Academic literature on the topic 'Wave equation – Numerical solutions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wave equation – Numerical solutions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wave equation – Numerical solutions"
Zhang, Yingnan, Xingbiao Hu, and Jianqing Sun. "Numerical calculation of N -periodic wave solutions to coupled KdV–Toda-type equations." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2245 (2021): 20200752. http://dx.doi.org/10.1098/rspa.2020.0752.
Full textHIKIHARA, TAKASHI, KENTARO TORII, and YOSHISUKE UEDA. "WAVE AND BASIN STRUCTURE IN SPATIALLY COUPLED MAGNETO-ELASTIC BEAM SYSTEM — TRANSITIONS BETWEEN COEXISTING WAVE SOLUTIONS." International Journal of Bifurcation and Chaos 11, no. 04 (2001): 999–1018. http://dx.doi.org/10.1142/s0218127401002523.
Full textAlkhalifah, Tariq. "An acoustic wave equation for anisotropic media." GEOPHYSICS 65, no. 4 (2000): 1239–50. http://dx.doi.org/10.1190/1.1444815.
Full textYokuş, Asıf, and Doğan Kaya. "Comparison exact and numerical simulation of the traveling wave solution in nonlinear dynamics." International Journal of Modern Physics B 34, no. 29 (2020): 2050282. http://dx.doi.org/10.1142/s0217979220502823.
Full textCai, Wenjun, Yajuan Sun, and Yushun Wang. "Geometric Numerical Integration for Peakon b-Family Equations." Communications in Computational Physics 19, no. 1 (2016): 24–52. http://dx.doi.org/10.4208/cicp.171114.140715a.
Full textKay, Alison L., Jonathan A. Sherratt, and J. B. McLeod. "Comparison theorems and variable speed waves for a scalar reaction–diffusion equation." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 131, no. 5 (2001): 1133–61. http://dx.doi.org/10.1017/s030821050000130x.
Full textAMORIM, PAULO, and MÁRIO FIGUEIRA. "CONVERGENCE OF NUMERICAL SCHEMES FOR SHORT WAVE LONG WAVE INTERACTION EQUATIONS." Journal of Hyperbolic Differential Equations 08, no. 04 (2011): 777–811. http://dx.doi.org/10.1142/s0219891611002573.
Full textAlharbi, Abdulghani R., M. B. Almatrafi, and Aly R. Seadawy. "Construction of the numerical and analytical wave solutions of the Joseph–Egri dynamical equation for the long waves in nonlinear dispersive systems." International Journal of Modern Physics B 34, no. 30 (2020): 2050289. http://dx.doi.org/10.1142/s0217979220502896.
Full textZhang, X., X. X. Chen, and C. L. Morfey. "Acoustic Radiation from a Semi-Infinite Duct With a Subsonic Jet." International Journal of Aeroacoustics 4, no. 1-2 (2005): 169–84. http://dx.doi.org/10.1260/1475472053730075.
Full textÖzkan, Yeşim Sağlam, Emrullah Yaşar, and Nisa Çelik. "On the exact and numerical solutions to a new (2 + 1)-dimensional Korteweg-de Vries equation with conformable derivative." Nonlinear Engineering 10, no. 1 (2021): 46–65. http://dx.doi.org/10.1515/nleng-2021-0005.
Full textDissertations / Theses on the topic "Wave equation – Numerical solutions"
Sundström, Carl. "Numerical solutions to high frequency approximations of the scalar wave equation." Thesis, Uppsala universitet, Tillämpad beräkningsvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429072.
Full textHuang, Jeffrey. "Numerical solutions of continuous wave beam in nonlinear media." PDXScholar, 1987. https://pdxscholar.library.pdx.edu/open_access_etds/3742.
Full textKoutoumbas, Anastasios M. "Bidirectional and unidirectional spectral representations for the scalar wave equation." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/41904.
Full textAgiza, Hamdy N. "A numerical and theoretical study of solutions to a damped nonlinear wave equation." Thesis, Heriot-Watt University, 1987. http://hdl.handle.net/10399/1058.
Full textLi, Hongwei. "Local absorbing boundary conditions for wave propagations." HKBU Institutional Repository, 2012. https://repository.hkbu.edu.hk/etd_ra/1434.
Full textPack, Jeong-Ki. "A wave-kinetic numerical method for the propagation of optical waves." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/104527.
Full textMeral, Gulnihal. "Numerical Solution Of Nonlinear Reaction-diffusion And Wave Equations." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610568/index.pdf.
Full textLampshire, Gregory B. "Review of random media homogenization using effective medium theories." Thesis, Virginia Tech, 1992. http://hdl.handle.net/10919/40659.
Full textSugimoto, Rie. "Special wave finite and infinite elements for the solution of the Helmholtz equation." Thesis, Durham University, 2003. http://etheses.dur.ac.uk/3142/.
Full textPinilla, Camilo Ernesto. "Numerical simulation of shear instability in shallow shear flows." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115697.
Full textBooks on the topic "Wave equation – Numerical solutions"
Nonlinear dispersive equations: Existence and stability of solitary and periodic travelling wave solutions. American Mathematical Society, 2009.
Find full textPava, Jaime Angulo. Nonlinear dispersive equations: Existence and stability of solitary and periodic travelling wave solutions. American Mathematical Society, 2009.
Find full textPava, Jaime Angulo. Nonlinear dispersive equations: Existence and stability of solitary and periodic travelling wave solutions. American Mathematical Society, 2009.
Find full textPava, Jaime Angulo. Nonlinear dispersive equations: Existence and stability of solitary and periodic travelling wave solutions. American Mathematical Society, 2009.
Find full textHaraux, Alain. Nonlinear vibrations and the wave equation. Universidade Federal do Rio de Janeiro, Centro de Ciências Matemáticas e da Natureza, Instituto de Matemática, 1986.
Find full textBagrov, V. G. Exact solutions of relativistic wave equations. Kluwer Academic Publishers, 1990.
Find full textPava, Jaime Angulo. Nonlinear dispersive equations: Existence and stability of solitary and periodic travelling waves solutions. American Mathematical Society, 2009.
Find full textRobertsson, Johan O. A. Numerical modeling of seismic wave propagation: Gridded two-way wave-equation methods. Society of Exploration Geophysicists, the international society of applied geophysics, 2012.
Find full textNonlinear waves in integrable and nonintegrable systems. Society for Industrial and Applied Mathematics, 2010.
Find full textPava, Jaime Angulo. Nonlinear dispersive equations: Existence and stability of solitary and periodic travelling wave solutions. American Mathematical Society, 2009.
Find full textBook chapters on the topic "Wave equation – Numerical solutions"
Balabane, Mikhaël. "Computing Solutions for Helmholtz Equation: Domain Versus Boundary Decomposition." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_2.
Full textGlowinski, Roland, Jacques Periaux, and Jari Toivanen. "Time-Periodic Solutions of Wave Equation via Controllability and Fictitious Domain Methods." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_131.
Full textHagstrom, Thomas. "Numerical Experiments on a Nonlinear Wave Equation with Singular Solutions." In Lecture Notes in Computational Science and Engineering. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65870-4_34.
Full textCaldwell, J. "Numerical Solution of a Model Nonlinear Wave Equation." In Industrial Vibration Modelling. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4480-0_17.
Full textBaskonus, Haci Mehmet, Ajay Kumar, M. S. Rawat, Bilgin Senel, Gulnur Yel, and Mine Senel. "Studying on the Complex and Mixed Dark-Bright Travelling Wave Solutions of the Generalized KP-BBM Equation." In Advanced Numerical Methods for Differential Equations. CRC Press, 2021. http://dx.doi.org/10.1201/9781003097938-2.
Full textFortes, C. J. E. M., J. L. M. Fernandes, and M. A. Vaz dos Santos. "A Finite Element Method for the Solution of a Time-Dependent Nonlinear Wave Propagation Equation." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_110.
Full textBoubendir, Y., and A. Bendali. "Dealing with Cross-Points in a Non-Overlapping Domain Decomposition Solution of the Helmholtz Equation." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_51.
Full textBeilina, Larisa, and V. Ruas. "Convergence of Explicit $$P_1$$ Finite-Element Solutions to Maxwell’s Equations." In Mathematical and Numerical Approaches for Multi-Wave Inverse Problems. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48634-1_7.
Full textShirikyan, Armen, and Leonid Volevich. "Asymptotic Properties of Solutions to High-Order Hyperbolic Equations Generalizing the Damped Wave Equation." In Hyperbolic Problems: Theory, Numerics, Applications. Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8724-3_39.
Full textOsborne, A. R., and E. Segré. "Numerical Construction of Nonlinear Wave Train Solutions of the Periodic Korteweg-de Vries Equation." In Inverse Problems and Theoretical Imaging. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75298-8_59.
Full textConference papers on the topic "Wave equation – Numerical solutions"
Gurefe, Yusuf, and Emine Misirli. "Traveling wave solutions by extended trial equation method." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825911.
Full textChen, Huaitang, Huicheng Yin, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "New Travelling Solitary Wave and Periodic Solutions of the Generalized Kawahara Equation." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790089.
Full textBruzón, M. S., M. L. Gandarias, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Travelling Wave Solutions of the K(m, n) Equation with Generalized Evolution." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241438.
Full textLiu, Changfu, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Exact Periodic Solitary Wave Solutions and Propagation for the Potential Kadomtsev-Petviashvili Equation." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241573.
Full textAndrianov, Igor, Vladimir Bolshakov, Yuriy Kirichek, et al. "Periodical Solutions of Certain Strongly Nonlinear Wave Equations." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636758.
Full textKazakov, A. L., and L. F. Spevak. "Numerical study of travelling wave type solutions for the nonlinear heat equation." In MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2019): Proceedings of the 13th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135130.
Full textPark, Joonsang, Karin Norén-Cosgriff, and Amir M. Kaynia. "NUMERICAL WAVENUMBER INTEGRATION FOR 2.5D WAVE EQUATION SOLUTION." In XI International Conference on Structural Dynamics. EASD, 2020. http://dx.doi.org/10.47964/1120.9239.19610.
Full textShibata, Daisuke, and Takayuki Utsumi. "Numerical Solutions of Poisson Equation by the CIP-Basis Set Method." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89150.
Full textLiu, Changfu, Yanke Wu, and Bingtao Wei. "Construction of the multi-wave solutions for nonlinear evolution equations." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756676.
Full textNečasová, Gabriela, Václav Šátek, and Jiří Kunovský. "Numerical solution of wave equation using higher order methods." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5043964.
Full textReports on the topic "Wave equation – Numerical solutions"
Ghatak, A. K., R. L. Gallawa, and I. C. Goyal. Modified airy function and WKB solutions to the wave equation. National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.mono.176.
Full textChang, B. Analytical Solutions for Testing Ray-Effect Errors in Numerical Solutions of the Transport Equation. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/15004539.
Full textHuang, Jeffrey. Numerical solutions of continuous wave beam in nonlinear media. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.5626.
Full textHereman, W., P. P. Banerjee, and D. Faker. Construction of Solitary Wave Solutions of the Korteweg-De-Vries Equation Via Painleve Analysis. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada204101.
Full textMickens, Ronald, and Kale Oyedeji. Exponential and Separation of Variables Exact Solutions to the Linear, Delayed, Unidirectional Wave Equation. Atlanta University Center Robert W. Woodruff Library, 2019. http://dx.doi.org/10.22595/cau.ir:2020_mickens_oyedeji_exponential.
Full textArminjon, Mayeul. Classical-Quantum Correspondence and Wave Packet Solutions of the Dirac Equation In a Curved Space-Time. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-24-2011-77-88.
Full textArminjon, Mayeul. Classical-Quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Space-Time. GIQ, 2012. http://dx.doi.org/10.7546/giq-13-2012-96-106.
Full textMuhlestein, Michael, and Carl Hart. Numerical analysis of weak acoustic shocks in aperiodic array of rigid scatterers. Engineer Research and Development Center (U.S.), 2020. http://dx.doi.org/10.21079/11681/38579.
Full text