Academic literature on the topic 'Wavelet approximation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wavelet approximation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wavelet approximation"
Polanowski, Stanisław. "Application of movable approximation and wavelet decomposition to smoothing-out procedure of ship engine indicator diagrams." Polish Maritime Research 14, no. 2 (April 1, 2007): 12–17. http://dx.doi.org/10.2478/v10012-007-0008-y.
Full textBANAKAR, AHMAD, MOHAMMAD FAZLE AZEEM, and VINOD KUMAR. "COMPARATIVE STUDY OF WAVELET BASED NEURAL NETWORK AND NEURO-FUZZY SYSTEMS." International Journal of Wavelets, Multiresolution and Information Processing 05, no. 06 (November 2007): 879–906. http://dx.doi.org/10.1142/s0219691307002099.
Full textRomanchak, V. M. "Local transformations with a singular wavelet." Informatics 17, no. 1 (March 29, 2020): 39–46. http://dx.doi.org/10.37661/1816-0301-2020-17-1-39-46.
Full textRomanchak, V. M. "APPROXIMATELY SINGULAR WAVELET." «System analysis and applied information science», no. 2 (August 7, 2018): 23–28. http://dx.doi.org/10.21122/2309-4923-2018-2-23-28.
Full textTahami, M., A. Askari Hemmat, and S. A. Yousefi. "Numerical solution of two-dimensional first kind Fredholm integral equations by using linear Legendre wavelet." International Journal of Wavelets, Multiresolution and Information Processing 14, no. 01 (January 2016): 1650004. http://dx.doi.org/10.1142/s0219691316500041.
Full textKhanna, Nikhil, Varinder Kumar, and S. K. Kaushik. "Wavelet packet approximation." Integral Transforms and Special Functions 27, no. 9 (June 6, 2016): 698–714. http://dx.doi.org/10.1080/10652469.2016.1189912.
Full textGuo, Shun Sheng, and A. S. Cavaretta. "LINEAR WAVELET APPROXIMATION." Analysis 13, no. 4 (December 1993): 351–62. http://dx.doi.org/10.1524/anly.1993.13.4.351.
Full textDeVore, R. A., S. V. Konyagin, and V. N. Temlyakov. "Hyperbolic Wavelet Approximation." Constructive Approximation 14, no. 1 (January 1, 1997): 1–26. http://dx.doi.org/10.1007/s003659900060.
Full textPourakbari, Fatemeh, and Ali Tavakoli. "Modification of Multiple Knot B-Spline Wavelet for Solving (Partially) Dirichlet Boundary Value Problem." Advances in Applied Mathematics and Mechanics 4, no. 06 (December 2012): 799–820. http://dx.doi.org/10.4208/aamm.12-12s10.
Full textCattani, Carlo, and Aleksey Kudreyko. "Application of Periodized Harmonic Wavelets towards Solution of Eigenvalue Problems for Integral Equations." Mathematical Problems in Engineering 2010 (2010): 1–8. http://dx.doi.org/10.1155/2010/570136.
Full textDissertations / Theses on the topic "Wavelet approximation"
Li, Zheng. "Approximation to random process by wavelet basis." View abstract/electronic edition; access limited to Brown University users, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3318378.
Full textMartin, Richard Luis. "Wavelet approximation of GRID fields for virtual screening." Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531509.
Full textSchreiner, Michael [Verfasser]. "Wavelet Approximation by Spherical Up Functions / Michael Schreiner." Aachen : Shaker, 2004. http://d-nb.info/1170537413/34.
Full textLee, Sang-Mook. "Wavelet-Based Multiresolution Surface Approximation from Height Fields." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/26203.
Full textPh. D.
Grip, Niklas. "Wavelet and gabor frames and bases : approximation, sampling and applications." Doctoral thesis, Luleå, 2002. http://epubl.luth.se/1402-1544/2002/49.
Full textZhanlav, Tugal. "Some choices of moments of refinable function and applications." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601316.
Full textTrisiripisal, Phichet. "Image Approximation using Triangulation." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/33337.
Full textMaster of Science
Hartmann, Christoph [Verfasser], and Stephan [Akademischer Betreuer] Dahlke. "The p-Poisson Equation: Regularity Analysis and Adaptive Wavelet Frame Approximation / Christoph Hartmann ; Betreuer: Stephan Dahlke." Marburg : Philipps-Universität Marburg, 2018. http://d-nb.info/1168380103/34.
Full textPoungponsri, Suranai. "An Approach Based On Wavelet Decomposition And Neural Network For ECG Noise Reduction." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/101.
Full textSilveira, Tiago da. "DETECÇÃO DO ESTADO DE SONOLÊNCIA VIA UM ÚNICO CANAL DE ELETROENCEFALOGRAFIA ATRAVÉS DA TRANSFORMADA WAVELET DISCRETA." Universidade Federal de Santa Maria, 2012. http://repositorio.ufsm.br/handle/1/5407.
Full textMany fatal traffic accidents are caused by fatigued and drowsy drivers. In this context, automatic drowsiness detection devices are an alternative to minimize this issue. In this work, two new methodologies to drowsiness detection are presented, considering a signal obtained from a single electroencephalography channel: (i) drowsiness detection through best m-term approximation, applied to the wavelet expansion of the analysed signal; (ii) drowsiness detection through Mahalanobis distance with wavelet coefficients. The results of both methodologies are compared with a method which uses Mahalanobis distance and Fourier coefficients to drowsiness detection. All methodologies consider the medical evaluation of the brain signal, given by the hypnogram, as a reference.
A sonolência diurna em motoristas, principal consequência da privação de sono, tem sido a causa de diversos acidentes graves de trânsito. Neste contexto, a utilização de dispositivos que alertem o condutor ao detectar automaticamente o estado de sonolência é uma alternativa para a minimização deste problema. Neste trabalho, duas novas metodologias para a detecção automática da sonolência são apresentadas, utilizando um único canal de eletroencefalografia para a obtenção do sinal: (i) detecção da sonolência via melhor aproximação por m-termos, aplicada aos coeficientes wavelets da expansão em série do sinal; e (ii) detecção da sonolência via distância de Mahalanobis e coeficientes wavelets. Os resultados de ambas as metodologias são comparados a uma implementação utilizando distância de Mahalanobis e coeficientes de Fourier. Para todas as metodologias, utiliza-se como referência a avaliação médica do sinal cerebral, dada pelo hipnograma.
Books on the topic "Wavelet approximation"
Liandrat, J. Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1990.
Find full textMichel, Volker. Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Boston: Birkhäuser Boston, 2013.
Find full textSingh, S. P., ed. Approximation Theory, Wavelets and Applications. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8577-4.
Full textHärdle, Wolfgang, Gerard Kerkyacharian, Dominique Picard, and Alexander Tsybakov. Wavelets, Approximation, and Statistical Applications. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2222-4.
Full text1963-, Christensen Khadija Laghrida, ed. Approximation theory: From wavelets to polynomials. Boston: Birkhäuser, 2004.
Find full textChristensen, Ole. Approximation Theory: From Taylor Polynomials to Wavelets. Boston, MA: Birkhäuser, 2005.
Find full textOyet, Alwell J. Robust designs for wavelet approximations of regression models. Toronto: University of Toronto, Dept. of Statistics, 1997.
Find full textJerri, Abdul J. The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Boston, MA: Springer US, 1998.
Find full textJerri, Abdul J. The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2847-7.
Full textJerri, Abdul J. The Gibbs phenomenon in Fourier analysis, splines, and wavelet approximations. Dordrecht: Kluwer Academic Publishers, 1998.
Find full textBook chapters on the topic "Wavelet approximation"
Resnikoff, Howard L., and Raymond O. Wells. "Wavelet Approximation." In Wavelet Analysis, 202–35. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0593-7_9.
Full textLin, E. B. "Wavelet Transforms and Wavelet Approximations." In Approximation, Probability, and Related Fields, 357–65. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2494-6_27.
Full textMichel, Volker. "Spherical Wavelet Analysis." In Lectures on Constructive Approximation, 183–238. Boston: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8403-7_7.
Full textAnastassiou, G. A., S. T. Rachev, and X. M. Yu. "Multivariate Probabilistic Wavelet Approximation." In Approximation, Probability, and Related Fields, 65–73. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2494-6_4.
Full textKunoth, Angela. "Optimized wavelet preconditioning." In Multiscale, Nonlinear and Adaptive Approximation, 325–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03413-8_10.
Full textAnastassiou, George A. "FUZZY WAVELET LIKE OPERATORS." In Fuzzy Mathematics: Approximation Theory, 191–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11220-1_12.
Full textHärdle, Wolfgang, Gerard Kerkyacharian, Dominique Picard, and Alexander Tsybakov. "Wavelet thresholding and adaptation." In Wavelets, Approximation, and Statistical Applications, 193–213. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2222-4_11.
Full textHärdle, Wolfgang, Gerard Kerkyacharian, Dominique Picard, and Alexander Tsybakov. "Construction of wavelet bases." In Wavelets, Approximation, and Statistical Applications, 47–58. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2222-4_6.
Full textMaass, Peter. "Wideband Approximation and Wavelet Transform." In Radar and Sonar, 83–88. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4684-7832-7_8.
Full textAnastassiou, George A. "Convex Probabilistic Wavelet Like Approximation." In Intelligent Mathematics: Computational Analysis, 13–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17098-0_2.
Full textConference papers on the topic "Wavelet approximation"
Wolnik, Barbara. "The wavelet type systems." In Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-26.
Full textZhang, Q., and A. Benveniste. "Approximation by nonlinear wavelet networks." In [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1991. http://dx.doi.org/10.1109/icassp.1991.150188.
Full textSvenson, T. D., Jo A. Ward, and K. J. Harrison. "Uniform approximation of wavelet coefficients." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Michael A. Unser, Akram Aldroubi, and Andrew F. Laine. SPIE, 1996. http://dx.doi.org/10.1117/12.255231.
Full textWale, Sachin S., and Vinayak G. Asutkar. "Evaluation of wavelet connection coefficients by wavelet-Galerkin approximation." In 2014 Annual IEEE India Conference (INDICON). IEEE, 2014. http://dx.doi.org/10.1109/indicon.2014.7030425.
Full textKida, Takuro, and Yuichi Kida. "Optimum interpolatory approximation in wavelet subspace." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Michael A. Unser, Akram Aldroubi, and Andrew F. Laine. SPIE, 1999. http://dx.doi.org/10.1117/12.366808.
Full textBernard, Christophe P., Stephane G. Mallat, and Jean-Jeacques E. Slotine. "Wavelet interpolation networks for hierarchical approximation." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Michael A. Unser, Akram Aldroubi, and Andrew F. Laine. SPIE, 1999. http://dx.doi.org/10.1117/12.366782.
Full textWirasaet, Damrongsak, and Samuel Paolucci. "Application of an Adaptive Wavelet Method to Natural-Convection Flow in a Differentially Heated Cavity." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72864.
Full textHui Cheng, Chi Lu, Hai Han, and Jin-Wen Tian. "Multiscale wavelet support vector machine for image approximation." In International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR '07. IEEE, 2007. http://dx.doi.org/10.1109/icwapr.2007.4421656.
Full textOltean, Gabriel, Laura-Nicoleta Ivanciu, and Botond Kirei. "Signal approximation using GA guided wavelet decomposition." In 2015 International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2015. http://dx.doi.org/10.1109/isscs.2015.7203996.
Full textCisar, Petar, and Sanja Maravic Cisar. "Approximation of Internet traffic in wavelet domain." In 2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY 2014). IEEE, 2014. http://dx.doi.org/10.1109/sisy.2014.6923563.
Full textReports on the topic "Wavelet approximation"
Madych, Wolodymyr, and K. Grochenig. Multivariate Wavelet Representations and Approximations. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada290147.
Full textMadych, Wolodymyr. Multivariate Wavelet Representations and Approximations. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada269350.
Full text