Dissertations / Theses on the topic 'Watershed management Hydrology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Watershed management Hydrology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Haseltine, Michael, Barbara Hutchinson, and Malchus B. Jr Backer. "Improving Access to Watershed Management Information." Arizona-Nevada Academy of Science, 2002. http://hdl.handle.net/10150/296595.
Full textFfolliott, Peter F., Malchus B. Jr Baker, Leonard F. DeBano, Daniel G. Neary, and Gerald J. Gottfried. "Perspectives on Watershed Management in Arizona." Arizona-Nevada Academy of Science, 2002. http://hdl.handle.net/10150/296586.
Full textEskandari, Abdollah 1952. "Decision support system in watershed management under uncertainty." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/191213.
Full textFfolliott, Peter F. "Integrated Watershed Management: A Comprehensive Approach to Land Stewardship." Arizona-Nevada Academy of Science, 2011. http://hdl.handle.net/10150/296994.
Full textBier, Anthony Friedrich. "Using artificial tracers to observe timing of runoff from different landscape units in a small headwater catchment." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2345.
Full textFfolliott, Peter F. "Cumulative Effects of Watershed Management in Arizona and the Southwest." Arizona-Nevada Academy of Science, 2012. http://hdl.handle.net/10150/301296.
Full textDrake, Samuel Edward 1960. "Climate-correlative modeling of phytogeography at the watershed scale." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/191246.
Full textGreiner, Megan K. "An Analysis of Wetland Total Phosphorus Retention and Watershed Structure." W&M ScholarWorks, 1995. https://scholarworks.wm.edu/etd/1539617694.
Full textZhang, Lihong. "Capturing the essential spatial variability in urban hydrologic miodeling by GIS." Thesis, The University of Arizona, 1999. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_etd_hy0032_m_sip1_w.pdf&type=application/pdf.
Full textYeo, In-Young. "Multistage hierarchical optimization for land use allocation to control nonpoint source water pollution." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1127156412.
Full textTitle from first page of PDF file. Document formatted into pages; contains xvii, 180 p.; also includes graphics (some col.). Includes bibliographical references (p. 156-171). Available online via OhioLINK's ETD Center
Blasko, Cole. "Assessing hydrologic impacts of the 2013 Rim Fire on the Tuolumne River Watershed in Central Valley, California." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1586445449253322.
Full textTecle, Aregai 1948. "Choice of multicriterion decision making techniques for watershed management." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/191145.
Full textCallahan, Michael Kroh. "Groundwater Controls on Physical and Chemical Processes in Streamside Wetlands and Headwater Streams in the Kenai Peninsula, Alaska." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5347.
Full textJemison, Roy, and Jesse Lynn. "An Ecosystem Management Strategy for the Sycamore Creek Watershed in South-Central Arizona." Arizona-Nevada Academy of Science, 1995. http://hdl.handle.net/10150/296469.
Full textSemmens, Darius James. "Geomorphic modeling and routing improvements for GIS-based watershed assessment in arid regions." Diss., The University of Arizona, 2004. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2004_140_sip1_w.pdf&type=application/pdf.
Full textMiller, Ryan Craig. "A rangeland watershed management spatial decision support system: Design, implementation, and sensitivity analysis." Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280563.
Full textRajagopal, Seshadri. "Assessing Water Management Impacts of Climate Change for a Semi-arid Watershed in the Southwestern US." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/228475.
Full textSulistioadi, Yohanes Budi. "Satellite Altimetry and Hydrologic Modeling of Poorly-Gauged Tropical Watershed." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1382544894.
Full textWigmore, Oliver Henry Wigmore. "Assessing Spatiotemporal Variability in Glacial Watershed Hydrology: Integrating Unmanned Aerial Vehicles and Field Hydrology, Cordillera Blanca, Peru." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471854919.
Full textGrow, David Earl. "Effects of substrate on dendrochronologic streamflow reconstruction: Paria River, Utah with fractal application to dendrochronology." Diss., The University of Arizona, 2002. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2002_312_sip1_w.pdf&type=application/pdf.
Full textFahy, Benjamin. "Evaluating the Impact and Distribution of Stormwater Green Infrastructure on Watershed Outflow." PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/4732.
Full textJeton, Anne Elizabeth 1956. "Vegetation management and water yield in a southwestern ponderosa pine watershed: An evaluation of three hydrologic simulation models." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277298.
Full textPaige, Virginia Burton. "Measurement and modeling of the spatial variability of infiltration on rangeland watersheds." Diss., The University of Arizona, 2000. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2000_342_sip1_w.pdf&type=application/pdf.
Full textvan, Leeuwen Willem Jan Dirk 1961. "Biophysical interpretation of spectral indices for semi-arid soil and vegetation types in Niger." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/191193.
Full textDi, Vittorio Damien. "Spatial Translation and Scaling Up of LID Practices in Deer Creek Watershed in East Missouri." Thesis, Southern Illinois University at Edwardsville, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1566440.
Full textThis study investigated two important aspects of hydrologic effects of low impact development (LID) practices at the watershed scale by (1) examining the potential benefits of scaling up of LID design, and (2) evaluating downstream effects of LID design and its spatial translation within a watershed. The Personal Computer Storm Water Management Model (PCSWMM) was used to model runoff reduction with the implementation of LID practices in Deer Creek watershed (DCW), Missouri. The model was calibrated from 2003 to 2007 (R2 = 0.58 and NSE = 0.57), and validated from 2008 to 2012 (R2 = 0.64 and NSE = 0.65) for daily direct runoff. Runoff simulated for the study period, 2003 to 2012 (NSE = 0.61; R2 = 0.63), was used as the baseline for comparison to LID scenarios. Using 1958 areal imagery to assign land cover, a predevelopment scenario was constructed and simulated to assess LID scenarios' ability to restore predevelopment hydrologic conditions. The baseline and all LID scenarios were simulated using 2006 National Land Cover Dataset.
The watershed was divided in 117 subcatchments, which were clustered in six groups of approximately equal areas and two scaling concepts consisting of incremental scaling and spatial scaling were modelled. Incremental scaling was investigated using three LID practices (rain barrel, porous pavement, and rain garden). Each LID practice was simulated at four implementation levels (25%, 50%, 75%, and 100%) in all subcatchments for the study period (2003 to 2012). Results showed an increased runoff reduction, ranging from 3% to 31%, with increased implementation level. Spatial scaling was investigated by increasing the spatial extent of LID practices using the subcatchment groups and all three LID practices (combined) implemented at 50% level. Results indicated that as the spatial extent of LID practices increased the runoff reduction at the outlet also increased, ranging from 3% to 19%. Spatial variability of LID implementation was examined by normalizing LID treated area to impervious area for each subcatchment group. The normalized LID implementation levels for each group revealed a reduction in runoff at the outlet of the watershed, ranging from 0.6% to 3.7%. This study showed that over a long-term period LID practices could restore pre-development hydrologic conditions. The optimal location for LID practice implementation within the study area was found to be near the outlet; however, these results cannot be generalized for all watersheds.
Meyles, Erik W. "Hillslope and watershed scale hydrological processes and grazing management in a Dartmoor catchment, Southwest England." Thesis, University of Plymouth, 2002. http://hdl.handle.net/10026.1/387.
Full textGoff, Bruce Franklin. "Dynamics of canopy structure and soil surface cover in a semiarid grassland." Thesis, The University of Arizona, 1985. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1985_503_sip1_w.pdf&type=application/pdf.
Full textParker, Ronald Dean 1948. "The effect of spatial variability on output from the water erosion prediction project soil erosion computer model." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/191165.
Full textHernandez-Narvaez, Mariano 1956. "Analysis of the quasi-steady state approximation on parameter identifiability for a dynamic soil erosion model." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/191169.
Full textBarlas, Sajid Ali 1961. "Redox Transformations and Sulfur Speciation in Flue Gas Desulferization Sludge." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/191187.
Full textMales, Ryan James. "Complex, deterministic hydrological modelling towards decision support for urban catchment management." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52170.
Full textENGLISH ABSTRACT: Historically, urban waterresources have too often been managed without recognition that the flow in a river integrates many landscape and biological features. This has often resulted in the elimination of natural processes and their replacement by man-made streamlined structures with the effects of increased urbanisation being primarily addressed from an engineering and economics point of view to the detriment of environmental and social issues. Catchment Management, as legislated in the Water Act, No. 36 of 1998, is a management approach to address the negative consequences of an urban stormwater design philosophy restricted to flood restriction. It is a systems approach that integrates engineering and scientific skills, socio-economic concerns, and environmental constraints within a new multidisciplinary decision-making process that recognises the different components of the hydrological and aquatic cycles are linked, and each component is affected by changes in every other component. In order to make effective management decisions, catchment managers require tools to provide reliable information about the performance of alternative arrangements of stormwater management facilities and to quantify the effects of possible management decisions on the water environment. A deterministic hydrological model is such a tool, which provides the link between the conceptual understanding of the physical catchment characteristics and the empirical quantification of the hydrological, water quality and ecological response. In order to provide effective computer based decision support, the hydrological model must be part of an integrated software application in which a collection of data manipulation, analysis, modelling and interpretation tools, including GIS, can be efficiently used together to manage a large potion of the overall decision process. This decision support system must have a simple and intuitive user interface able to produce easily interpreted output. It must have powerful graphical presentation capabilities promoting effective communication and be designed to solve ill-structured problems by flexibly combining statistical analysis, models and data. The Great Lotus River canal, situated on the Cape Flats, Cape Town, has been designed and controlled through extensive canalisation and the construction of detention pond facilities to avoid the flooding of urban areas of the catchment. This approach has resulted in these channels becoming stormwater drains, transporting waste and nutrients in dissolved and particulate forms, and reducing their assimilatory capacity for water quality improvement. In order to investigate the use of hydrological modelling in decision support for Catchment Management, the semi-distributed, physically based model, SWMM, was applied to the Great Lotus River canal. SWMM consists of a number of independent modules allowing the hydrological and hydraulic simulations of urban catchments and their conveyance networks on an event or continuous basis. In order to ease the application of the Fortran based SWMM model, the GUl, PCSWMM98, was developed by Computational Hydraulics Inc (CH!). This provides decision support for SWMM through large array of tools for file management, data file creation, output visualisation and interpretation, model calibration and error analysis and storm dynamic analysis thus easing any simulations with SWMM. In addition, PCSWMM was developed with a GIS functionality for graphically creating, editing and/or querying SWMM model entities and attributes, displaying these SWMM layers with background layers and dynamic model results, and exporting data to SWMM input files thus providing an interface between a GIS and SWMM. In terms of Catchment Management, the above DSS can be used effectively to assist decisionmaking. This is to address tensions between the fundamental catchment management considerations of physical development, social considerations and maintaining ecological sustainability. It is at the stages of Assessment and Planning that the model can play the most significant role in providing decision support to the Catchment Management process. Assessment in the Catchment Management process refers to the collection, storage, modelling and interpretation of catchment information. It is in this quantification, interpretation and assessment of catchment information that a hydrological model contributes to an increase in knowledge in the Catchment Management process. In identifying and quantifying, at a sufficient temporal and spatial scale, the dominant cause and effect relationships in the urban physical environment, a hydrological model is able to highlight the main contributing factors to an issue. This is used in the Planning stage of the Catchment Management process and when combining these contributing factors with assessments of the socio-economic and administrative environments, enables the prioritisation of the principal issues requiring attention in a Catchment Management Strategy. It is possible to link the multiple decision-making requirements of Catchment Management with the abilities of a hydrological model to provide information on these requirements in a conceptual framework. This framework consists of the fundamental catchment considerations of Physical Development, Environmental Management and Social Development and resolves these considerations into the various management issues associated with each consideration ~s well as its management solution. The management solutions are linked to the model through formulating the solution in terms of the model parameters and perturbing the affected parameters in ways to simulate the management solution. This results in model output and graphical interpretation of the effects of the suggested management solution. A comparison between the simulated effects of each management solution allows the Catchment Management body to identify optimal management solutions for the various management Issues. The present model of the Great Lotus River catchment is sufficient to simulate the overland and subsurface flows from individual parts of the catchment and to route these flows and associated pollutant loadings to the catchment outlet. At its present level of complexity, the finely discretised model subcatchment and conveyance network provides decision support for Catchment Management through the simulation, at a pre-feasibility stage, of various Catchment Management issues and their proposed solutions. Given more detailed canal and drainage network dimensions and water quality data, it is possible for the model to incorporate hydraulic calculation routines to assess the implications of alternative river rehabilitation techniques and waste management strategies. This would allow greater capability in assessing the role of the various BMPs in ameliorating stormwater impacts and pollutant loading. In addition, a detailed level survey of the stormwater pipe and canal network could result in hydrological modelling being utilised to identify critical areas where stormwater upgrading would be necessary. In order to facilitate future complex, finely discretised catchment hydrological models, it is imperative that complete and detailed drainage patterns and stormwater network characteristics are available. In addition, to minimise model generation costs and time of model setup, this spatially representative data must be captured in a GIS for rapid inclusion into the model. Furthermore, complete spatially representative precipitation datasets are necessary to ensure that model error is reduced. These two issues of available spatial data and comprehensive precipitation records are crucial for the generated models to function as effective decision support systems for Catchment Management.
AFRIKAANSE OPSOMMING: Histories is stedelike waterbronne te dikwels bestuur sonder inagneming dat die vloei van die rivier baie landskap- en biologiese kenmerke insluit. Dit het dikwels daartoe gelei dat natuurlike prosesse uitgeskakel is en vervang is deur mensgemaakte, stroombelynde strukture waarvan die effek van toenemende verstedeliking hoofsaaklik aangespreek word vanuit 'n ingenieurs- en ekonomiese oogpunt tot nadeel van omgewings- en sosiale kwessies. Opvangsgebiedsbestuur, soos bepaal deur die Waterwet, Wet 36 van 1998, is 'n bestuursbenadering om die negatiewe gevolge van 'n stedelike stormwaterontwerpfilosofie wat beperk is tot vloedbeperking aan te spreek. Dit is 'n stelselbenadering wat ingenieurs- en wetenskaplike vaardighede, sosio-ekonomiese probleme en omgewingsbeperkings integreer in 'n nuwe multidissiplinêre besluitnemingsproses wat erkenning daaraan gee dat die verskillende komponente van die hidrologiese en watersiklusse verbind is, en elke komponent beïnvloed word deur veranderings in elke ander komponent. Om doeltreffende bestuursbesluite te neem, benodig opvangsgebiedsbestuur die hulpmiddels om betroubare inligting oor die prestasie van alternatiewe moontlikhede VIr stormwaterbestuurfasiliteite en om die effek van moontlike bestuursbesluite op die wateromgewing te kwantifiseer. 'n Deterministiese hidrologiese model is so 'n hulpmiddel wat die skakel daarstel tussen die konseptueie begrip van die fisiese opvangsgebiedskenmerke en die empiriese kwantifisering van die water-, waterkwaliteit- en ekologiese reaksie. Om doeltreffende rekenaarbesluitnemingsteun te verskaf, moet die hidrologiese model deel wees van 'n geïntegreerde sagteware-aanwending waarin 'n versameling datamanipulasie-, analise-, modellerings- en interpreteringshulpmiddels, insluitend GIS, doeltreffend saam gebruik kan word om 'n groot deel van die algehele besluitnemingsproses te bestuur. Hierdie besluitnemingsteunstelsel moet 'n eenvoudige en intuïtiewe gebruikersvlak hê wat in staat is om maklik interpreteerbare uitsette te lewer. Dit moet goeie grafiese voorleggingsvermoëns hê wat doeltreffende kommunikasie vergemaklik en ontwerp wees om swak gestruktureerde probleme deur die buigsame samevoeging van statistiese analise, modelle en data op te los. Die Groot Lotusrivierkanaal op die Kaapse Vlakte, Kaapstad is ontwerp en word beheer deur uitgebreide kanalisasie en die konstruksie van detensiedamfasiliteite om die oorstroming van stedelike opvangsgebiede te vermy. Hierdie benadering het daartoe gelei dat hierdie kanale stormwaterafvoerpype geword het wat afval en nutriënte in opgelosde en partikelvorm vervoer en hulle assimilasievermoë vir die verbetering van waterkwaliteit verminder. Om die gebruik van hidrologiese modelle in besluitnemingsteun vir Opvangsgebiedsbestuur te ondersoek, is die semi-verspreide, fisiesgebaseerde model, SWMM, op die Groot Lotusrivierkanaal toegepas. SWMM bestaan uit 'n aantalonafhanklike modules wat die hidrologiese en hidroulika simulasies van stedelike opvangsgebiede en hulle vervoemetwerke per geleentheid of deurlopend monitor. Om die aanwending van die Fortran gebaseerde SWMM model te vergemaklik is die GUl, PCSWMM98 deur Computational Hydraulics Inc (CHD ontwikkel. Dit verskaf besluitnemingsteun vir SWMM deur 'n groot aantal hulpmiddels vir lêerbestuur, die skep van datalêers, uitsetvisualisering en interpretasie, modelkalibrasie, foutanalise en stormdinamikaanalise om enige simulasies met SWMM te vergemaklik. Daarby is PCSWMM ontwikkel met 'n GIS funksionaliteit vir die grafiese daarstelling, redigering en/of navraagfunksie van SWMM model entiteite en kenmerke, wat hierdie SWMM vlakke met agtergrondvlakke en dinamiese modelresultate vertoon en data in SWMM inset1êers plaas en op daardie manier 'n koppelvlak tussen 'n GIS en SWMM verskaf. Volgens Opvangsgebiedsbestuur kan bogenoemde DSS doeltreffend gebruik word in besluitneming. Dit IS om die spanning tussen fundamentele opvangsgebiedsbestuursoorwegings van fisiese ontwikkeling, sosiale oorwegings en ekologiese volhoubaarheid aan te spreek. Dis in die stadiums van Waardebepaling en Beplanning wat die model die belangrikste rol kan vervul in die verskaffing van besluitnemingsteun vir die Opvangsgebiedsbestuursproses. Waardebepaling in die Opvangsgebiedbestuursproses verwys na die versameling, berging, modellering en interpretasie van opvangsgebiedsinligting. Deur hierdie kwantifisering, interpretasie en waardebepaling van opvangsgebiedsinligting dra 'n hidrologiese model by tot 'n verhoging in kennis in die Opvangsgebiedsbestuur. Deur die identifisering en kwantifisering, op 'n ruim genoeg tydelike en ruimtelike skaal, van die dominante oorsaak en gevolg verhoudings in die stedelike fisiese omgewing, kan die hidrologiese model die hoof bydraende faktore uitlig. Dit word gebruik in die Beplanningsfase van die Opvangsgebiedproses en wanneer hierdie bydraende faktore by die waardebepaling van die sosio-ekonomiese en administratiewe omgewings saamgevoeg word, maak dit moontlik om die belangrike kwessies wat aandag behoort te kry in 'n Opvangsgebiedsbestuurstrategie in volgorde van voorrang te plaas. Dit is moontlik om die verskeidenheid besluitnemingsvereistes van Opvangsgebiedsbestuur met die vermoëns van 'n hidrologiese model te koppel om inligting oor hierdie vereistes in 'n konseptuele raamwerk te verskaf. Die raamwerk bestaan uit die fundamentele opvangsgebiedsoorwegings van Fisiese Ontwikkeling, Omgewingsbestuur en Sosiale Ontwikkeling en los hierdie oorwegings op in die verskillende bestuursaangeleenthede wat met elke oorweging en die bestuuroplossing geassosieer word. Die bestuursoplossings word aan die model gekoppel deur die formulering van die oplossing volgens die modelparameters en versteuring van die relevante parameters op sekere manier om die bestuursoplossing te simuleer. Dit lei tot modeluitset en grafiese interpretasie van die effek van die voorgestelde bestuursoplossing. 'n Vergelyking tussen die gesimuleerde effek van elke bestuursoplossing laat die Opvangsgebiedsbestuursliggaam toe om die optimale bestuursoplossings vir die verskeie bestuursaangeleenthede te identifiseer. Die huidige model van die Groot Lotusrivieropvang is genoegsaam om die bo- en ondergrondse vloei vanaf individuele dele van die opvangsgebied te simuleer en om die watervloei en geassosieerde besoedelstofladings na die opvangsgebiedsuitlaatplek te lei. Op sy huidige vlak van kompleksiteit verskaf die fyn gediskretiseerde model subopvangsgebied en vervoernetwerk besluitnemingsteun aan Opvangsgebiedsbestuur deur die simulasie, teen 'n voor-lewensvatbaarheidstudie, van verskeie opvangsgebiedsbestuurkwessies en die voorgestelde oplossings. Indien meer gedetailleerde kanaal- en dreineringsnetwerkdimensies- en waterkwaliteitdata ingevoer word, is dit moontlik vir die model om hidroulikaberekeningsroetines te inkorporeer om die implikasies van alternatiewe rivierrehabilitasietegnieke en afvalbestuurstrategieë te beoordeel. Dit sou die vermoë verbeter om die waarde van die verskeie BMPs te bepaal om die impak van stormwater en besoedelstoflading te versag. Daarby kan 'n gedetailleerde vlakopname van die stormwaterpyp en -kanaalnetwerk daartoe lei dat hidrologiese modelle gebruik kan word om kritieke areas te identifiseer waar stormwateropgradering nodig is. Om toekomstige komplekse, gediskretiseerde opvangsgebiedshidrologiese modelle te verbeter, is dit noodsaaklik dat volledige en gedetailleerde dreineringspatrone en stormwaternetwerkkenmerke beskikbaar is. Om die model-ontwikkelingskoste en tyd bestee aan die opstel van 'n model te minimiseer, moet hierdie ruimtelik verteenwoordigende data ingelees word in 'n GIS vir vinnige insluiting in die model. Daarbenewens is volledige, ruimtelik verteenwoordigende presipitasie datastelle nodig om te verseker dat modelfoute verminder word. Hierdie twee kwessies van beskikbare ruimtelike data en omvattende presipitasierekords is van die uiterste belang sodat die gegenereerde modelle as doeltreffende besluitnemingsteun vir Opvangsgebiedsbestuur kan funksioneer.
Christiana, David. "Hydrology and water resources of Capitol Reef National Park, Utah with emphasis on the middle Fremont River area /." Thesis, The University of Arizona, 1991. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1991_126_sip1_w.pdf&type=application/pdf.
Full textGreen, Madeleine. "Water management for agriculture under a changing climate: case study of Nyagatare watershed in Rwanda." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-391355.
Full textDhungel, Hari. "Investigating the Temporal and Spatial Variability of Flow and Salinity Levels in an Ungaged Watershed for Ecological Benefits:A Case Study of the Mentor Marsh Watershed." Youngstown State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1532016261996327.
Full textRoss, Morgan. "Using the Rangeland Hydrology and Erosion Model to assess rangeland management practices on the Kaler Ranch." Thesis, The University of Arizona, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1538935.
Full textIt is difficult to assess rangeland management practices at a hillslope scale because of the spatial and temporal variability of ecohydrological processes across a landscape. The Conservation Effects Assessment Project (CEAP) aims to provide a cost-effective method for quantifying benefits of conservation practices on rangelands. This study uses the Rangeland Hydrology and Erosion Model (RHEM) to develop a framework to assess rangeland management practices by quantifying sediment yield and runoff. Kaler Ranch, located in Eastern Arizona, was used as a study site because of their recently implemented rangeland conservation practices. Vegetation parameters were developed based on field data collected across the ranch and used to represent various rangeland management scenarios in RHEM. Peak flow and sediment yield rates were determined for each scenario using RHEM and were used as metrics to evaluate rangeland condition. RHEM provided an adequate method to evaluate the relative differences between upland rangeland management scenarios; however, it was less effective at evaluating changes in management practices within a riparian area.
Nordh, Hagberg Marie. "Water management and wateravailability in a subwatershed,Tamil Nadu, India : Vattenhushållning och vattentillgång i ettdelavrinningsområde, Tamil Nadu, India." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-182810.
Full textDameron-Hager, Irene Frances. "The contribution of environmental history to the development of a model to aid watershed management: a comparative study of the Big Darby Creek and Deer Creek Watersheds in Ohio." The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1078778562.
Full textNagel, Alexander Cameron. "Analyzing Dam Feasibility in the Willamette River Watershed." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/4012.
Full textBarbosa, Humberto. "Vegetation Dynamics Over the Northeast Region of Brazil and Their Connections With Climate Variability During the Last Two Decades of the Twentieth Century." Diss., The University of Arizona, 2004. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2004_188_sip1_w.pdf&type=application/pdf.
Full textLally, Lindsay Backus. "Applying the RUSLE and SEDD Equations to an Agricultural Watershed in Southwest Virginia - A Case Study in Sediment Yield Estimation Using GIS." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23219.
Full textThe Revised Universal Soil Loss Equation (RUSLE) and the Sediment Distributed Delivery (SEDD) prediction models were used to determine the quantity of eroded sediment and the sediment yield at the duck pond, respectively. These models require numerous computations, which were performed at the watershed scale with the aid of ArcGIS software. In ArcGIS the watershed was broken into a raster grid of approximately 5,200 discrete 100 foot by 100 foot grid cells.
The resulting watershed erosion model identified two main sources of sediment: a cluster of farms relatively close to and east of the duck pond, and a harvested timber site north of the duck pond. The model predicted that 1,076 tons of sediment are delivered into the duck pond annually.
The estimated sediment yield was then compared to the estimated amount deposited between October 2011 and September 2012, as measured by a topographic survey. The model prediction was found to be within a factor of 6.3x of the measured value. The predicted and measured sediment yields as well as identified erosion sources can be used to develop a water quality improvement plan and to help alleviate the need for periodic dredging.
Master of Science
Shojaei, Nasim. "Automatic Calibration of Water Quality and Hydrodynamic Model (CE-QUAL-W2)." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1942.
Full textKenney, Douglas S. 1964. "River basin administration and the Colorado: past practices and future alternatives." Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/191177.
Full textFarthing, Tessa. "Impact of a Forested State Park on Nutrient Concentrations in an Agriculturally Dominated Watershed in Southwest Ohio." Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1626999681372348.
Full textAbedrabboh, Walid Yousef. "Multi-objective decision making applied for watershed development planning of Zarqa River Basin in Jordan." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/191142.
Full textRachman, Seaful, and n/a. "Infiltration under different landuse types at the Upper Ciliwung watershed of West Java, Indonesia." University of Canberra. School of Resource, Environmental and Heritage Sciences, 1992. http://erl.canberra.edu.au./public/adt-AUC20041215.124610.
Full textZhinin, Kristy Lynn. "LOCAL PARTICIPATION IN MANAGING WATER QUALITY PROBLEMS FROM ARTISANAL GOLD MINING: THE RIO GALA WATERSHED, ECUADOR." Oxford, Ohio : Miami University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1209066059.
Full textDuwal, Sunil. "Climatic data trend analysis and modeling for water resource management in Peloponnese, Greece." Thesis, Stockholms universitet, Institutionen för naturgeografi och kvartärgeologi (INK), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-67988.
Full textShedekar, Vinayak Shamrao. "Developing an integrated, multi-scale modeling system for assessing conservation benefits in subsurface drained watersheds." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480606965301556.
Full textCorrales, Juliana. "Modeling a Phosphorus Credit Trading Program in the Lake Okeechobee Watershed." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/2294.
Full textPearce, Austin Willis. "Assessing Phosphorus Sources with Synoptic Sampling in the Surface Waters of a Mixed-Use, Montane Watershed." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6374.
Full text