contents after IR treatment. FTIR and Raman spectroscopy of simple carbohydrates before and after IR laser treatment displayed no spectral changes, with the exception of N-acetyl-D-glucosamine (NAG), which was partially attributed to sampling techniques. E. cloacae inactivation during IR treatment was attributed to localised and overall temperature increases within the water. Due to the inability to inactivate B. subtilis endospores this technique is not suitable for water treatment purposes. Photocatalytic water treatment using novel TiO2 colloids prepared via a postsynthetic microwave-modification process (MW-treated) was also examined. These colloids were characterised using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses and compared to Degussa P25 and convection hydrothermally-treated (HT-treated) TiO2. Slurry suspensions displayed comparable E. coli inactivation rates, so the colloids were examined in immobilised form using both a model organic degradant, oxalic acid, and E. coli. Oxalic acid degradation studies showed that the MW-treated colloids displayed similar inactivation rates to the HT-treated TiO2, due to their pure anatase composition, while Degussa P25 displayed higher inactivation rates. Investigations into the effect of shortening UV wavelength were also performed. Degussa P25 was the only catalyst which displayed higher apparent quantum yields upon shortening the UV wavelength, which was attributed to its mixed-phase anatase-rutile composition. As E. coli inactivation was observed using distilled water, photocatalysis in natural river water was trailed. It was discovered that the pH had to be lowered from 7.5 to 5.0 and the initial cell concentration must be approximately 1 x 103 colony forming units (CFU) per cm3 or less for inactivation to be observed during a 5 hour treatment period. At a catalyst loading of 1.0 mg per cm2, Degussa P25 absorbed all the applied UVA irradiation; however the MW- and HT-treated TiO2 colloids did not due to their smaller particle size. Therefore sandwich experiments were devised to evaluate the effect of unabsorbed UV irradiation within the system. Small colony variants were identified after photocatalytic and UV treatment, which pose a potential threat to public health. Further investigation of the different TiO2 colloids was performed using in situ FTIR, both with and without an applied potential and compared to a thermally prepared TiO2 catalyst. The latter displayed potential dependent photocatalysis, while the mesoporous TiO2 catalysts displayed potential independent photocatalysis. All catalyst types displayed increased degradation rates upon the application of a positive bias, which was followed in situ via the production of CO2. Sodium oxalate and NAG was examined for photocatalytic degradation, both of which were degraded to CO2, with proposed break-down products identified when using NAG.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Water – Purification – Photocatalysis"

1

Pichat, Pierre, ed. Photocatalysis and Water Purification. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tayade, Rahesh J. Photocatalytic materials & surfaces for environmental cleanup: Special topic volume with invited peer reviewed papers only. Durnten-Zurich: Trans Tech Pubs., Ltd., 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tayade, Rajesh J. Photocatalytic materials & surfaces for environmental cleanup III: Special topic volume with invited peer reviewed papers only. Durnten-Zurich, Switzerland: Trans Tech Publications, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Photochemical purification of water and air. Weinheim: Wiley-VCH, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Solid state chemistry and photocatalysis of titanium dioxide: Special topic volume with invited peer reviewed papers only. Stafa-Zurich: Trans Tech, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

R, Helz G., Zepp Richard G, and Crosby Donald G, eds. Aquatic and surface photochemistry. Boca Raton: Lewis Publishers, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sixto, Malato Rodríguez, ed. Solar detoxification. Paris: UNESCO Pub., 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Symposium, on Water Purification by Photocatalytic Photoelectrochemical and Electrochemical Processes (1994 San Francisco Calif ). Proceedings of the Symposium on Water Purification by Photocatalytic, Photoelectrochemical, and Electrochemical Processes. Pennington, NJ: Electrochemical Society, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fujishima, Akira. Hikari kurīn kakumei: Sanka chitan hikari shokubai ga katsuyakusuru /cFujishima Akira, Hashimoto Kazuhito, Watanabe Toshiya kyōcho. Tōkyō-to Chiyoda-ku: Shīemushī, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

International Conference on Oxidation Technologies for Water and Wastewater Treatment (4th 2006 Goslar, Germany). Oxidation technologies for water and wastewater treatment: 4th IWA specialist conference, May 15-17, 2006, Goslar, Germany ; special topic, recalcitrant and anthropogenic micropollutants. Edited by Vogelpohl A, Sievers Michael, Geissen S. -U, International Water Association, and Clausthaler Umwelttechnik-Institut. Clausthal-Zellerfeld: Papierflieger, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Water – Purification – Photocatalysis"

1

Amadelli, Rossano, and Luca Samiolo. "Photoelectrocatalysis for Water Purification." In Photocatalysis and Water Purification, 241–70. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shaham-Waldmann, Nurit, and Yaron Paz. "Modified Photocatalysts." In Photocatalysis and Water Purification, 103–43. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nosaka, Yoshio, and Atsuko Y. Nosaka. "Identification and Roles of the Active Species Generated on Various Photocatalysts." In Photocatalysis and Water Purification, 1–24. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Sanly, May Lim, and Rose Amal. "Photocatalysis of Natural Organic Matter in Water: Characterization and Treatment Integration." In Photocatalysis and Water Purification, 271–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rengifo-Herrera, Julián Andrés, Angela Giovana Rincón, and Cesar Pulgarin. "WaterborneEscherichia coliInactivation by TiO2Photoassisted Processes: A Brief Overview." In Photocatalysis and Water Purification, 295–309. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ollis, David. "Photocatalytic Treatment of Water: Irradiance Influences." In Photocatalysis and Water Purification, 311–33. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alfano, Orlando M., Alberto E. Cassano, Rodolfo J. Brandi, and María L. Satuf. "A Methodology for Modeling Slurry Photocatalytic Reactors for Degradation of an Organic Pollutant in Water." In Photocatalysis and Water Purification, 335–59. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ochiai, Tsuyoshi, and Akira Fujishima. "Design and Optimization of Photocatalytic Water Purification Reactors." In Photocatalysis and Water Purification, 361–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Malato, Sixto, Pilar Fernández-Ibáñez, Maneil Ignacio Maldonado, Isabel Oller, and Maria Inmaculada Polo-López. "Solar Photocatalytic Pilot Plants: Commercially Available Reactors." In Photocatalysis and Water Purification, 377–97. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jenks, William S. "Photocatalytic Reaction Pathways - Effects of Molecular Structure, Catalyst, and Wavelength." In Photocatalysis and Water Purification, 25–51. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527645404.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Water – Purification – Photocatalysis"

1

Mahmoud, Sawsan A., A. Abdel Aal, and Ahmed K. Aboul-Gheit. "Nanocrystalline ZnO Thin Film for Photocatalytic Purification of Water." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47034.

Full text
Abstract:
A thin film ZnO nanostructured catalyst exhibited a significantly greater superiority for the photodegradation of 2, 4, 6-TCP in water over photolysis via irradiation with UV of 254 nm wavelength. This ZnO photocatalyst was prepared via Zn metal evaporation and deposition on a glass sheet followed by calcination ature from 350 to 500 °C and the calcination time from 1 to 2h shows via SEM photography a decrease of ZnO nanoparticales sizes sheet followed by calcination (oxidation). Increasing the calcination temperature from 350 to 500 °C and the calcination time from 1 to 2h shows via SEM photography a decrease of ZnO nanoparticales sizes as well as the shape of their crystals finer needles, for which the crystallinity enhances as revealed by XRD. 2, 4, 6-Trichlorophenol was used as a model pollutant in water. Its photolysis using UV only or photocatalysis using UV irradiation in presence of the ZnO thin film catalyst indicated aromatic intermediates, which suffered of Cl by OH, addition of OH in a bare carbon in the aromatic ring, whereas in Photocatalysis deeper oxidation products, e.g., quinones and hydroquinones were also formed.
APA, Harvard, Vancouver, ISO, and other styles
2

Shouman, Mahmoud A., Ahmed H. El-Shazly, Mohamed S. Salem, Mohamed R. Elmarghany, Essam M. Abo-Zahhad, Marwa F. Elkady, Mohamed Nabil Sabry, and Ali Radwan. "A Hepatic Sinusoids-Based Microreactor for Photocatalytic Degradation of Methylene Blue by Titanium Dioxide." In ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icnmm2020-1004.

Full text
Abstract:
Abstract Microreactor technology is considered a state of art technology that gained great attention from researchers due to the high effectiveness and the small residence time compared with other regular reactors. Great research work has been established to involve microreators in a variety of applications, including fuel production, food and chemical industries, medical applications. In the present study, a hepatic sinusoids-based microreactor is experimentally tested in Methylene blue degradation using titanium dioxide (TiO2) photocatalyst activated with ultraviolet lamp of wavelength 365 nm. Purification of water using photocatalysis is considered a promising technology that attract the industrial community. Different operating conditions are investigated including; flow rate, Methylene blue concentration, and TiO2 concentration. 3 different dye concentrations are used (10 ppm, 20 ppm, and 30 ppm) with 3 different photocatalyst concentrations (100 ppm, 300 ppm, and 500 ppm). The flow rate has a span from 0.25 ml/min to 1 ml/min. Experiments are conducted to determine best operating conditions. Results show that the microreactor system can be effectively used in dye degradation with a very small residence time. A degradation of over 95% was reached at a TiO2 concentration of 300 ppm and a flow rate of 0.25 ml/min for all tested dye concentrations.
APA, Harvard, Vancouver, ISO, and other styles
3

Toma, F. L., N. Berger-Keller, G. Bertrand, D. Klein, and C. Coddet. "Photocatalytic Properties of TiO2 Coatings as a Function of Coating and Substrate Characteristics." In ITSC2003, edited by Basil R. Marple and Christian Moreau. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.itsc2003p1331.

Full text
Abstract:
Abstract Titanium dioxide (TiO2) is an attractive material for numerous technological applications such as photocatalytic applications. The photocatalysts allow the environmental purification of air and water by the decomposition of toxic organic compounds and removal of harmful gases. This work was focused on the production and evaluation of the environmental properties of titanium dioxide coatings obtained by the plasma spray technique. To carry out the step of validation of the TiO2 coatings for their environmental functionalities, a control test of the photocatalytic effectiveness was performed with respect to nitrogen oxides. A custom-designed test chamber has been developed. The photocatalytic properties of different coatings were studied as a function of various parameters (porosity, anatase/rutile ratio, nature of the substrate).
APA, Harvard, Vancouver, ISO, and other styles
4

Toma, F. L., G. Bertrand, S. Ok Chwa, C. Coddet, D. Klein, P. Nardin, and A. Ohmori. "Studies of the Photocatalytic Efficiency of Titanium Dioxide Powders and Coatings Obtained by Plasma Spraying." In ITSC2004, edited by Basil R. Marple and Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p0928.

Full text
Abstract:
Abstract Titanium dioxide (TiO2) is one of the most important photocatalyst that allows the environmental purification of water and air by the decomposition of toxic organic compounds and removal of harmful gases. In the photocatalytic applications, TiO2 can be used in form of powder or coating. In this paper, two techniques of deposition were used to elaborate thin deposits starting from an agglomerated TiO2 anatase nanopowder: conventional plasma spraying in atmospheric conditions and suspension plasma spraying. The photocatalytic efficiency of the coatings was performed with respect to nitrogen oxides (NOx) and compared with the photocatalytic activity of the TiO2 Degussa P25 powder. Differences in the photocatalytic efficiencies of the nanocoatings obtained by the two techniques of plasma spraying were obtained. The coatings elaborated by suspension plasma spraying have poor mechanical properties but better photocatalytic efficiencies. This method is a promising technique to elaborate photocatalytic coatings for the removal of different air pollutants.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, N., Furui Tan, and Xuming Zhang. "Photocatalytic water purification using planar microreactor." In 2012 Photonics Global Conference (PGC). IEEE, 2012. http://dx.doi.org/10.1109/pgc.2012.6458085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tsoi, Chi Chung, and Xuming Zhang. "Solar Reactor for Photocatalytic Water Purification." In The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nara, Matsunori, and Keiji Yoda. "Purification of Sea Pollution by a Bio-Micromachine." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79240.

Full text
Abstract:
Contamination of sea water is proceeding quickly under the influence of climate changes including global warming. The cause of the expansion of seawater pollution is an elevated water temperature by the climate change and an inflow of the pollution river water. The problem of seawater pollution occurs as a result that planet’s environmental problem and regional environmental problems are combined. The effective method for removing these contaminants from sea water now is not developed. In this research, the method of producing the micromachine which fixed the photocatalyst to the surface of the substance designed so that it might float near a sea surface was built up. And experimental examination was performed about the conditions for removing the organic matter and nutritive salts in the sea using this micromachine. In addition, as a result of performing theoretical examination about a photocatalyst, the titanium dioxide was chosen as a suitable photocatalyst. In the examination about the quality of the material of a micromachine, since an organic polymer substance like styrene foam will be decomposed by the photocatalyst made to adhere to the surface, it decided to use the sphere of metal hollow. Metal took the corrosive protection performance into consideration. Moreover, the form of a metal ball was designed so that photocatalyst efficiency might become high. This metal ball can be collected and re-used after a treatment end. In order to make a photocatalyst bond to a surface of metal, baking by the water solvent method and an alcoholic solvent method was performed. Here, specific treatment conditions required in order to carry out the supported of the photocatalyst to metal certainly were clarified. A phosphate and nitrogen caused eutrophication and the damage by eutrophication is increasing them by in recent years. Then, the experiment about decomposition removal of the phosphate and nitrogen which are the causative agent which pollutes sea water was conducted. According to the evaluation experiment of the performance of a micromachine, the removal ratio of a phosphate was about 30%, and the removal ratio of nitrogen was about 60%. It was shown that the suitable amount of micro-machines per unit volume and the interval between them must be maintained here. As mentioned above, establishment of the manufacture method of a micromachine and the fundamental verification about the performance were able to be performed. However, a conclusion clear about the performance in the depth direction of a micromachine is not obtained, but it is a future subject.
APA, Harvard, Vancouver, ISO, and other styles
8

Yeung, Puihong, and Xuming Zhang. "Photocatalytic water purification using nanomaterial." In The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ning Wang, Ngai Yui Chan, Chap Hang To, Furui Tan, and Xuming Zhang. "Photocatalytic microreactors for water purification: Selective control of oxidation pathways." In 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2013. http://dx.doi.org/10.1109/nems.2013.6559753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ZHANG, LIANFENG, TATSUO KANKI, NORIAKI SANO, and ATSUSHI TOYODA. "ON PRACTICAL USE OF TiO2 PHOTOCATALYST REACTOR TO WATER PURIFICATION." In Proceedings of the Third Asia-Pacific Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791924_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Water – Purification – Photocatalysis"

1

Fowler, Simon. Design and Application of a 3D Photocatalyst Material for Water Purification. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography