Academic literature on the topic 'Wave slope'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wave slope.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wave slope"
Shen, Y., R. Lindenbergh, B. Hofland, and R. Kramer. "CHANGE ANALYSIS OF LASER SCANS OF LABORATORY ROCK SLOPES SUBJECT TO WAVE ATTACK TESTING." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W4 (September 13, 2017): 139–47. http://dx.doi.org/10.5194/isprs-annals-iv-2-w4-139-2017.
Full textNian, Ting Kai, Bo Liu, and Ping Yin. "Seafloor Slope Stability under Adverse Conditions Using Energy Approach." Applied Mechanics and Materials 405-408 (September 2013): 1445–48. http://dx.doi.org/10.4028/www.scientific.net/amm.405-408.1445.
Full textK G, Parvathy, and Prasad K. Bhaskaran. "Wave attenuation in presence of mangroves: A sensitivity study for varying bottom slopes." International Journal of Ocean and Climate Systems 8, no. 3 (April 24, 2017): 126–34. http://dx.doi.org/10.1177/1759313117702919.
Full textCarr, Magda, Marek Stastna, Peter A. Davies, and Koen J. van de Wal. "Shoaling mode-2 internal solitary-like waves." Journal of Fluid Mechanics 879 (October 2, 2019): 604–32. http://dx.doi.org/10.1017/jfm.2019.671.
Full textYamashita, Kei, Taro Kakinuma, and Keisuke Nakayama. "SHOALING OF NONLINEAR INTERNAL WAVES ON A UNIFORMLY SLOPING BEACH." Coastal Engineering Proceedings 1, no. 33 (December 15, 2012): 72. http://dx.doi.org/10.9753/icce.v33.waves.72.
Full textKantarzhi, Izmail, Sergii Kivva, and Natalia V. Shunko. "NUMERICAL STUDY OF WAVE RUN-UP AT PERMEABLE FIXED REVETMENT SLOPE." Coastal Engineering Proceedings, no. 35 (June 23, 2017): 32. http://dx.doi.org/10.9753/icce.v35.structures.32.
Full textLegg, Sonya. "Scattering of Low-Mode Internal Waves at Finite Isolated Topography." Journal of Physical Oceanography 44, no. 1 (January 1, 2014): 359–83. http://dx.doi.org/10.1175/jpo-d-12-0241.1.
Full textChen, Weiyun, Dan Wang, Lingyu Xu, Zhenyu Lv, Zhihua Wang, and Hongmei Gao. "On the Slope Stability of the Submerged Trench of the Immersed Tunnel Subjected to Solitary Wave." Journal of Marine Science and Engineering 9, no. 5 (May 13, 2021): 526. http://dx.doi.org/10.3390/jmse9050526.
Full textWu, Honggang, Zhixin Wu, Hao Lei, and Tianwen Lai. "Application of BRFP New-Type Anchor Cable Material in High Slopes against Earthquakes." Advances in Civil Engineering 2021 (February 13, 2021): 1–19. http://dx.doi.org/10.1155/2021/6689718.
Full textShen, Yueqian, Jinguo Wang, Roderik Lindenbergh, Bas Hofland, and Vagner G. Ferreira. "Range Image Technique for Change Analysis of Rock Slopes Using Dense Point Cloud Data." Remote Sensing 10, no. 11 (November 12, 2018): 1792. http://dx.doi.org/10.3390/rs10111792.
Full textDissertations / Theses on the topic "Wave slope"
Ballard, Valerie Jean. "Experiments with a high frequency laser slope meter." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367969.
Full textHelfrich, L. Cody. "Estimating oceanic internal wave energy from seismic reflector slope spectra." Laramie, Wyo. : University of Wyoming, 2008. http://proquest.umi.com/pqdweb?did=1594476671&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textWatson, David H. "Wave Reflection on a Two-Slope Steep Beach." Thesis, Monterey, California. Naval Postgraduate School, 2012. http://hdl.handle.net/10945/6884.
Full textKousteni, Anna. "Investigation of acoustic emission wave guide systems for detecting slope instability." Thesis, Nottingham Trent University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252304.
Full textZhang, Jianfeng. "Incoporating rubble mound jetties in elliptic harbor wave models." Texas A&M University, 2003. http://hdl.handle.net/1969.1/5839.
Full textEberly, Lauren Elizabeth. "Internal Wave Generation Over Rough, Sloped Topography: An Experimental Study." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3437.
Full textHerrera, Gamboa María Piedad. "Mound Breakwater Design in Depth-Limited Breaking Wave Conditions." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/82553.
Full textEl manto principal de los diques en talud suele estar formado por escollera natural o elementos prefabricados de hormigón; su función es resistir la acción del oleaje. Una revisión del estado del arte pone de manifiesto que son numerosas las fórmulas existentes para el diseño de mantos derivadas de ensayos físicos a escala reducida con oleaje sin rotura por fondo. Sin embargo, la mayoría de diques en talud se construyen en la zona de rompientes con oleaje limitado por fondo, donde las ecuaciones de diseño habituales no son del todo válidas. En esta tesis doctoral se analiza la estabilidad hidráulica de mantos bicapa de escollera, a partir de ensayos a escala reducida con pendiente de fondo m=1/50. En base a los resultados obtenidos de los ensayos físicos, se propone una nueva relación potencial para el diseño de mantos de escollera en condiciones de oleaje limitado por fondo, válida para taludes con cot¿=1.5, números de estabilidad 0.98¿Hm0/(¿Dn50)¿2.5, y profundidades relativas a pie de dique de 3.75¿hs/(¿Dn50)¿7.50. Cuando el manto principal está formado por elementos de hormigón, es habitual construir una berma de pie que proporciona apoyo a los elementos del manto y, en su caso, colabora en la protección de la zona inferior del dique contra la socavación. Dicha berma suele construirse con escollera natural y su peso está condicionado al de los elementos del manto en el caso de no haber rotura por fondo. El peso de los elementos de la berma de pie suele ser un orden de magnitud inferior al peso de las unidades del manto; sin embargo, si la pendiente de fondo es fuerte (p.e. m=1/10) y las aguas someras esta regla no se cumple ya que algunas olas rompen sobre el fondo impactando directamente sobre la berma de pie. En estos casos, el peso de la escollera de la berma puede sobrepasar el de las unidades del manto y su correcto diseño es crucial para garantizar la estabilidad del dique. Además de estudiar la estabilidad del manto principal de diques de escollera, la presente tesis doctoral analiza también la estabilidad hidráulica de bermas de pie de escollera ubicadas en fondos con pendiente m=1/10 y aguas someras (0.5
El mantell principal dels dics en talús sol estar format per roca o elements prefabricats de formigó, la seva funció és resistir l'acció de l'onatge. Una revisió de l'estat de l'art manifesta que són nombroses les equacions de disseny existents per a condicions d'onatge no trencat. No obstant això, la majoria de dics en talús es construeixen a la zona de rompents amb onatge limitat per fons, on les equacions de disseny existents no són del tot vàlides. En aquesta tesi doctoral s'analitza l'estabilitat hidràulica de mantells bicapa de roca, a partir d'assajos a escala reduïda realitzats amb pendent de fons m = 1/50. En base als resultats obtinguts dels assajos, es proposa una relació potencial per al disseny de mantells de roca en condicions d'onatge limitat per fons vàlida per a talussos amb cot¿ = 1.5, nombres d'estabilitat 0.98¿Hm0/(¿Dn50) ¿2.5, i profunditats relatives a peu de dic de 3.75¿hs/(¿Dn50)¿7.50. Quan mantell principal està format per elements de formigó , és habitual construir una berma de peu que proporciona suport als elements del mantell i, si escau, col¿labora en la protecció de la zona inferior del dic contra la soscavació. Aquesta berma sol construir amb roca i el seu pes està condicionat al dels elements del mantell en el cas de no haver trencament per fons. El pes dels elements de la berma de peu sol ser un ordre de magnitud inferior al pes de les unitats del mantell; però, si el pendent de fons és fort ( p.e. m = 1 /10) i les aigües someres aquesta regla no es compleix ja que algunes onades trenquen sobre el fons impactant directament sobre la berma de peu. En aquests casos, el pes de la roca de la berma pot sobrepassar el de les unitats del mantell, i el seu correcte disseny és crucial per garantir l'estabilitat del dic. A més d'estudiar l'estabilitat del mantell principal de dics de roca, la present tesi doctoral analitza també l'estabilitat hidràulica de bermes de roca ubicades en fons amb pendents m = 1/10 i aigües someres (0.5
Herrera Gamboa, MP. (2017). Mound Breakwater Design in Depth-Limited Breaking Wave Conditions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/82553
TESIS
Tang, Zhaoxiang. "Evaluation of an approximate method for incorporating floating docks in harbor wave prediction models." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2686.
Full textNorth, Jan Arthur. "Fourier image synthesis and slope spectrum analysis of deepwater, wind-wave scenes viewed at Brewster's angle /." Online version of thesis, 1989. http://hdl.handle.net/1850/11520.
Full textAnyintuo, Thomas Becket. "Seepage-Coupled Finite Element Analysis of Stress Driven Rock Slope Failures for BothNatural and Induced Failures." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7731.
Full textBooks on the topic "Wave slope"
Neumark, David. Why do wage profiles slope upwards?: Tests of the general human capital model. Cambridge, MA: National Bureau of Economic Research, 1994.
Find full textCała, Marek. Analiza numeryczna propagacji fal oraz stateczności zboczy. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2007.
Find full textBrink, Ken. Programs for computing properties of coastal-trapped waves and wind-driven motions over the continental shelf and slope. Woods Hole (Mass.): Woods Hole Oceanographic Institution, 1985.
Find full textBrink, Ken. Programs for computing properties of coastal-trapped waves and wind-driven motions over the continental shelf and slope. 2nd ed. Woods Hole (Mass.): Woods Hole Oceanographic Institution, 1987.
Find full textWard, Donald L. Use of a rubble berm for reducing runup, overtopping, and damage on a 1V to 2H riprap slope: Experimental model investigation. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1993.
Find full textKramer, Steven L. Seismic response: Foundations in soft soils : final technical report, Research Project GC 8719, Task 25, Seismic soft soils. [Olympia, Wash.?]: Washington State Dept. of Transportation, Washington State Transportation Commission, Transit, Research, and Intermodal Planning (TRIP) Division in cooperation with the U.S. Dept. of Transportation, Federal Highway Administration, 1993.
Find full textUnited States. Soil Conservation Service. Engineering Division., ed. Riprap for slope protection against wave action. [Washington, D.C.]: U.S. Dept. of Agriculture, Soil Conservation Service, Engineering, 1988.
Find full textUnited States. Soil Conservation Service. Engineering Division, ed. Riprap for slope protection against wave action. Washington, D.C: U.S. Dept. of Agriculture, Soil Conservation Service, Engineering, 1987.
Find full textKobayashi, Nobuhisha. Irregular wave reflection and run-up on rough impermeable slopes. 1991.
Find full textBook chapters on the topic "Wave slope"
Grilli, S., and I. A. Svendsen. "Computation of Nonlinear Wave Kinematics During Propagation and Runup on a Slope." In Water Wave Kinematics, 387–412. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0531-3_24.
Full textMassel, S. R. "Inclusion of Wave-Breaking Mechanism in a Modified Mild-Slope Model." In Breaking Waves, 319–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84847-6_36.
Full textChapman, R. D. "The Visibility of rms Slope Variations on the sea Surface." In Wave Dynamics and Radio Probing of the Ocean Surface, 465–76. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8980-4_32.
Full textShemdin, O. H. "Measurement of Short Wave Modulation by Long Waves Using Stereophotography and a Laser-Slope Sensor in Toward." In Radar Scattering from Modulated Wind Waves, 173–81. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2309-6_14.
Full textQureshi, Mohsin Usman, Suguru Yamada, and Ikuo Towhata. "A Simplified Technique for Slope Stability Assessment Based on Insitu S-Wave Velocity Measurement." In Earthquake-Induced Landslides, 871–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32238-9_95.
Full textZhenlin, Chen, and Hu Xiao. "Determination of the Effective Computing Region for Rock Slope Stability Based on Seismic Wave Theory." In Landslide Science for a Safer Geoenvironment, 259–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05050-8_41.
Full textJia, Fei, Michael Siegrist, Felix Staub, and Jürg E. Balmer. "Improved Sub-10 nm Ni-like Lasing by Varying the Slope of the Traveling-Wave Velocity." In Springer Proceedings in Physics, 77–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19521-6_9.
Full textPlant, W. J., W. C. Keller, and D. E. Weissman. "The Dependence of the Microwave Radar Cross Section on the Air-Sea Interaction and the Wave Slope." In The Ocean Surface, 289–96. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-7717-5_39.
Full textGünbak, A. R. "Kinematics of Flow on Steep Slopes." In Water Wave Kinematics, 437–40. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0531-3_27.
Full textHuang, Hu. "The Mild-Slope Equations." In Dynamics of Surface Waves in Coastal Waters, 53–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88831-4_4.
Full textConference papers on the topic "Wave slope"
Bubel, Julian, Marc-André Pick, and Jürgen Grabe. "Stability of Artificial Subaqueous Slopes in Sandy Soils Under Wave Loads." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41827.
Full textSchlo̸er, Signe, Henrik Bredmose, and Harry B. Bingham. "Irregular Wave Forces on Monopile Foundations: Effect of Full Nonlinearity and Bed Slope." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49709.
Full textZhang, Z., T. Alkhalifah, E. Saygin, and L. He. "Rayleigh Wave Phase-Slope Tomography." In EAGE 2020 Annual Conference & Exhibition Online. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202010275.
Full textMin, Eun-Hong, and Weoncheol Koo. "Numerical Simulation of Water Wave Propagation Over Porous Slope Bottom by Using Two-Domain Method." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95664.
Full textChen, Hongzhou, Guohai Dong, and Yuxiang Ma. "Parameterization for Nonlinearity of Random Waves Over Slopes." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10232.
Full textPezzaniti, J. Larry, David Chenault, Mike Roche, John Reinhardt, and Howard Schultz. "Wave slope measurement using imaging polarimetry." In SPIE Defense, Security, and Sensing, edited by Weilin (Will) Hou. SPIE, 2009. http://dx.doi.org/10.1117/12.819031.
Full textKrogstad, Harald E. "Second Order Wave Spectra and Heave/Slope Wave Measurements." In Fourth International Symposium on Ocean Wave Measurement and Analysis. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40604(273)30.
Full textGao, Junliang, Chunyan Ji, and Xiaojian Ma. "Influence of Offshore Reefs on Low-Frequency Waves During Harbor Resonance." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-62363.
Full textDimakopoulos, Aggelos S., and Athanassios A. Dimas. "Numerical Simulation of Nonlinear Wave Propagation and Breaking Over Constant-Slope Bottom." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92163.
Full textDimakopoulos, Aggelos S., and Athanassios A. Dimas. "Large-Wave Simulation of Spilling Breakers Over Constant-Slope Bed." In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57164.
Full textReports on the topic "Wave slope"
Ramp, Steven R. Submarine Sand Dunes on the Continental Slope in the South China Sea and Their Impact on Internal Wave Transformation and Acoustic Propagation. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada598325.
Full textRamp, Steven R. Submarine Sand Dunes on the Continental Slope in the South China Sea and Their Impact on Internal Wave Transformation and Acoustic Propagation. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada623623.
Full textHogg, Nelson G. Topographic Waves on Slopes. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada628713.
Full textHogg, Nelson. Topographic Waves on Slopes. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada626443.
Full textKunze, Eric. Internal Waves on the Monterey Continental Slope. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada627644.
Full textHughes, Steven A. Estimating Irregular Wave Runup on Rough, Impermeable Slopes. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada437084.
Full textCacchione, David A. Internal Waves Over the Continental Slope Off Northern California. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada629309.
Full textGrimshaw, Roger H. Generation and Propagation of Internal Solitary Waves on the Continental Shelf and Slope. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada628716.
Full textGrimshaw, Roger H. Generation and Propagation of Internal Solitary Waves on the Continental Shelf and Slope. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada626440.
Full textGrimshaw, Roger H. Generation and Propagation of Internal Solitary Waves on the Continental Shelf and Slope. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada624734.
Full text