Academic literature on the topic 'Watersheds Watershed management Water-supply Water balance (Hydrology) Water balance (Hydrology)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Watersheds Watershed management Water-supply Water balance (Hydrology) Water balance (Hydrology).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Watersheds Watershed management Water-supply Water balance (Hydrology) Water balance (Hydrology)"

1

Amatya, Devendra M., and Carl C. Trettin. "Long-Term Ecohydrologic Monitoring: A Case Study from the Santee Experimental Forest, South Carolina." Journal of South Carolina Water Resources, no. 6 (January 1, 2020): 46–55. http://dx.doi.org/10.34068/jscwr.06.05.

Full text
Abstract:
Long-term research on gauged watersheds within the USDA Forest Service’s Experimental Forest and Range (EFR) network has contributed substantially to our understanding of relationships among forests, water, and hydrologic processes and watershed management, yet there is only limited information from coastal forests. This article summarizes key findings from hydrology and water-quality studies based on long-term monitoring on first-, second-, and third-order watersheds on the Santee Experimental Forest, which are a part of the headwaters of the east branch of the Cooper River that drains into the harbor of Charleston, South Carolina. The watersheds are representative forest ecosystems that are characteristic of the low-gradient Atlantic Coastal Plain. The long-term (35-year) water balance shows an average annual runoff of 22% of the precipitation and an estimated 75% for the evapotranspiration (ET), leaving the balance to groundwater. Non-growing season prescribed fire, an operational management practice, shows no effects on streamflow and nutrient export. The long-term records were fundamental to understanding the effects of Hurricane Hugo in 1989 on the water balance of the paired watersheds that were related to vegetation damage by Hugo and post-Hugo responses of vegetation. The long-term precipitation records showed that the frequency of large rainfall events has increased over the last two decades. Although there was an increase in air temperature, there was no effect of that increase on annual streamflow and water table depths. The long-term watershed records provide information needed to improve design, planning, and assessment methods and tools used for addressing the potential impacts of hydrologic responses on extreme events; risk and vulnerability assessments of land use; and climate and forest disturbance on hydrology, ecology, biogeochemistry, and water supply.
APA, Harvard, Vancouver, ISO, and other styles
2

Hoghooghi, Nahal, Heather Golden, Brian Bledsoe, Bradley Barnhart, Allen Brookes, Kevin Djang, Jonathan Halama, Robert McKane, Christopher Nietch, and Paul Pettus. "Cumulative Effects of Low Impact Development on Watershed Hydrology in a Mixed Land-Cover System." Water 10, no. 8 (July 27, 2018): 991. http://dx.doi.org/10.3390/w10080991.

Full text
Abstract:
Low Impact Development (LID) is an alternative to conventional urban stormwater management practices, which aims at mitigating the impacts of urbanization on water quantity and quality. Plot and local scale studies provide evidence of LID effectiveness; however, little is known about the overall watershed scale influence of LID practices. This is particularly true in watersheds with a land cover that is more diverse than that of urban or suburban classifications alone. We address this watershed-scale gap by assessing the effects of three common LID practices (rain gardens, permeable pavement, and riparian buffers) on the hydrology of a 0.94 km2 mixed land cover watershed. We used a spatially-explicit ecohydrological model, called Visualizing Ecosystems for Land Management Assessments (VELMA), to compare changes in watershed hydrologic responses before and after the implementation of LID practices. For the LID scenarios, we examined different spatial configurations, using 25%, 50%, 75% and 100% implementation extents, to convert sidewalks into rain gardens, and parking lots and driveways into permeable pavement. We further applied 20 m and 40 m riparian buffers along streams that were adjacent to agricultural land cover. The results showed overall increases in shallow subsurface runoff and infiltration, as well as evapotranspiration, and decreases in peak flows and surface runoff across all types and configurations of LID. Among individual LID practices, rain gardens had the greatest influence on each component of the overall watershed water balance. As anticipated, the combination of LID practices at the highest implementation level resulted in the most substantial changes to the overall watershed hydrology. It is notable that all hydrological changes from the LID implementation, ranging from 0.01 to 0.06 km2 across the study watershed, were modest, which suggests a potentially limited efficacy of LID practices in mixed land cover watersheds.
APA, Harvard, Vancouver, ISO, and other styles
3

Nugroho, Adam Rus, Ichiro Tamagawa, Almaika Riandraswari, and Titin Febrianti. "Thornthwaite-Mather water balance analysis in Tambakbayan watershed, Yogyakarta, Indonesia." MATEC Web of Conferences 280 (2019): 05007. http://dx.doi.org/10.1051/matecconf/201928005007.

Full text
Abstract:
Depok sub-district in Yogyakarta is one of the most populous areas, which also develops rapidly. The Tambakbayan watershed, which includes Depok sub-district, has been seen as one crucial watershed in Yogyakarta. This study conducted a Thornthwaite-Mather water balance analysis in the watershed in order to understand its hydrology capability. The result of the study on three stream areas of the watershed (upstream, midstream and downstream) shows that the dry months begins in May- June and ends in September-October. August tends to be the driest month in the year with total deficit value reaches 179.2 mm. Still, the annual rainfall is higher than the annual evapotranspiration. The results also show that the lower area of the watershed has a lower capability to preserve water. However, the watershed still sufficient in providing the domestic water demand in the current state. Comprehensive water management plans suggested to be applied to protect the watershed from overstressing the water resources, especially in the downstream area.
APA, Harvard, Vancouver, ISO, and other styles
4

Sehgal, Vinit, Venkataramana Sridhar, Luke Juran, and Jactone Arogo Ogejo. "Integrating Climate Forecasts with the Soil and Water Assessment Tool (SWAT) for High-Resolution Hydrologic Simulations and Forecasts in the Southeastern U.S." Sustainability 10, no. 9 (August 29, 2018): 3079. http://dx.doi.org/10.3390/su10093079.

Full text
Abstract:
This study provides high-resolution modeling of daily water budget components at Hydrologic Unit Code (HUC)-12 resolution for 50 watersheds of the South Atlantic Gulf (SAG) region in the southeastern U.S. (SEUS) by implementing the Soil and Water Assessment Tool (SWAT) model in the form of a near real-time, semi-automated framework. A near real-time hydrologic simulation framework is implemented with a lead time of nine months (March–December 2017) by integrating the calibrated SWAT model with National Centers for Environmental Prediction coupled forecast system model version 2 (CFSv2) weather data to forecast daily water balance components. The modeling exercise is conducted as a precursor for various future hydrologic studies (retrospective or forecasting) for the region by providing a calibrated hydrological dataset at high spatial (HUC-12) and temporal (1-day) resolution. The models are calibrated (January 2003–December 2010) and validated (January 2011–December 2013) for each watershed using the observed streamflow data from 50 United States Geological Survey (USGS) gauging stations. The water balance analysis for the region shows that the implemented models satisfactorily represent the hydrology of the region across different sub-regions (Appalachian highlands, plains, and coastal wetlands) and seasons. While CFSv2-driven SWAT models are able to provide reasonable performance in near real-time and can be used for decision making in the region, caution is advised for using model outputs as the streamflow forecasts display significant deviation from observed streamflow for all watersheds for lead times greater than a month.
APA, Harvard, Vancouver, ISO, and other styles
5

Frenierre, Jeff La, and Bryan G. Mark. "A review of methods for estimating the contribution of glacial meltwater to total watershed discharge." Progress in Physical Geography: Earth and Environment 38, no. 2 (January 30, 2014): 173–200. http://dx.doi.org/10.1177/0309133313516161.

Full text
Abstract:
Glaciers store water over a range of temporal scales with important implications for downstream human and natural systems. Assessment of the contribution of glacial meltwater runoff to total watershed discharge is an essential part of climate change risk assessment and sustainable water management in glacierized watersheds. Over the past decade, a range of techniques for quantifying the proportional contribution of glacial meltwater has been presented in the scientific literature. Here we examine five different methodological approaches: direct discharge measurement, glaciological approaches, hydrological balance equations, hydrochemical tracers, and hydrological modeling. After a brief summary of the role of glaciers in watershed hydrology, we evaluate each approach, with regard to their respective data requirements, assumptions, and associated uncertainties. Next, we discuss factors that researchers must consider in deciding upon a particular methodological approach, then conclude with a discussion of future research needs. We underscore the need for expanded meteorological, hydrological, and glaciological monitoring networks in glacierized watersheds worldwide, for more comprehensive assessment of uncertainty and for better integration of research with the specific needs of watershed stakeholders.
APA, Harvard, Vancouver, ISO, and other styles
6

Irmayani, I., Muh Ikbal Putera, Syahirun Alam, Suryansyah Surahman, and M. Masnur. "Land Use Potential on Water Balance Based on SWAT Method in Saddang Watershed in Bendung Benteng Irrigation System." Agrotech Journal 3, no. 2 (December 28, 2018): 53–60. http://dx.doi.org/10.31327/atj.v3i2.857.

Full text
Abstract:
Saddang Watershed (DAS) as a large watershed in Sulawesi, rich in natural resource potential in the form of land, topography, slope, geology, soil, vegetation, climatology; rainfall, temperature, humidity, and sunshine. In maintaining and utilizing (watershed management) availability and water requirements for; humans, plants and animals. The availability and demand of water in watershed management requires the role of land in regulating agroclimatology and hydrology conditions. The water balance approach method used is SWAT (Soil and Water Assessment Tool) method of soil and water assessment tools, to determine the condition of availability and demand of water in an effort to maintain water flow conditions at all times (number and distribution) of Bendung Benteng irrigation system, which is capable of supply water for paddy field irrigation in two regencies of South Sulawesi’s paddy granaries namely Pinrang Regency and Sidrap Regency. According to the Schmidth-Fergusson climate classification, the type of climate in Saddang watershed area belongs to type C climate = slightly wet area with tropical rainforest vegetation, the average amount of rainfall ranges from 2.155 mm/year. This indicates that there is large level of rainfall every year and land use with a forest area of 676,39 or 26,41% of the watershed area, thus Saddang watershed is able to save tremendous amount of water supply. Based on the results of the water balance analysis using SWAT method, the amount of water available in the average watershed ; 3.133 mm year-1, the amount of water being flowed ; 1.040,9 mm, and stored as ground water ; 29,60 mm, as well as direct runoff ; 366,9 mm and flow coefficient of 0,45. Hence, there is 45% of the flow loss as surface stream and there is 55% of the flow stored in the watershed, and the model application is categorized as good both in conducting simulations and validating the flow discharge on Saddang River. Watershed processing classified as having good watershed conditions, because one indicator of a watershed's water performance can be seen from the river discharge fluctuation. River discharge fluctuations can be seen from the river regression coefficient (KRS), which is a number that shows ratio between maximum discharge (Qmax) and minimum discharge (Qmin). The highest discharge (Qmax) was 30.805 m³/sec while the lowest discharge (Qmin) was 994 m³/sec. The regression coefficient value (KRS) of Saddang River watershed was 26.650 m³/sec. Based on the results of the 2017 data analysis, the condition of Saddang watershed provides surplus value of 1.911.986 (m3 year-1), out of the total water availability of 2.155.273 (m3 year-1) minus the total irrigation water requirement of 243.286,50 m3 year-1, with the pattern of planting paddy-paddy-secondary crops (palawija). Therefore, Saddang watershed has the ability to store large amounts of water throughout the year
APA, Harvard, Vancouver, ISO, and other styles
7

Caballero, Luis A., Zachary M. Easton, Brian K. Richards, and Tammo S. Steenhuis. "Evaluating the bio-hydrological impact of a cloud forest in Central America using a semi-distributed water balance model." Journal of Hydrology and Hydromechanics 61, no. 1 (March 1, 2013): 9–20. http://dx.doi.org/10.2478/jhh-2013-0003.

Full text
Abstract:
Abstract Water scarcity poses a major threat to food security and human health in Central America and is increasingly recognized as a pressing regional issues caused primarily by deforestation and population pressure. Tools that can reliably simulate the major components of the water balance with the limited data available and needed to drive management decision and protect water supplies in this region. Four adjacent forested headwater catchments in La Tigra National Park, Honduras, ranging in size from 70 to 635 ha were instrumented and discharge measured over a one year period. A semi-distributed water balance model was developed to characterize the bio-hydrology of the four catchments, one of which is primarily cloud forest cover. The water balance model simulated daily stream discharges well, with Nash Sutcliffe model efficiency (E) values ranging from 0.67 to 0.90. Analysis of calibrated model parameters showed that despite all watersheds having similar geologic substrata, the bio-hydrological response the cloud forest indicated less plantavailable water in the root zone and greater groundwater recharge than the non cloud forest cover catchments. This resulted in watershed discharge on a per area basis four times greater from the cloud forest than the other watersheds despite only relatively minor differences in annual rainfall. These results highlight the importance of biological factors (cloud forests in this case) for sustained provision of clean, potable water, and the need to protect the cloud forest areas from destruction, particularly in the populated areas of Central America.
APA, Harvard, Vancouver, ISO, and other styles
8

Gunn, Kpoti M., Anthony R. Buda, Heather E. Preisendanz, Raj Cibin, Casey D. Kennedy, and Tamie L. Veith. "Integrating Daily CO2 Concentrations in SWAT-VSA to Examine Climate Change Impacts on Hydrology in a Karst Watershed." Transactions of the ASABE 64, no. 4 (2021): 1303–18. http://dx.doi.org/10.13031/trans.13711.

Full text
Abstract:
HighlightsWe used SWAT-VSA to assess the effects of climate change with rising CO2 on the water balance of a karst basin.For future climate, SWAT-VSA with rising CO2 yielded 7.1% less ET and 6.3% more runoff than standard SWAT-VSA.Rising CO2 also affected variable source areas, with greater ET declines and runoff increases in the wettest soils.Findings suggest CO2 effects on water balance should be included in future climate change studies with SWAT-VSA.Abstract. Characterizing the effects of climate change on hydrology is important to watershed management. In this study, we used SWAT-VSA to examine the effects of climate change and increasing atmospheric CO2 (CO2) on the water balance of Spring Creek watershed, a mixed land-use karst basin in the Upper Chesapeake Bay watershed. First, we modified the stomatal conductance and leaf area index (LAI) routines of SWAT-VSA’s Penman-Monteith evapotranspiration (ET) procedure and enabled the model to accept daily CO2 data. Using downscaled climate projections from nine global climate models (GCMs), we then compared water balance estimations from baseline SWAT-VSA against two modified versions of SWAT-VSA. One SWAT-VSA version integrated daily CO2 levels (SWAT-VSA_CO2), while another version added flexible stomatal conductance and LAI routines (SWAT-VSA_CO2+Plant) to the dynamic CO2 capacity. Under current climate (1985-2015), the three SWAT-VSA models produced generally similar water balance estimations, with 51% of precipitation lost to ET and the remainder converted to runoff (10%), lateral flow (9%), and percolate (30%). For future climate (2020-2065), water balance simulations diverged between baseline SWAT-VSA and the two modified SWAT-VSA models with CO2. Notably, variable stomatal conductance and LAI routines produced no detectable effects beyond that of CO2. For the 2020-2065 period, baseline SWAT-VSA projected ET increases of 0.7 mm year-1, while SWAT-VSA models with CO2 suggested that annual ET could decline by approximately -0.4 mm year-1 over the same period. As a result, the two CO2-based SWAT-VSA models predicted streamflow increases of almost 1.6 mm year-1 over the 2020-2065 period, which were roughly double the streamflow increases projected by baseline SWAT-VSA. In general, SWAT-VSA models with CO2 effects produced 22.4% more streamflow in 2045-2065 than the SWAT-VSA model without CO2. Results also showed that adding daily CO2 to SWAT-VSA reduced ET in wetter parts of Spring Creek watershed, leading to greater runoff losses from variable source areas compared to baseline SWAT-VSA. Findings from the study highlight the importance of considering increasing atmospheric CO2 concentrations in water balance simulations with SWAT-VSA in order to gain a fuller appreciation of the hydrologic uncertainties with climate change. Keywords: Carbon dioxide, Climate change, Hydrologic model, Water balance, Watershed.
APA, Harvard, Vancouver, ISO, and other styles
9

Shawul, A. A., T. Alamirew, and M. O. Dinka. "Calibration and validation of SWAT model and estimation of water balance components of Shaya mountainous watershed, Southeastern Ethiopia." Hydrology and Earth System Sciences Discussions 10, no. 11 (November 15, 2013): 13955–78. http://dx.doi.org/10.5194/hessd-10-13955-2013.

Full text
Abstract:
Abstract. To utilize water resources in a sustainable manner, it is necessary to understand the quantity and quality in space and time. This study was initiated to evaluate the performance and applicability of the physically based Soil and Water Assessment Tool (SWAT) model in analyzing the influence of hydrologic parameters on the streamflow variability and estimation of monthly and seasonal water yield at the outlet of Shaya mountainous watershed. The calibrated SWAT model performed well for simulation of monthly streamflow. Statistical model performance measures, coefficient of determination (r2) of 0.71, the Nash–Sutcliffe simulation efficiency (ENS) of 0.71 and percent difference (D) of 3.69, for calibration and 0.76, 0.75 and 3.30, respectively for validation, indicated good performance of the model simulation on monthly time step. Mean monthly and annual water yield simulated with the calibrated model were found to be 25.8 mm and 309.0 mm, respectively. Overall, the model demonstrated good performance in capturing the patterns and trend of the observed flow series, which confirmed the appropriateness of the model for future scenario simulation. Therefore, SWAT model can be taken as a potential tool for simulation of the hydrology of unguaged watershed in mountainous areas, which behave hydro-meteorologically similar with Shaya watershed. Future studies on Shaya watershed modeling should address the issues related to water quality and evaluate best management practices.
APA, Harvard, Vancouver, ISO, and other styles
10

Thayyen, R. J., and J. T. Gergan. "Role of glaciers in watershed hydrology: ''Himalayan catchment'' perspective." Cryosphere Discussions 3, no. 2 (July 15, 2009): 443–76. http://dx.doi.org/10.5194/tcd-3-443-2009.

Full text
Abstract:
Abstract. A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April) and South-West monsoon in summer (June–September) dominating the regional hydrology. Such catchments are defined as ''Himalayan catchment'', where the glacier melt water contributes to the river flow during the period of annual high flows produced by the monsoon. Other two major glacio-hydrological regimes of the Himalaya are winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range. Factors influencing the river flow variations in a ''Himalayan catchment'' were studied in a micro scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Discharge data generated from three hydrometric stations established at different altitudes of the Din Gad stream during the summer ablation period of 1998, 1999, 2000, 2001, 2003 and 2004. These data has been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of the glacier and precipitation in determining the runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. Study shows that the inter-annual runoff variations in a ''Himalayan glacier catchment'' is directly linked with the precipitation rather than mass balance changes of the glacier. Study suggest that warming induced initial increase of glacier degraded runoff and subsequent decline is a glaciers mass balance response and cannot be translated as river flow response in a ''Himalayan catchment'' as suggested by the IPCC, 2007. Study also suggest that the glacier runoff critically influence the headwater river flows during the years of low summer discharge and proposes that the Himalayan catchment could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. This paper intended to highlight the importance of creating credible knowledge on the Himalayan cryospheric processes to develop a global outlook on river flow response to cryospheric change and locally sustainable water resources management strategies.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Watersheds Watershed management Water-supply Water balance (Hydrology) Water balance (Hydrology)"

1

Sabbah, Walid Wajeeh. "Developing A GIS And Hydrological Modeling Approach For Sustainable Water Resources Management In The West Bank -- Palestine." BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/297.

Full text
Abstract:
This research deals with setting up a GIS and hydrological modeling based approach for sustainable water resources management in the West Bank of Palestine. This water sustainability approach took into consideration the water balance, the social, the economic, the demographic, the environmental, and the institutional components in order to enhance and promote the sustainable development in Palestine, both on the short and long runs. To evaluate the water balance component, a methodology was introduced to create the Water Sustainability Map (WSM). Since the groundwater is currently the only accessible water source by the Palestinians, the WSM is represented by the Aquifer Sustainable Yield (ASY) which is equivalent to the annual renewable recharge of the various aquifer formations in the West Bank. The ASY was determined by integrating the watershed boundaries derived from the Digital Elevation Model (DEM) with the available hydrological and meteorological data by using GIS. This GIS based approach was used to create the rainfall, evapo-transpiration, and runoff coverages by interpolating their values from the measured parameters. The total estimated ASY using this GIS approach was 679.7 MCM/Yr. which constituted the upper limit for the overall water use in all assumed future water demand scenarios. This approach fulfilled the demographic, social, and economic water sustainability components by proposing water demand scenarios for the period from 2005 to 2025 based on the gradual increase of population and their per capita water use, the available water infrastructure, and based on the value of water where priority was given to the household water use. This approach fulfilled the environmental dimension of water sustainability by studying the water quality and identifying the locations with high pollution indicators for various water use purposes and recommending ways to prevent the environmental degradation and groundwater pollution. This approach fulfilled the institutional dimension of water sustainability by reviewing the current institutions dealing with water management and distribution, recommending options to enhance their efficiency, and finally by proposing some options to save additional water in the West Bank.
APA, Harvard, Vancouver, ISO, and other styles
2

Shajari, Sadegh. "Hydrologie et aménagement : aménagement trans-bassin en Iran ; optimisation de la gestion des ressources en eau." Phd thesis, Université Joseph Fourier (Grenoble), 1988. http://tel.archives-ouvertes.fr/tel-00743948.

Full text
Abstract:
L'analyse des donnees climatiques montre qu'en Iran pays semi aride, des constrastes importants existent entre régions abondament arrosées et régions désertiques. La répartition temporelle des précipitations est très irreguliére. Compte tenu des conditions géologiques et hydrogéologiques observées sur les deux versants de la chaine du Zagros, les bilans des ressources en eau superficielles et souterraines amènent a définir les ouvrages nécessaires à leur régularisation et à préconiser des aménagements de transfert des eaux. Une critique de l'un des aménagements deja réalisès fait apparaitre les améliorations à apporter dans l'avenir. Les conséquences des crues et des aménagements sur l'environnement sont analysées de façon statistique et dynamique. Un programme d'équipement hydro-electrique est proposé. Le bilan énergétique et financier des réalisations préconiéees est proposé et replace dans le cadre de la politique de l'eau en Iran et de l'économie générale du pays.
APA, Harvard, Vancouver, ISO, and other styles
3

"Exploring the Ecohydrological Impacts of Woody Plant Encroachment in Paired Watersheds of the Sonoran Desert, Arizona." Master's thesis, 2013. http://hdl.handle.net/2286/R.I.17900.

Full text
Abstract:
abstract: Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas.
Dissertation/Thesis
M.S. Civil and Environmental Engineering 2013
APA, Harvard, Vancouver, ISO, and other styles
4

Taylor, Valerie. "The hydrological basis for the protection of water resources to meet environmental and societal requirements." Thesis, 2006. http://hdl.handle.net/10413/3511.

Full text
Abstract:
In common with other natural systems, aquatic ecosystems provide a wealth of economically valuable services and long-term benefits to society. However, growing human populations, coupled with increased aspirations for improved quality of life, have lead to intense pressure on the world's finite freshwater resources. Frequently, particularly in developing countries, there are both perceived and genuine incompatibilities between ecological and societal needs for freshwater. Environmental Flow Assessment (EFA) is essentially a tool for water resources management and its ultimate goal should be the integration of ecological and societal systems. While other ecological components (i.e. biological and geomorphological) are equally important to EFA, this thesis investigates the role of the hydrological cycle and the hydrological regime in providing the ecosystem goods and services upon which society depends. Ecological and societal systems operate at different temporal, spatial and organisational scales and hydronomic zoning or sub-zoning is proposed as an appropriate water resources management technique for matching these different scales. A major component of this thesis is a review of the South African water resources management framework and, in particular, the role of the Reserve (comprising a basic human right to survival water as well as an ecological right of the aquatic resource to maintain ecological functioning) in facilitating ecologically sustainable water resources management. South African water resources management is in the early stages of water allocation reform and the Department of Water Affairs and Forestry has stated that "the water allocation process must allow for the sustainable use of water resources and must promote the efficient and non-wasteful use of water". Thus, new ways of approaching the compromise between ecological and societal needs for freshwater water are required. This thesis argues that this requires that the focus of freshwater ecosystems be extended beyond the aquatic resource, so that societal activities on the catchment are linked to the protection of instream flows. Streamflow variability plays a major role in structuring the habitat templates that sustain aquatic and riparian ecological functioning and has been associated with increased biodiversity. Biodiversity and societal well-being are interlinked. However, there is a need in EFA for knowledge of the most influential components of the streamflow regime in order that stakeholders may anticipate any change in ecosystem goods and services as a result of their disruption to the hydrological cycle. The identification of high information hydrological indicators for characterising highly variable streamflow regimes is useful to water resources management, particularly where thresholds of streamflow regime characteristics have ecological relevance. Several researchers have revisited the choice of hydrological indices in order to ascertain whether some indices explain more of the hydrological variability in different aspects of streamflow regimes than others. However, most of the research relating to hydrological indices has focused primarily on regions with temperate climates. In this thesis multivariate analysis is applied to a relatively large dataset of readily computed ecologically relevant hydrological indices (including the Indicators of Hydrological Alteration and the South African Desktop Reserve Model indices) extracted from long-term records of daily flows at 83 sites across South Africa. Principal Component Analysis is applied in order to highlight general patterns of intercorrelation, or redundancy, among the indices and to identify a minimum subset of hydrological indices which explain the majority of the variation among the indices of different components of the streamflow regimes found in South Africa. The results indicate the value of including several of the IHA indices in EFAs for South African rivers. Statistical analysis is meaningful only when calculated for a sufficiently long hydrological record, and in this thesis the length of record necessary to obtain consistent hydrological indices, with minimal influence of climatic variation, is investigated. The results provide a guide to the length of record required for analysis of the high information hydrological indices representing the main components of the streamflow regime, for different streamflow types. An ecosystem-based approach which recognises the hydrological connectivity of the catchment landscape in linking aquatic and terrestrial systems is proposed as a framework for ecologically sustainable water resources management. While this framework is intended to be generic, its potential for application in the South African Water Allocation Reform is illustrated with a case study for the Mkomazi Catchment in KwaZulu-Natal. Hydronomic sub-zoning, based on the way in which societal activities disrupt the natural hydrological processes, both off-stream and instream, is applied to assess the incompatibilities between societal and ecological freshwater needs. Reference hydrological, or pre-development, conditions in the Mkomazi Catchment are simulated using the ACRU agrohydrological model. Management targets, based on the statistical analysis of pre-development streamflow regimes, are defined to assess the degree of hydrological alteration in the high information hydrological indices of the Mkomazi Catchment as a result of different societal activities. Hydrological alteration from predevelopment conditions is assessed using the Range of Variability Approach. The results indicate that the proposed framework is useful to the formulation of stakeholder-based catchment management plans. Applying hydrological records (either observed or simulated) as an ecological resource is highly appropriate for assessing the variability that ecosystems need to maintain the biodiversity, ecological functioning and resilience that people and society desire.
Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
APA, Harvard, Vancouver, ISO, and other styles
5

Murari, Raja Raja Varma. "Water Balance Studies In A Small Experimental Forested Watershed, South India." Thesis, 2009. http://hdl.handle.net/2005/1112.

Full text
Abstract:
Forested watersheds play a dominant role in the global hydrological cycle. Very few experimental observatories especially in tropical forested regions of India have been undertaken. This study has been initiated for this reason and to gain insights into functioning of the hydrological system in such climatic conditions. This study involves experimental setup of a watershed, it’s monitoring till date, modelling of the hydrological processes observed and the challenges in modelling components of the water balance in this watershed. A Small Experimental Watershed of 4.3 Km2 was set up at Mule Hole, in South India along the Kerala-Karnataka State borders, and is situated inside the Bandipur National park. After an overview of watershed studies, review of literature related to forest watershed studies and processes in the first two chapters, Chapter 3 introduces the study area, Mule Hole Experimental Watershed and explains the methodology used to study this watershed. Model SWAT was used initially to simulate the water balance components. A brief description of the model, methodology adopted and discussion on the results obtained is presented in Chapter 4. The watershed initially modelled as an ungauged watershed using the default parameters in the model, simulated very high groundwater contribution to the runoff. The calibrated model although performed favourably for annual average values and monthly calibration, the daily calibration was unsatisfactory. An auxiliary study on quantification of actual and potential evapotranspiration (ET0) has been carried out in Chapter 5 . Ten methods including Penman-Montieth were compared and evaluated for efficacy of the methods. All methods except for Hargreaves method showed agreement with the Penman-Montieth for annual average values. Priestly-Taylor method was found be the best estimator in comparison with Penman-Montieth method, when used to estimate AET. Adjusted Hargreaves and FAO Blaney -Criddle method were found to be very useful when few or limited climatic data were available for estimation of Potential evapotranspiration. A multidisciplinary approach of estimating recharge consisting of chloride mass balance technique coupled with study of water table fluctuations and groundwater flow analytical modelling has been attempted in Chapter 6. Direct and localized recharge was estimated at 45 mm/yr and indirect recharge 30 mm/yr for the monitored years in the watershed. The low values of recharge rates implied an unexpected very high evapotranspiration rate. It may be inferred that in the absence of groundwater flow to the stream, the recharge joins groundwater flow as outflow of the hydrologic system. An integrated lumped model incorporating the regolith zone and the capability of the tree roots to access this store is presented in Chapter 7. The model was able to simulate the pattern of lag-time between water table rise was observed in shallow piezometers in comparison with hillslope piezometers. The patterns of water table variation among the different hillslope piezometers suggest that they are linked with local processes and not by a regional aquifer dynamics. This study shows that water uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers. Chapter 8 discusses the results, conclusions derived from this study and possibility of further scope of studies.
APA, Harvard, Vancouver, ISO, and other styles
6

Turton, Anthony Richard. "The hydropolitics of Southern Africa: the case of the Zambezi river basin as an area of potential co-operation based on Allan's concept of virtual water." Diss., 1998. http://hdl.handle.net/10500/16231.

Full text
Abstract:
Southern Africa generally has an arid climate and many hydrologists are predicting an increase in water scarcity over time. This research seeks to understand the implications of this in socio-political terms. The study is cross-disciplinary, examining how policy interventions can be used to solve the problem caused by the interaction between hydrology and demography. The conclusion is that water scarcity is not the actual problem, but is perceived as the problem by policy-makers. Instead, water scarcity is the manifestation of the problem, with root causes being a combination of climate change, population growth and misallocation of water within the economy due to a desire for national self-sufficiency in agriculture. The solution lies in the trade of products with a high water content, also known as 'virtual water'. Research on this specific issue is called for by the White Paper on Water Policy for South Africa.
Political Sciences
M.A. (International Politics)
APA, Harvard, Vancouver, ISO, and other styles
7

Manohar, Usha. "Modeling and Analysis of Water Distribution Systems." Thesis, 2014. http://etd.iisc.ernet.in/handle/2005/2992.

Full text
Abstract:
In most of the urban cities of developing countries piped water supply is intermittent and they receive water on alternate days for about few hours. The Unaccounted For Water (UFW) in these cities is very high due to aged infrastructure, poor management and operation of the system. In the cities of developing countries, supplied water is not able to meet the demand and there is huge gap between supply and demand of water. To meet the water demand people are depending on other sources of water like groundwater, rain water harvesting, waste water treatment, desalination etc. Huge quantity of groundwater is extracted without any account for the quantity of water used. The main challenge for water authorities is to meet the consumer demands at varying loading conditions. However, the present execution of decisions in the operational management of WDS is through manual control. The manual control of valve throttling and control of pump speed, reduces the efficiency and operation of WDS. In such cases, system modeling coupled with automated control can play a significant role in the appropriate execution and operation of the system. In the past few decades, there has been a major development in the field of modeling and analysing water distribution systems. Most of the people in Indian mega cities are facing water problems as they are not able to receive safe reliable drinking water. In rapidly growing cities, the water resources management has been a major concern for the Government. There is always a need to optimize the available water resources when the rate of demand constantly beats the rate of replenishments. Mathematical modeling of WDS has become an indispensible tool since the ages to model any type of WDS. Development of mathematical models of WDS is necessary to analyse the system behavior for a wide range of operating conditions. Using models, problems can be anticipated in proposed or existing systems, and solutions can be evaluated before time, money, and materials are invested in a real-world project. In the present study, we have developed a model of WDS of a typical city like Bangalore, India and analysed them for several scenarios and operating conditions. Bangalore WDS is modeled using EPANET. Before a network model is used for analysis purpose, it must be ensured that the model is predicting the behavior of the system with reasonable accuracy. The process of matching the parameters of the developed model and the field observed data is known as calibration. All WDS require calibration for effective modeling and simulation of the system. Demand and roughness are the most uncertain parameters and they are adjusted repeatedly to get the required head at nodes and flow in the pipes. The calibration parameters usually include pipe roughness, valve settings, pipe diameter and demand. Pipe roughness, valve settings and pipe diameter are associated with the flow conditions and the demands relate to the boundary conditions. For Bangalore WDS, the values of roughness coefficient and demand are available; and the values of valve settings are not available. Hence, this value is estimated during calibration process. Dynamic Inversion (DI) nonlinear controller with Proportional Integral Derivative (PID) features (DI-PID) is used for calibrating WDS for valve settings on the basis of observed flow and roughness coefficient. From the obtained results it is observed that, controllers are capable of achieving the target flow to all the GLRs with acceptable difference between the flow meter readings and the simulated flow. After calibrating any real WDS to the field observed data, it will be useful for water authorities if the consumer demands are met up to certain extent. This can be achieved by using the concept of equitable distribution of water to different consumers. In the urban cities of developing countries, often large quantities of water are supplied to only a few consumers, leading to inequitable water supply. It is a well known fact that quantity of water supplied from the source is not distributed equitably among the consumers. Aged pipelines pump failures, improper management of water resources are some of the main reasons for it. Equitable water to different consumers can be provided by operating the system in an efficient manner. Most of the urban cities receive water from the source to intermediate reservoirs and from these reservoirs water is supplied to consumers. Therefore, to achieve equitable water supply, these two supply levels have to be controlled using different concepts/ techniques. The water requirement of each of the reservoirs has to be calculated, which may depend on the number of consumers and consumer category. Each reservoir should receive its share of water to satisfy its consumer demand and also there must be provision to accommodate shortages, if any. The calibrated model of Bangalore WDS is used to achieve equitable water supply quantity to different zones of Bangalore city. The city has large undulating terrain among different zones which leads to unequal distribution of water. Dynamic Inversion (DI) nonlinear controller with Proportional Integral Derivative (PID) features (DI-PID) is used for valve throttling to achieve the target flows to different zones/reservoirs of the city at different levels. Equitable water distribution to different reservoirs, when a part of the source fails to supply water is also discussed in this thesis. From the obtained results it is observed that, controllers were responding in all the cases in different levels of targets for such a huge network. When there is change in supply pattern to achieve the equitable supply of water to different zones, the hydraulics of the WDS will change. Therefore, it is necessary to understand whether the system is able to handle these changes. The concept of reliability can be used to analyse the performance of WDS for wide range of operating conditions. Reliability analysis of a WDS for both normal and likely to occur situations will give a better quality of service to its consumers. Calculating both hydraulic and mechanical reliability is important as the chances of occurrence of both the failure scenarios are equal in a WDS. In the present study, a methodology is presented to model the nodal, system and total reliability for water supply networks by considering the hydraulic and mechanical failure scenarios. These two reliability measures together give the total reliability of the system. Analysing a real and complex WDS for the probable chances of occurrence of the failure scenarios; and then to anlyse the total reliability of the system is not reported in the literature and this analysis is carried out in the present study for Bangalore city WDS. The hydraulics of the system for all the operating conditions is analysed using EPANET. Hydraulic reliability is calculated by varying the uncertain independent parameters (demand, roughness and source water) and mechanical reliability is calculated by assuming system component failures. The system is analysed for both the reliability scenarios by considering different chances of failure that may occur in a real WDS; and hence the total reliability is calculated by making different combinations of hydraulic and mechanical failure scenarios. Sensitivity analysis for all the zones is also carried out to understand the behavior of different demand points for large fluctuation in hydraulics of the system. From the study, it is observed that, Hydraulic reliability decreases as the demand variation increases. But, as the roughness variation increases, there is no much change in the nodal or system reliability. Consumer demand or reliability of the WDS can be increased by saving the water lost in the system. This can be achieved by tracking the water parcel from the source till the consumer end, which will give an idea about the performance of different stages and zones in achieving the target flows. Huge quantity of water is lost in WDS and hence it is necessary to account for the water lost at different levels, hence the system can be managed in a better way. In most of the intermittent water supply systems demand is controlled by supply side; there is also a need to understand the demand variation at the consumer end which in turn affects the supply. Matching this varied supply-demand gap at various levels is challenging task. To get a better control of such problem, water balance (WB) equations need to be derived at various levels. When we derive these WB equations it should be emphasized that UFW is one of the major component of this equation. Given this back ground of the complex problem, for a typical city like Bangalore, an attempt is made to derive WB equations at various levels. In the present study, stage-wise and zone-wise WB is analysed for different months based on the flow meter readings. The conceptual model developed is calibrated, validated and also the performance of the model is analysed by giving a chance of error in the flow measurement. Based on all the above observations, stage-wise and zone-wise water supply weights are also calculated. From the study it is found that, there is no much loss of water in all the four stages of supply. Water loss is minimal of about 3 % till water reaches from source to GLRs. Water is transferred between the stages during some days of the month, may be due to shortage of water or due to unexpected demand. Huge quantity of water is lost in the distribution main which is of about 40 to 45% for all the moths which is analysed. This type of model will be extremely useful for water supply managers to manage their resources more efficiently and this study is discussed in detail as a part of this thesis. As mentioned above, huge quantity of groundwater is used in urban cities and the quantity of water extracted is not accounted. In the present study, zone wise and sub zone-wise piped water and ground water used in different parts of the cities is analysed with the help of available data. From the study it is observed that, the quantity of piped water supply and UFW is consistent for the time period analysed and the quantity of water withdrawn from the borewells are varying considerably depending on the yield of the borewlls in different zones. The main components of urban water supply are piped water, ground water, rainfall and runoff generated, UFW, waste water produced and other water quantities which may be minute. In future, to manage the water resources properly, integrated water management is necessary in city scale which will give an idea about the total water produced and the water utilized at the consumer end. Therefore, integrated water management concept is carried out in Hebbal region, (a small part of Bangalore) using the available data. From the analysis we noticed that, domestic water supplied to North sub zones are better when comparing to East sub zones. This type of total water balance can be studied in other parts of Bangalore, to understand the behavior of different water components and to make better decisions. The developed model, analysis and operating conditions of this study can be applied to other similar cities like Bangalore. This type of study may be useful to water authorities for better control of the resources, or in making better decisions and these types of models will act as decision support systems.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Watersheds Watershed management Water-supply Water balance (Hydrology) Water balance (Hydrology)"

1

Napiórkowski, Jarosław J. Management of the storage reservoir influencing the protected natural environment - Upper Narew River system case study. Warszawa: Instytut Geofizyki Polskiej Akademii Nauk, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brooks, Kenneth N. Hydrology and the management of watersheds. 4th ed. Ames, Iowa: Wiley-Blackwell, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brooks, Kenneth N. Hydrology and the management of watersheds. 4th ed. Ames, Iowa: Wiley-Blackwell, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Congalton, Russell G. Development of EOS-aided procedures for the determination of the water balance of hydrologic budget of a large watershed: Semi-annual progress report for the period August 1, - December 31, 1986. Berkeley, Calif: University of California, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Congalton, Russell G. Development of EOS-aided procedures for the determination of the water balance of hydrologic budget of a large watershed: Semi-annual progress report for the period August 1, - December 31, 1986. Berkeley, Calif: University of California, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Logan, S. W. Selected hydrologic data for urban watersheds in South Carolina, 1983-90. Columbia, S.C: U.S. Geological Survey, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Andreasen, David C. Evaluation of the geohydrology and water-supply potential of the Lower Patapsco and Patuxent Aquifers in the Indian Head-Bryans Road Area, Charles County, Maryland: Initial findings ; prepared in cooperation with the Maryland Department of the Environment and the Charles County Department of Planning and Growth Management. [Baltimore, Md.]: Department of Natural Resources, Resource Assessment Service, Maryland Geological Survey, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zimmermann, Lothar. Der Bodenwasserhaushalt an einem Hochlagenstandort im Südschwarzwald. Freiburg im Breisgau: Institut für Bodenkunde und Waldernährungslehre der Albert-Ludwigs-Universität Freiburg i.Br., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Uddin, Chowdhury Jahir, and Centre for Environmental and Geographic Information Services (Bangladesh), eds. Water balance model (WBM), south west region, version 1.0: Stream/WBM : an instrument for river basin environment analysis and management. Dhaka: Centre for Environmental and Geographic Information Services, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Management of the storage reservoir influencing the protected natural environment - Upper Narew River system case study. Warszawa: Instytut Geofizyki Polskiej Akademii Nauk, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Watersheds Watershed management Water-supply Water balance (Hydrology) Water balance (Hydrology)"

1

Thornes, John, and Jamie Woodward. "Hydrology, River Regimes, and Sediment Yield." In The Physical Geography of the Mediterranean. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780199268030.003.0020.

Full text
Abstract:
In comparison to the rest of Europe, Africa, and Asia, most rivers arising and flowing within the Mediterranean watershed typically drain small catchments with mountainous headwaters. The hydrology of Mediterranean catchments is strongly influenced by the seasonal distribution of precipitation, catchment geology, vegetation type and extent, and the geomorphology of the slope and channel systems. It is important to appreciate, as the preceding chapters have shown, that the area draining to the Mediterranean Sea is large and enormously variable in terms of the key controls on catchment hydrology outlined above, and it is therefore not possible to define, in hydrological terms, a strict single Mediterranean river type. However, river regimes across the basin do have a marked seasonality that is largely controlled by the climate system (Chapter 3) and, in most basins, the dominant flows occur in winter—but autumn and spring runoff is also important in many areas. These patterns reflect the general water balance of the basin as a whole, but there are key geographical patterns in catchment hydrology and sediment yield and a marked contrast is evident between the more humid north and the semi-arid south and east (Struglia et al. 2004; Chapter 21). Also, because of the long history of vegetation and hillslope modification by human activity and the more recent and widespread implementation of water resource management projects, there are almost no natural river regimes in the Mediterranean region, especially in the middle and lower reaches of river catchments (Cudennec et al. 2007). Runoff generation on hillslopes in the Mediterranean is very closely related to rainfall intensities and land surface properties as discussed in Chapter 6. While this is probably true of most catchments, runoff generation in the Mediterranean is very sensitive to vegetation cover because of the seasonal dynamics of rainfall and the role played by extreme events. The cumulative effect of these characteristics is a specific set of management problems and restoration issues and, although these are rather different in the various socio-political regimes of the region, it can be argued that they are in many ways unique to Mediterranean catchments.
APA, Harvard, Vancouver, ISO, and other styles
2

Singh, Ram Karan. "Impact of Climate Change on the Retreat of Himalayan Glaciers and Its Impact on Major River Hydrology." In Reconsidering the Impact of Climate Change on Global Water Supply, Use, and Management, 70–83. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1046-8.ch005.

Full text
Abstract:
Himalayan Glaciers are the largest freshwater resource on earth and the rivers originating from them are an important source of water. They significantly modify stream flow both in quantity and timing as annual basin run-off is enhanced or decreased in years of negative or positive glacier mass balance respectively. Although glacial advances and retreats are a part of its natural cyclic phenomenon, the rate of de-glaciations has accelerated in recent times due to climatic changes and global warming caused by anthropogenic activities. Some of the important glaciers of Himalayas are receding at an alarming rate, which could have dire consequences on river hydrology of the main rivers of this region namely, Indus, Ganga and Brahmaputra, initially causing floods and the paradoxically, scarcity of water later. This chapter is an attempt to summarize some of the studies on Himalayan glacier retreats and also to assess its impact on the availability of freshwater in the sub-continent.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography