Journal articles on the topic 'WDR41'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'WDR41.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Amick, Joseph, Arun Kumar Tharkeshwar, Catherine Amaya,, and Shawn M. Ferguson. "WDR41 supports lysosomal response to changes in amino acid availability." Molecular Biology of the Cell 29, no. 18 (2018): 2213–27. http://dx.doi.org/10.1091/mbc.e17-12-0703.
Full textTalaia, Gabriel, Joseph Amick, and Shawn M. Ferguson. "Receptor-like role for PQLC2 amino acid transporter in the lysosomal sensing of cationic amino acids." Proceedings of the National Academy of Sciences 118, no. 8 (2021): e2014941118. http://dx.doi.org/10.1073/pnas.2014941118.
Full textTang, Dan, Jingwen Sheng, Liangting Xu, et al. "Cryo-EM structure of C9ORF72–SMCR8–WDR41 reveals the role as a GAP for Rab8a and Rab11a." Proceedings of the National Academy of Sciences 117, no. 18 (2020): 9876–83. http://dx.doi.org/10.1073/pnas.2002110117.
Full textSHARMA, NISHA, REVANASIDDU D, SUSHIL KUMAR, et al. "Influence of WDR41 and ANKRD31 gene polymorphism on udder and teat type traits and mastitis in Karan Fries cows." Indian Journal of Animal Sciences 92, no. 2 (2022): 215–21. http://dx.doi.org/10.56093/ijans.v92i2.122096.
Full textMcAlpine, William, Lei Sun, Kuan-wen Wang, et al. "Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function." Proceedings of the National Academy of Sciences 115, no. 49 (2018): E11523—E11531. http://dx.doi.org/10.1073/pnas.1814753115.
Full textTang, Dan, Jingwen Sheng, Liangting Xu, Chuangye Yan, and Shiqian Qi. "The C9orf72-SMCR8-WDR41 complex is a GAP for small GTPases." Autophagy 16, no. 8 (2020): 1542–43. http://dx.doi.org/10.1080/15548627.2020.1779473.
Full textFukatsu, Shoya, Hinami Sashi, Remina Shirai, et al. "Rab11a Controls Cell Shape via C9orf72 Protein: Possible Relationships to Frontotemporal Dementia/Amyotrophic Lateral Sclerosis (FTDALS) Type 1." Pathophysiology 31, no. 1 (2024): 100–116. http://dx.doi.org/10.3390/pathophysiology31010008.
Full textLiu, Kai, Youli Jian, Xiaojuan Sun, et al. "Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion." Journal of Cell Biology 212, no. 2 (2016): 181–98. http://dx.doi.org/10.1083/jcb.201506081.
Full textSnyder, Anthony J., Andrew T. Abad, and Pranav Danthi. "A CRISPR-Cas9 screen reveals a role for WD repeat-containing protein 81 (WDR81) in the entry of late penetrating viruses." PLOS Pathogens 18, no. 3 (2022): e1010398. http://dx.doi.org/10.1371/journal.ppat.1010398.
Full textLIU, Nan, and ChongLin YANG. "WDR91-WDR81 complex-dependent endolysosomal trafficking and neural development." SCIENTIA SINICA Vitae 49, no. 7 (2019): 798–805. http://dx.doi.org/10.1360/ssv-2019-0100.
Full textYang, Mei, Chen Liang, Kunchithapadam Swaminathan, et al. "A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy." Science Advances 2, no. 9 (2016): e1601167. http://dx.doi.org/10.1126/sciadv.1601167.
Full textNörpel, Julia, Simone Cavadini, Andreas D. Schenk, et al. "Structure of the human C9orf72-SMCR8 complex reveals a multivalent protein interaction architecture." PLOS Biology 19, no. 7 (2021): e3001344. http://dx.doi.org/10.1371/journal.pbio.3001344.
Full textLeray, Xavier, Rossella Conti, Yan Li, et al. "Arginine-selective modulation of the lysosomal transporter PQLC2 through a gate-tuning mechanism." Proceedings of the National Academy of Sciences 118, no. 32 (2021): e2025315118. http://dx.doi.org/10.1073/pnas.2025315118.
Full textWada, Kouko, Manae Sato, Nanase Araki, et al. "Dynamics of WD-repeat containing proteins in SSU processome components." Biochemistry and Cell Biology 92, no. 3 (2014): 191–99. http://dx.doi.org/10.1139/bcb-2014-0007.
Full textLiu, Kai, Ruxiao Xing, Youli Jian, et al. "WDR91 is a Rab7 effector required for neuronal development." Journal of Cell Biology 216, no. 10 (2017): 3307–21. http://dx.doi.org/10.1083/jcb.201705151.
Full textSeibler, Philip, Lena F. Burbulla, Marija Dulovic, et al. "Iron overload is accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells." Brain 141, no. 10 (2018): 3052–64. http://dx.doi.org/10.1093/brain/awy230.
Full textRapiteanu, Radu, Luther J. Davis, James C. Williamson, Richard T. Timms, J. Paul Luzio, and Paul J. Lehner. "A Genetic Screen Identifies a Critical Role for the WDR81‐WDR91 Complex in the Trafficking and Degradation of Tetherin." Traffic 17, no. 8 (2016): 940–58. http://dx.doi.org/10.1111/tra.12409.
Full textAring, Luisa, Eun-kyeong Choi, and Young-Ah Seo. "WDR45 Contributes to Iron Accumulation Through Dysregulation of Neuronal Iron Homeostasis." Current Developments in Nutrition 4, Supplement_2 (2020): 1188. http://dx.doi.org/10.1093/cdn/nzaa057_004.
Full textLiu, Xuezhao, Yang Li, Xin Wang, et al. "The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy." Journal of Cell Biology 216, no. 5 (2017): 1301–20. http://dx.doi.org/10.1083/jcb.201608039.
Full textLiu, Xuezhao, Limin Yin, Tianyou Li, Lingxi Lin, Jie Zhang, and Yang Li. "Reduction of WDR81 impairs autophagic clearance of aggregated proteins and cell viability in neurodegenerative phenotypes." PLOS Genetics 17, no. 3 (2021): e1009415. http://dx.doi.org/10.1371/journal.pgen.1009415.
Full textYang, Xin, Ting Luo, Zhixin Liu, Jiao Liu, and Zhuo Yang. "WD repeat domain 43 as a new predictive indicator and its connection with tumor immune cell infiltration in pan-cancer." Medicine 103, no. 31 (2024): e39153. http://dx.doi.org/10.1097/md.0000000000039153.
Full textKannan, Meghna, Efil Bayam, Christel Wagner, et al. "WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy." Proceedings of the National Academy of Sciences 114, no. 44 (2017): E9308—E9317. http://dx.doi.org/10.1073/pnas.1713625114.
Full textWang, Jie, Xiao-Lin Kou, Cheng Chen, et al. "Hippocampal Wdr1 Deficit Impairs Learning and Memory by Perturbing F-actin Depolymerization in Mice." Cerebral Cortex 29, no. 10 (2018): 4194–207. http://dx.doi.org/10.1093/cercor/bhy301.
Full textDiaw, Sokhna Haissatou, Christos Ganos, Simone Zittel та ін. "Mutant WDR45 Leads to Altered Ferritinophagy and Ferroptosis in β-Propeller Protein-Associated Neurodegeneration". International Journal of Molecular Sciences 23, № 17 (2022): 9524. http://dx.doi.org/10.3390/ijms23179524.
Full textHuang, Huang, Jidong Yan, Xi Lan, et al. "LncRNA WDR11-AS1 Promotes Extracellular Matrix Synthesis in Osteoarthritis by Directly Interacting with RNA-Binding Protein PABPC1 to Stabilize SOX9 Expression." International Journal of Molecular Sciences 24, no. 1 (2023): 817. http://dx.doi.org/10.3390/ijms24010817.
Full textReche-López, Diana, Ana Romero-González, Mónica Álvarez-Córdoba, et al. "Biotin Induces Inactive Chromosome X Reactivation and Corrects Physiopathological Alterations in Beta-Propeller-Protein-Associated Neurodegeneration." International Journal of Molecular Sciences 26, no. 3 (2025): 1315. https://doi.org/10.3390/ijms26031315.
Full textSuárez-Carrillo, Alejandra, Mónica Álvarez-Córdoba, Ana Romero-González, et al. "Antioxidants Prevent Iron Accumulation and Lipid Peroxidation, but Do Not Correct Autophagy Dysfunction or Mitochondrial Bioenergetics in Cellular Models of BPAN." International Journal of Molecular Sciences 24, no. 19 (2023): 14576. http://dx.doi.org/10.3390/ijms241914576.
Full textLin, Chi, Juan Wang, Long Ouyang, Huaxin Duan, and Shasha Fan. "WDR4 as a potential indicator of clinical prognosis and immunotherapy in hepatocellular carcinoma." Journal of Clinical Oncology 42, no. 16_suppl (2024): e16275-e16275. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.e16275.
Full textTaylor, Kathryne E., and Karen L. Mossman. "Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at thetrans-Golgi Network To Promote Virus Replication." Journal of Virology 89, no. 19 (2015): 9841–52. http://dx.doi.org/10.1128/jvi.01705-15.
Full textDasgupta, Swapan Kumar, Qi Da, Anhquyen Le, Miguel A. Cruz та Perumal Thiagarajan. "Wdr1-Mediated Actin Reorganization Is Essential for Integrin αIIbβ3 Activation in Platelets". Blood 126, № 23 (2015): 2231. http://dx.doi.org/10.1182/blood.v126.23.2231.2231.
Full textJussara Maria Gonçalves, João Luiz Dornelles Bastos, Elena Riet Correa Rivero, and Mabel Mariela Rodríguez Cordeiro. "Immunoexpression of tumor suppressor protein p53 and deubiquitinating enzymes in oral squamous cell carcinoma." RSBO 19, no. 1 (2022): 10–07. http://dx.doi.org/10.21726/rsbo.v19i1.1753.
Full textWang, Yu-Jia, Eko Mugiyanto, Yun-Ting Peng, et al. "Genetic Association of the Functional WDR4 Gene in Male Fertility." Journal of Personalized Medicine 11, no. 8 (2021): 760. http://dx.doi.org/10.3390/jpm11080760.
Full textMontenont, Emilie, Christina Echagarruga, Nicole Allen, Elisa Araldi, Yajaira Suarez, and Jeffrey S. Berger. "Platelet WDR1 suppresses platelet activity and is associated with cardiovascular disease." Blood 128, no. 16 (2016): 2033–42. http://dx.doi.org/10.1182/blood-2016-03-703157.
Full textBowes, Charnese, Michael Redd, Malika Yousfi, Muriel Tauzin, Emi Murayama, and Philippe Herbomel. "Coronin 1A depletion restores the nuclear stability and viability of Aip1/Wdr1-deficient neutrophils." Journal of Cell Biology 218, no. 10 (2019): 3258–71. http://dx.doi.org/10.1083/jcb.201901024.
Full textZhu, Jinhong, Xiaoping Liu, Wei Chen, et al. "Association of RNA m7G Modification Gene Polymorphisms with Pediatric Glioma Risk." BioMed Research International 2023 (January 24, 2023): 1–10. http://dx.doi.org/10.1155/2023/3678327.
Full textKile, Benjamin T., Athanasia D. Panopoulos, Roslynn A. Stirzaker, et al. "Mutations in the cofilin partner Aip1/Wdr1 cause autoinflammatory disease and macrothrombocytopenia." Blood 110, no. 7 (2007): 2371–80. http://dx.doi.org/10.1182/blood-2006-10-055087.
Full textChoi, Jin-Tae, Yeseul Choi, Yujin Lee, et al. "The hybrid RAVE complex plays V-ATPase-dependent and -independent pathobiological roles in Cryptococcus neoformans." PLOS Pathogens 19, no. 10 (2023): e1011721. http://dx.doi.org/10.1371/journal.ppat.1011721.
Full textDogrusöz, Mehmet, Andrea Ruschel Trasel, Jinfeng Cao, et al. "Differential Expression of DNA Repair Genes in Prognostically-Favorable versus Unfavorable Uveal Melanoma." Cancers 11, no. 8 (2019): 1104. http://dx.doi.org/10.3390/cancers11081104.
Full textSuh, Myung Whan, Dong Hoon Shin, Ho Sun Lee, Ji Yeong Park, Chong Sun Kim, and Seung Ha Oh. "WDR1 expression in the normal and noise-damaged chick vestibule." Journal of Vestibular Research 17, no. 4 (2008): 163–70. http://dx.doi.org/10.3233/ves-2007-17402.
Full textNagappa, Madhu, Parayil S. Bindu, Sanjib Sinha, et al. "Palatal Tremor Revisited: Disorder with Nosological Diversity and Etiological Heterogeneity." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 45, no. 2 (2017): 243–47. http://dx.doi.org/10.1017/cjn.2017.273.
Full textStanding, Ariane S. I., Dessislava Malinova, Ying Hong, et al. "Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1." Journal of Experimental Medicine 214, no. 1 (2016): 59–71. http://dx.doi.org/10.1084/jem.20161228.
Full textLee, Hye Eun, Min Kyo Jung, Seul Gi Noh, et al. "Iron Accumulation and Changes in Cellular Organelles in WDR45 Mutant Fibroblasts." International Journal of Molecular Sciences 22, no. 21 (2021): 11650. http://dx.doi.org/10.3390/ijms222111650.
Full textChiarello, Paola, Giuseppe Seminara, Sabrina Bossio, et al. "Adult-Onset Case of Female Idiopathic Hypogonadotropic Hypogonadism and Ataxia: Genetic Background." Endocrines 5, no. 3 (2024): 334–40. http://dx.doi.org/10.3390/endocrines5030024.
Full textDubner, R., D. R. Kenshalo, W. Maixner, M. C. Bushnell, and J. L. Oliveras. "The correlation of monkey medullary dorsal horn neuronal activity and the perceived intensity of noxious heat stimuli." Journal of Neurophysiology 62, no. 2 (1989): 450–57. http://dx.doi.org/10.1152/jn.1989.62.2.450.
Full textChudler, E. H., F. Anton, R. Dubner, and D. R. Kenshalo. "Responses of nociceptive SI neurons in monkeys and pain sensation in humans elicited by noxious thermal stimulation: effect of interstimulus interval." Journal of Neurophysiology 63, no. 3 (1990): 559–69. http://dx.doi.org/10.1152/jn.1990.63.3.559.
Full textKuhns, Douglas B., Danielle L. Fink, Uimook Choi, et al. "Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency." Blood 128, no. 17 (2016): 2135–43. http://dx.doi.org/10.1182/blood-2016-03-706028.
Full textHE, CONGCONG. "265-OR: Exercise-Induced Lactylation of WDR41 Initiates Autophagy and Improves MASLD." Diabetes 74, Supplement_1 (2025). https://doi.org/10.2337/db25-265-or.
Full textAmick, Joseph, Arun Kumar Tharkeshwar, Gabriel Talaia, and Shawn M. Ferguson. "PQLC2 recruits the C9orf72 complex to lysosomes in response to cationic amino acid starvation." Journal of Cell Biology 219, no. 1 (2019). http://dx.doi.org/10.1083/jcb.201906076.
Full textSu, Ming-Yuan, Simon A. Fromm, Jonathan Remis, Daniel B. Toso, and James H. Hurley. "Structural basis for the ARF GAP activity and specificity of the C9orf72 complex." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-24081-0.
Full textAzimian, Fereshteh, Yan‐Hua Chen, and Qun Lu. "Targeting the Interactions of Small GTPase ARF with C9ORF72:SMCR8:WDR41 Complexes Implicated in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia." Alzheimer's & Dementia 19, S21 (2023). http://dx.doi.org/10.1002/alz.076804.
Full text