Dissertations / Theses on the topic 'Wavelet processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Wavelet processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
May, Heather. "Wavelet-based Image Processing." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1448037498.
Full textShi, Fangmin. "Wavelet transforms for stereo imaging." Thesis, University of South Wales, 2002. https://pure.southwales.ac.uk/en/studentthesis/wavelet-transforms-for-stereo-imaging(65abb68f-e30b-4367-a3a8-b7b3df85f566).html.
Full textChoe, Gwangwoo. "Merged arithmetic for wavelet transforms /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004235.
Full textMasud, Shahid. "VLSI systems for discrete wavelet transforms." Thesis, Queen's University Belfast, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300782.
Full textSilwal, Sharad Deep. "Bayesian inference and wavelet methods in image processing." Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2355.
Full textSilva, Eduardo Antonio Barros da. "Wavelet transforms for image coding." Thesis, University of Essex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282495.
Full textWu, Jiangfeng. "Wavelet packet division multiplexing." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0002/NQ42889.pdf.
Full textLong, Christopher J. "Wavelet methods in speech recognition." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/14108.
Full textCena, Bernard Maria. "Reconstruction for visualisation of discrete data fields using wavelet signal processing." University of Western Australia. Dept. of Computer Science, 2000. http://theses.library.uwa.edu.au/adt-WU2003.0014.
Full textAnton, Wirén. "The Discrete Wavelet Transform." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55063.
Full textDragotti, Pier Luigi. "Wavelet footprints and frames for signal processing and communication /." [S.l.] : [s.n.], 2002. http://library.epfl.ch/theses/?nr=2559.
Full textArdolino, Richard S. "Wavelet-based signal processing of electromagnetic pulse generated waveforms." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Sep%5FArdolino.pdf.
Full textThesis Advisor(s): Tummala, Richard S. "September 2007." Description based on title screen as viewed on October 22, 2007. Includes bibliographical references (p. 83). Also available in print.
NiBouch, M. "Design and FPGA implementations for discrete wavelet transforms." Thesis, Queen's University Belfast, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268365.
Full textLutz, Steven S. "Hokua – A Wavelet Method for Audio Fingerprinting." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3247.pdf.
Full textAndréasson, Thomas. "Signal Processing Using Wavelets in a Ground Penetrating Radar System." Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1774.
Full textThis master's thesis explores whether time-frequency techniques can be utilized in a ground penetrating radar system. The system studied is the HUMUS system which has been developed at FOI, and which is used for the detection and classification of buried land mines.
The objective of this master's thesis is twofold. First of all it is supposed to give a theoretical introduction to the wavelet transform and wavelet packets, and also to introduce general time-frequency transformations. Secondly, the thesis presents and implements an adaptive method, which is used to perform the task of a feature extractor.
The wavelet theory presented in this thesis gives a first introduction to the concept of time-frequency transformations. The wavelet transform and wavelet packets are studied in detail. The most important goal of this introduction is to define the theoretical background needed for the second objective of the thesis. However, some additional concepts will also be introduced, since they were deemed necessary to include in an introduction to wavelets.
To illustrate the possibilities of wavelet techniques in the existing HUMUS system, one specific application has been chosen. The application chosen is feature extraction. The method for feature extraction described in this thesis uses wavelet packets to transform theoriginal radar signal into a form where the features of the signal are better revealed. One of the algorithms strengths is its ability to adapt itself to the kind of input radar signals expected. The algorithm will pick the "best" wavelet packet from a large number of possible wavelet packets.
The method we use in this thesis emanates from a previously publicized dissertation. The method proposed in that dissertation has been modified to the specific environment of the HUMUS system. It has also been implemented in MATLAB, and tested using data obtained by the HUMUS system. The results are promising; even"weak"objects can be revealed using the method.
He, Zhenyu. "Writer identification using wavelet, contourlet and statistical models." HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/767.
Full textTourshan, Khaled. "Parameterization of slant and slantlet/wavelet transforms with applications /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2003.
Find full textAdviser: Joseph P. Noonan. Submitted to the Dept. of Electrical Engineering. Includes bibliographical references (leaves 149-149). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Li, Xin-Gong. "Application of wavelet transforms to seismic data processing and inversion." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq25094.pdf.
Full textParker, Kristen Michelle. "Watermarking with wavelet transforms." Master's thesis, Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-11062007-153859.
Full textBopardikar, Ajit S. "Speech Encryption Using Wavelet Packets." Thesis, Indian Institute of Science, 1995. http://hdl.handle.net/2005/153.
Full textTassignon, Hugo. "Solutions to non-stationary problems in wavelet space." Thesis, De Montfort University, 1997. http://hdl.handle.net/2086/13259.
Full textSun, Lu. "Geometric transformation and image singularity with wavelet analysis." HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/656.
Full textJin, Shasha, and Ningcheng Gaoding. "Signal processing using the wavelet transform and the Karhunen-Loeve transform." Thesis, Högskolan Kristianstad, Sektionen för hälsa och samhälle, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-9752.
Full textLin, Shui-Town. "Gear condition monitoring by wavelet transform of vibration signals." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318680.
Full textChaiyaboonthanit, Thanit. "Image coding using wavelet transform and adaptive block truncation coding /." Online version of thesis, 1991. http://hdl.handle.net/1850/10913.
Full textEnfedaque, Montes Pablo. "GPU Architectures for Wavelet-based Image Coding Acceleration." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/405310.
Full textLos sistemas de codificación de imágenes modernos utilizan técnicas con altos requisitos de cómputo para lograr comprimir imágenes de manera eficiente. Los codecs de imágenes son a menudo utilizados en aplicaciones que requieren procesamiento en tiempo real, en cuyos casos es común utilizar hardware especializado como, por ejemplo, Field-Programmable Gate Arrays (FGPAs) o Application-Specific Integrated Circuits (ASICs). No obstante, las GPUs tienen una arquitectura altamente paralela orientada a rendimiento que representa una alternativa atractiva en comparación con el hardware dedicado. Son reprogramables, energéticamente eficientes, se pueden encontrar en la mayoría de sistemas y, por encima de todo, ofrecen un rendimiento computacional muy competitivo. Los sistemas de codificación de imágenes basados en wavelet son aquellos que utilizan algún tipo de transformada wavelet antes de la etapa de codificación de datos. JPEG2000 es el sistema de codificación de imágenes basados en wavelet más representativo. Muchos proyectos de investigación han intentado desarrollar implementaciones en GPU de JPEG2000, con el objetivo de acelerar el sistema de codificación. Aunque algunas etapas del sistema son adecuadas para la computación en GPUs, la etapa de codificación de datos no expone suficiente paralelismo de granularidad fina. La codificación de datos es, además, la etapa que requiere más recursos de cómputo (supone un 75% del tiempo total de ejecución) y representa, por lo tanto, el cuello de botella del sistema. La investigación presentada en esta tesis se centra en la computación en GPU de las etapas más críticas de los sistemas de codificación de imágenes basados en wavelet: la transformada wavelet y la etapa de codificación de datos. Ésta tesis presenta tres contribuciones principales: la primera es una implementación de la Transformada Discreta Wavelet acelerada utilizando GPUs. La implementación propuesta ofrece un rendimiento computacional hasta 4 veces mayor, con respecto a las anteriores soluciones en el estado del arte; la segunda, es el análisis y reformulación de la etapa de codificación de datos de JPEG2000. Se propone un nuevo motor de codificación de alto rendimiento compatible con sistemas de cómputo paralelo: Bitplane Image Coding with Parallel Coefficient Processing (BPC-PaCo). BPC-PaCo reformula los mecanismos de la codificación de datos sin renunciar a ninguna de las funcionalidades avanzadas de los sistemas de codificación tradicionales; la última contribución de esta tesis presenta una implementación optimizada en GPU de BPC-PaCo. Se compara su rendimiento con las implementaciones de JPEG2000 más competitivas, tanto en CPU como en GPU, y se demuestra como BPC-PaCo consigue mejoras en tiempos de ejecución de hasta 30x respecto las implementaciones más rápidas.
Modern image coding systems employ computationally demanding techniques to achieve image compression. Image codecs are often used in applications that require real-time processing, so it is common in those scenarios to employ specialized hardware, such as Field-Programmable Gate Arrays (FPGAs) or Application-Specific Integrated Circuits (ASICs). GPUs are throughput-oriented, highly parallel architectures that represent an interesting alternative to dedicated hardware. They are software re-programmable, widely available, energy efficient, and they offer very competitive peak computational performance. Wavelet-based image coding systems are those that employ some kind of wavelet transformation before the data coding stage. Arguably, JPEG2000 is the most representative of those systems. Many research projects have tried to develop GPU implementations of JPEG2000 to speed up the coding pipeline. Although some stages of the pipeline are very suitable for GPU computing, the data coding stage does not expose enough fine-grained parallelism. Data coding is the most computationally demanding stage (75% of the total execution time) and represents the bottleneck of the pipeline. The research presented in this thesis focuses on the GPU computing of the most critical stages of wavelet-based image coding systems: the wavelet transform and the data coding stage. This thesis proposes three main contributions. The first is a GPU-accelerated implementation of the Discrete Wavelet Transform. The proposed implementation achieves speedups up to 4x with respect to the previous state-of-the-art GPU solutions. The second contribution is the analysis and reformulation of the data coding stage of JPEG2000. We propose a new parallel-friendly high performance coding engine: Bitplane Image Coding with Parallel Coefficient Processing (BPC-PaCo). BPC-PaCo reformulates the mechanisms of data coding, without renouncing to any of the advanced features of traditional data coding. The last contribution of this thesis presents an optimized GPU implementation of BPC-PaCo. It compares its performance with the most competitive JPEG2000 implementations in both CPU and GPU, revealing speedups up to 30x with respect to the fastest implementation.
Khan, Ekram. "Efficient and robust wavelet based image/video coding techniques." Thesis, University of Essex, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268739.
Full textAlmeida, Luis Miguel Lima de. "All-optical processing based on integrated optics." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13705.
Full textDuring the last years, the demand for high data transfer rates in optical fiber communications has increased exponentially. Since image in its original format exactly as it is captured by the digital camera requires an enormous amount of storage capacity, it is important to develop a system that increases its amount of compression while preserving the important image’s information. In the topic of image’s compression, there are several transformation techniques used for data compression. Discrete Wavelet Transform (DWT) is one of the most commonly used, thanks to its multi-resolution transformation. This multi-resolution property allows to develop, not only a lossless compression method, from which the original image can be obtained exactly as it was before the transform, but also, a lossy method where it is not possible to obtain the original image. In this context, this thesis will develop the idea to apply the Haar wavelet transform using optical circuits. This concept will be analyzed, verifying the possibility of its implementation in the optical domain, using several methods, lossy and lossless, to conclude about the best compression method to apply to an image. Finally, the lossy method will be tested in the laboratory with different components and design the optical device able to accomplish the Haar wavelet transform.
Nos últimos anos, a procura por elevados ritmos de transferência de informação em comunicações óticas tem aumentado exponencialmente. Dado que imagem, no seu formato original exactamente como é captada pela câmara fotográfica ocupa enormes quantidades de espaço de armazenamento, torna-se importante desenvolver um sistema que aumente o seu grau de compressão, preservando as informações importantes da imagem. No tópico da compressão de imagem existem várias técnicas de transformação usadas para compressão de dados. A transformada discreta de onduleta é uma das mais usadas, graças ao uso da transformação em multiresolução. Esta propriedade de multi-resolução permite não só desenvolver métodos de compressão de imagem sem perdas, nos quais se obtém a imagem original exatamente como era antes da transformação, como também métodos com perdas, já não sendo possível obter a imagem original. Neste contexto, esta tese irá desenvolver a ideia de aplicar a transformada de onduleta de Haar usando circuitos óticos. Este conceito irá ser analisado, verificando a possibilidade da sua implementação no domínio ótico, usando vários métodos, com perdas e sem perdas, para concluir acerca do melhor método de compressão a aplicar a uma imagem. Por fim, o método com perdas irá ser testado no laboratório com diferentes componentes e desenhar o dispositivo ótico capaz de aplicar a transformada de onduleta de Haar.
Zhou, Meng. "Vibration Extraction Using Rolling Shutter Cameras." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34963.
Full textHua, Jianping. "Topics in genomic image processing." Texas A&M University, 2004. http://hdl.handle.net/1969.1/3244.
Full textRowley, Alexander. "Signal processing methods for cerebral autoregulation." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:3d85ab53-9c9b-4b50-98f2-2e67848e5da4.
Full textLê, Nguyên Khoa 1975. "Time-frequency analyses of the hyperbolic kernel and hyperbolic wavelet." Monash University, Dept. of Electrical and Computer Systems Engineering, 2002. http://arrow.monash.edu.au/hdl/1959.1/8299.
Full textHarmse, Wynand. "Wavelet-based speech enhancement : a statistical approach." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16336.
Full textENGLISH ABSTRACT: Speech enhancement is the process of removing background noise from speech signals. The equivalent process for images is known as image denoising. While the Fourier transform is widely used for speech enhancement, image denoising typically uses the wavelet transform. Research on wavelet-based speech enhancement has only recently emerged, yet it shows promising results compared to Fourier-based methods. This research is enhanced by the availability of new wavelet denoising algorithms based on the statistical modelling of wavelet coefficients, such as the hidden Markov tree. The aim of this research project is to investigate wavelet-based speech enhancement from a statistical perspective. Current Fourier-based speech enhancement and its evaluation process are described, and a framework is created for wavelet-based speech enhancement. Several wavelet denoising algorithms are investigated, and it is found that the algorithms based on the statistical properties of speech in the wavelet domain outperform the classical and more heuristic denoising techniques. The choice of wavelet influences the quality of the enhanced speech and the effect of this choice is therefore examined. The introduction of a noise floor parameter also improves the perceptual quality of the wavelet-based enhanced speech, by masking annoying residual artifacts. The performance of wavelet-based speech enhancement is similar to that of the more widely used Fourier methods at low noise levels, with a slight difference in the residual artifact. At high noise levels, however, the Fourier methods are superior.
AFRIKAANSE OPSOMMING: Spraaksuiwering is die proses waardeur agtergrondgeraas uit spraakseine verwyder word. Die ekwivalente proses vir beelde word beeldsuiwering genoem. Terwyl spraaksuiwering in die algemeen in die Fourier-domein gedoen word, gebruik beeldsuiwering tipies die golfietransform. Navorsing oor golfie-gebaseerde spraaksuiwering het eers onlangs verskyn, en dit toon reeds belowende resultate in vergelyking met Fourier-gebaseerde metodes. Hierdie navorsingsveld word aangehelp deur die beskikbaarheid van nuwe golfie-gebaseerde suiweringstegnieke wat die golfie-ko¨effisi¨ente statisties modelleer, soos die verskuilde Markovboom. Die doel van hierdie navorsingsprojek is om golfie-gebaseerde spraaksuiwering vanuit ‘n statistiese oogpunt te bestudeer. Huidige Fourier-gebaseerde spraaksuiweringsmetodes asook die evalueringsproses vir sulke algoritmes word bespreek, en ‘n raamwerk word geskep vir golfie-gebaseerde spraaksuiwering. Verskeie golfie-gebaseerde algoritmes word ondersoek, en daar word gevind dat die metodes wat die statistiese eienskappe van spraak in die golfie-gebied gebruik, beter vaar as die klassieke en meer heuristiese metodes. Die keuse van golfie be¨ınvloed die kwaliteit van die gesuiwerde spraak, en die effek van hierdie keuse word dus ondersoek. Die gebruik van ‘n ruisvloer parameter verhoog ook die kwaliteit van die golfie-gesuiwerde spraak, deur steurende residuele artifakte te verberg. Die golfie-metodes vaar omtrent dieselfde as die klassieke Fourier-metodes by lae ruisvlakke, met ’n klein verskil in residuele artifakte. By ho¨e ruisvlakke vaar die Fouriermetodes egter steeds beter.
Liao, Zhiwu. "Image denoising using wavelet domain hidden Markov models." HKBU Institutional Repository, 2005. http://repository.hkbu.edu.hk/etd_ra/616.
Full textJúnior, Sylvio Barbon. "Dynamic Time Warping baseado na transformada wavelet." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-15042008-211812/.
Full textDynamic TimeWarping (DTW) is a pattern matching technique for speech recognition, that is based on a temporal alignment of the input signal with the template models. One drawback of this technique is its high computational cost. This work presents a modified version of the DTW, based on the DiscreteWavelet Transform (DWT), that reduces the complexity of the original algorithm. The performance obtained with the proposed algorithm is very promising, improving the recognition in terms of time and memory allocation, while the precision is not affected. Tests were performed with speech data collected from TIMIT corpus provided by Linguistic Data Consortium (LDC).
Stromme, Oyvind. "On the applicability of wavelet transforms to image and video compression." Thesis, University of Strathclyde, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366529.
Full textGrant, Jeremy. "Wavelet-Based Segmentation of Fluorescence Microscopy Images in Two and Three Dimensions." Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/GrantJ2008.pdf.
Full textRenfrew, Mark E. "A Comparison of Signal Processing and Classification Methods for Brain-Computer Interface." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1246474708.
Full textChen, Shuo. "MALDI-TOF MS data processing using wavelets, splines and clustering techniques." [Johnson City, Tenn. : East Tennessee State University], 2004. http://etd-submit.etsu.edu/etd/theses/available/etd-1112104-113123/unrestricted/ChenS121404f.pdf.
Full textTitle from electronic submission form. ETSU ETD database URN: etd-1112104-113123 Includes bibliographical references. Also available via Internet at the UMI web site.
Janga, Aparna. "REFLECTED IMAGE PROCESSING FOR SPECULAR WELD POOL SURFACE MEASUREMENT." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_theses/502.
Full textKim, Il-Ryeol. "Wavelet domain partition-based signal processing with applications to image denoising and compression." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 2.98 Mb., 119 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3221054.
Full textWei, Jie. "Foveate wavelet transform and its applications in digital video processing, acquisition, and indexing." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ37768.pdf.
Full textLorenz, Dirk. "Wavelet shrinkage in signal & image processing : an investigation of relations and equivalences." kostenfrei, 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975601687.
Full textAl-Jawad, Naseer. "Exploiting statistical properties of wavelet coefficients for image/video processing and analysis tasks." Thesis, University of Buckingham, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601354.
Full textAl-Jawad, Neseer. "Exploiting Statical Properties of Wavelet Coefficients for image/Video Processing and Analysis Tasks." Thesis, University of Exeter, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515492.
Full textWei, Hua-Liang. "A wavelet-based approach for nonlinear system identification and non-stationary signal processing." Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412441.
Full textBsoul, Abed Al-Raoof. "PROCESSING AND CLASSIFICATION OF PHYSIOLOGICAL SIGNALS USING WAVELET TRANSFORM AND MACHINE LEARNING ALGORITHMS." VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/258.
Full textForsberg, Axel. "A Wavelet-Based Surface Electromyogram Feature Extraction for Hand Gesture Recognition." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-39766.
Full textAhmadian, Alireza. "Flexible medical image transmission and compression schemes using multiresolution orthagonal wavelet transform." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300006.
Full textYarham, Carson, Daniel Trad, and Felix J. Herrmann. "Curvelet processing and imaging: adaptive ground roll removal." Canadian Society of Exploration Geophysicists, 2004. http://hdl.handle.net/2429/519.
Full text