Journal articles on the topic 'Weakly conducting liquid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Weakly conducting liquid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Garbovskiy, Yuriy, and Anatoliy Glushchenko. "Frequency-dependent electro-optics of liquid crystal devices utilizing nematics and weakly conducting polymers." Advanced Optical Technologies 7, no. 4 (2018): 243–48. http://dx.doi.org/10.1515/aot-2018-0026.
Full textGrosu, F. P., and M. K. Bologa. "Electrification of weakly conducting liquid dielectrics: An alternative solution." Surface Engineering and Applied Electrochemistry 47, no. 2 (2011): 152–57. http://dx.doi.org/10.3103/s1068375511020050.
Full textIl’in, V. A., and B. L. Smorodin. "Dynamics of electroconvective structures in a weakly conducting liquid." Journal of Applied Mechanics and Technical Physics 49, no. 3 (2008): 362–68. http://dx.doi.org/10.1007/s10808-008-0050-2.
Full textPRIEDE, JĀNIS. "Oscillations of weakly viscous conducting liquid drops in a strong magnetic field." Journal of Fluid Mechanics 671 (February 10, 2011): 399–416. http://dx.doi.org/10.1017/s0022112010005781.
Full textFan, Leia, Jason Lin, Annie Yu, et al. "Diffusiophoresis of a Weakly Charged Liquid Metal Droplet." Molecules 28, no. 9 (2023): 3905. http://dx.doi.org/10.3390/molecules28093905.
Full textИльин, В.А., та Н.Н. Картавых. "Модель электротермической конвекции слабопроводящей жидкости в горизонтальном конденсаторе". Elektronnaya Obrabotka Materialov 53, № 3 (2017): 73–78. https://doi.org/10.5281/zenodo.1053539.
Full textGrosua, F. P., and M. K. Bologa. "Rotation of a weakly conducting liquid in crossed electric and magnetic fields." Surface Engineering and Applied Electrochemistry 45, no. 6 (2009): 480–84. http://dx.doi.org/10.3103/s1068375509060076.
Full textBlokhin, A. M., and A. S. Rudometova. "Stationary flows of a weakly conducting incompressible polymeric liquid between coaxial cylinders." Journal of Applied and Industrial Mathematics 11, no. 4 (2017): 486–93. http://dx.doi.org/10.1134/s1990478917040044.
Full textSAHİN, SERPİL, and HÜSEYİN DEMİR. "THE LID-DRIVEN HYDROMAGNETIC FLOW OF NEWTONIAN AND NON-NEWTONIAN LIQUIDS IN A SQUARE CAVITY." Journal of Science and Arts 21, no. 3 (2021): 863–78. http://dx.doi.org/10.46939/j.sci.arts-21.3-c05.
Full textПолянский, В.А., А.А. Монахов та И.Л. Панкратьева. "Об электромагнитных явлениях, возникающих при кавитационном движении жидкости в коаксиальном диэлектрическом канале". Elektronnaya Obrabotka Materialov 53, № 3 (2017): 79–85. https://doi.org/10.5281/zenodo.1053551.
Full textNekrasov, O. O., and B. L. Smorodin. "Electroconvection of a weakly conducting liquid subjected to unipolar injection and heated from above." Computational Continuum Mechanics 15, no. 3 (2022): 316–32. http://dx.doi.org/10.7242/1999-6691/2022.15.24.
Full textNEILSON, DAVID, ALEXANDER R. HAMILTON, and JAGDISH S. THAKUR. "QUANTUM GLASS TRANSITION AT FINITE TEMPERATURE IN TWO-DIMENSIONAL ELECTRON LAYERS." International Journal of Modern Physics B 27, no. 29 (2013): 1347004. http://dx.doi.org/10.1142/s0217979213470048.
Full textPankrat’eva, I. L., and V. A. Polyanskii. "Bipolar Structures Induced by an Electric Field in Microchannel Flow of a Weakly Conducting Liquid." Fluid Dynamics 53, S1 (2018): S103—S107. http://dx.doi.org/10.1134/s0015462818040213.
Full textBlokhin, A. M., and A. S. Rudometova. "Stationary solutions of the equations for nonisothermal electroconvection of a weakly conducting incompressible polymeric liquid." Journal of Applied and Industrial Mathematics 9, no. 2 (2015): 147–56. http://dx.doi.org/10.1134/s1990478915020015.
Full textSiddheshwar, P. G., Arshika S. Noor, Sameena Tarannum, and D. Laroze. "Nonlinear Rayleigh-Bénard magnetoconvection of a weakly electrically conducting Newtonian liquid in shallow cylindrical enclosures." Chaos, Solitons & Fractals 182 (May 2024): 114853. http://dx.doi.org/10.1016/j.chaos.2024.114853.
Full textShklyaev, Sergey, and Alexander A. Nepomnyashchy. "Longwave Marangoni convection in a surfactant solution between poorly conducting boundaries." Journal of Fluid Mechanics 718 (February 8, 2013): 428–56. http://dx.doi.org/10.1017/jfm.2012.619.
Full textEBERT, R., S. VASILYAN, and A. WIEDERHOLD. "FLOW VELOCIMETRY FOR WEAKLY CONDUCTING ELECTROLYTES BASED ON HIGH RESOLUTION LORENTZFORCE MEASUREMENT." International Journal of Modern Physics: Conference Series 24 (January 2013): 1360015. http://dx.doi.org/10.1142/s201019451360015x.
Full textWoodward, John T. "A two-spring model of the tip-sample interaction using the Scanning Tunneling Microscope in air." Proceedings, annual meeting, Electron Microscopy Society of America 49 (August 1991): 382–83. http://dx.doi.org/10.1017/s0424820100086210.
Full textOR, A. C., and R. E. KELLY. "Feedback control of weakly nonlinear Rayleigh–Bénard–Marangoni convection." Journal of Fluid Mechanics 440 (August 10, 2001): 27–47. http://dx.doi.org/10.1017/s0022112001004670.
Full textHIGUERA, F. J. "Electric current of an electrified jet issuing from a long metallic tube." Journal of Fluid Mechanics 675 (May 11, 2011): 596–606. http://dx.doi.org/10.1017/jfm.2011.126.
Full textLEMAIRE, E., and L. LOBRY. "REVERSE ELECTRORHEOLOGICAL EFFECT: A SUSPENSION OF COLLOIDAL MOTORS." International Journal of Modern Physics B 15, no. 06n07 (2001): 780–87. http://dx.doi.org/10.1142/s021797920100526x.
Full textFujino, T., Y. Yokoyama, and Y. H. Mori. "Augmentation of Laminar Forced-Convective Heat Transfer by the Application of a Transverse Electric Field." Journal of Heat Transfer 111, no. 2 (1989): 345–51. http://dx.doi.org/10.1115/1.3250683.
Full textАлешин, П. А., А. Н. Алешин, Е. Ю. Розова, Е. Н. Дресвянина, Н. Н. Сапрыкина та В. Е. Юдин. "Исследование электрофизических свойств композиционных волокон на основе хитозана и полипиррола для тканевой инженерии". Журнал технической физики 91, № 11 (2021): 1793. http://dx.doi.org/10.21883/jtf.2021.11.51545.143-21.
Full textDas, Debasish, and David Saintillan. "Electrohydrodynamics of viscous drops in strong electric fields: numerical simulations." Journal of Fluid Mechanics 829 (September 14, 2017): 127–52. http://dx.doi.org/10.1017/jfm.2017.560.
Full textZubarev, N. M., and O. V. Zubareva. "A model of weakly nonlinear stages for the periodic structure formation on the charged surface of a conducting liquid." Technical Physics Letters 27, no. 7 (2001): 579–80. http://dx.doi.org/10.1134/1.1388949.
Full textWang, Zhan. "Modelling nonlinear electrohydrodynamic surface waves over three-dimensional conducting fluids." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2200 (2017): 20160817. http://dx.doi.org/10.1098/rspa.2016.0817.
Full textHazel, Andrew L., Matthias Heil, Sarah L. Waters, and James M. Oliver. "On the liquid lining in fluid-conveying curved tubes." Journal of Fluid Mechanics 705 (September 29, 2011): 213–33. http://dx.doi.org/10.1017/jfm.2011.346.
Full textKozhevnikov, V. M., I. Yu Chuenkova, M. I. Danilov, and S. S. Yastrebov. "Voltage self-sustained oscillation and phase separation dynamics in a thin layer of a weakly conducting ferromagnetic liquid with periodically emerging electrohydrodynamic flows." Technical Physics 53, no. 2 (2008): 192–98. http://dx.doi.org/10.1134/s1063784208020072.
Full textVANHOOK, STEPHEN J., MICHAEL F. SCHATZ, J. B. SWIFT, W. D. MCCORMICK, and HARRY L. SWINNEY. "Long-wavelength surface-tension-driven Bénard convection: experiment and theory." Journal of Fluid Mechanics 345 (August 25, 1997): 45–78. http://dx.doi.org/10.1017/s0022112097006101.
Full textOishi, Jeffrey S., Geoffrey M. Vasil, Morgan Baxter, et al. "The magnetorotational instability prefers three dimensions." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2233 (2020): 20190622. http://dx.doi.org/10.1098/rspa.2019.0622.
Full textAprile, E., J. Aalbers, K. Abe, et al. "The triggerless data acquisition system of the XENONnT experiment." Journal of Instrumentation 18, no. 07 (2023): P07054. http://dx.doi.org/10.1088/1748-0221/18/07/p07054.
Full textZhuang, Tieshuan, Jun Wu, Tao Zhang, and Xiangwei Dong. "A weakly compressible smoothed particle hydrodynamics framework for melting multiphase flow." AIP Advances 12, no. 2 (2022): 025329. http://dx.doi.org/10.1063/5.0057583.
Full textDashkovskii, V. A., and I. Chikina. "The effective mass of charged clusters in weakly conducting liquids." High Temperature 51, no. 1 (2013): 34–39. http://dx.doi.org/10.1134/s0018151x13010057.
Full textPankrat’eva, I. L., and V. A. Polyanskii. "Electrification of weakly conducting liquids in the neighborhood of a wall." Fluid Dynamics 41, no. 2 (2006): 173–85. http://dx.doi.org/10.1007/s10697-006-0032-0.
Full textShikhmurzaev, Yu D. "Electrification of weakly conductive liquids in flow within tubes." Journal of Applied Mechanics and Technical Physics 26, no. 6 (1986): 781–85. http://dx.doi.org/10.1007/bf00919523.
Full textSharma, Abhinav, Joydip Chaudhuri, Vineet Kumar, Seim Timung, Tapas Kumar Mandal, and Dipankar Bandyopadhyay. "Digitization of two-phase flow patterns in a microchannel induced by an external AC field." RSC Advances 5, no. 37 (2015): 29545–51. http://dx.doi.org/10.1039/c5ra02451j.
Full textStishkov, Yu K., and A. V. Steblyanko. "Breakdown of the homogeneity of weakly conducting liquids in high electric fields." Technical Physics 42, no. 10 (1997): 1206–11. http://dx.doi.org/10.1134/1.1258802.
Full textYe, Mao, Bin Wang, Maki Yamaguchi, and Susumu Sato. "Reducing Driving Voltages for Liquid Crystal Lens Using Weakly Conductive Thin Film." Japanese Journal of Applied Physics 47, no. 6 (2008): 4597–99. http://dx.doi.org/10.1143/jjap.47.4597.
Full textRychkov, Yu M., L. V. Kropocheva, and A. V. Esipok. "Characteristics of the molecular structure of weakly conducting liquids in an electric field." Journal of Engineering Physics and Thermophysics 70, no. 5 (1997): 753–56. http://dx.doi.org/10.1007/bf02657633.
Full textToporkov, D. Yu. "Сollapse of weakly-nonspherical cavitation bubble in acetone and tetradecane". Multiphase Systems 13, № 3 (2018): 23–28. http://dx.doi.org/10.21662/mfs2018.3.003.
Full textVanackere, Tom, Tom Vandekerckhove, Elke Claeys, John Puthenparampil George, Kristiaan Neyts, and Jeroen Beeckman. "Improvement of liquid crystal tunable lenses with weakly conductive layers using multifrequency driving." Optics Letters 45, no. 4 (2020): 1001. http://dx.doi.org/10.1364/ol.383443.
Full textApfelbaum, M. S., and A. N. Doludenko. "Hydrodynamic characteristics of weakly conductive liquid media in the non-uniform electric field." Mathematica Montisnigri 45 (2019): 74–84. http://dx.doi.org/10.20948/mathmontis-2019-45-6.
Full textStishkov, Yu K., V. A. Chirkov, and A. A. Sitnikov. "Dynamic current-voltage characteristics of weakly conducting liquids in highly non-uniform electric fields." Surface Engineering and Applied Electrochemistry 50, no. 2 (2014): 135–40. http://dx.doi.org/10.3103/s1068375514020124.
Full textApfel’baum, M. S., V. I. Vladimirov, and V. Ya Pecherkin. "Stationary prebreakdown volt-ampere characteristics of weakly conductive liquid dielectrics and slightly ionized gases." Surface Engineering and Applied Electrochemistry 51, no. 3 (2015): 260–68. http://dx.doi.org/10.3103/s1068375515030023.
Full textOkusawa, Tsutomu, Kuniyoshi Tsubouchi, Yoshio Kojima, Seiichiro Kanbe, and Nobuo Hamano. "Bubble Behaviors in Weakly Conductive Liquid Flow applied by an Electromagnetic Field under Microgravity Environment." Transactions of the Japan Society of Mechanical Engineers Series B 61, no. 582 (1995): 359–64. http://dx.doi.org/10.1299/kikaib.61.359.
Full textShibuya, Giichi, Hiroyuki Yoshida, and Masanori Ozaki. "High-speed driving of liquid crystal lens with weakly conductive thin films and voltage booster." Applied Optics 54, no. 27 (2015): 8145. http://dx.doi.org/10.1364/ao.54.008145.
Full textBeeckman, Jeroen, Inge Nys, Oliver Willekens, and Kristiaan Neyts. "Optimization of liquid crystal devices based on weakly conductive layers for lensing and beam steering." Journal of Applied Physics 121, no. 2 (2017): 023106. http://dx.doi.org/10.1063/1.4973939.
Full textNazym, Smagulova, Kayrbekov Zhaksyntay, and Yesengeldieva Akzhan. "Preparation of Liquid Fuels from Chark Chemical Tar." Applied Mechanics and Materials 618 (August 2014): 243–46. http://dx.doi.org/10.4028/www.scientific.net/amm.618.243.
Full textMikishev, Alexander B., and Alexander A. Nepomnyashchy. "Patterns and Their Large-Scale Distortions in Marangoni Convection with Insoluble Surfactant." Fluids 6, no. 8 (2021): 282. http://dx.doi.org/10.3390/fluids6080282.
Full textDatsyuk, V., and O. Pavlyniuk. "The role of surface conductivity in electromechanics and electrohydrodynamics of a dielectric drop." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 4 (2018): 110–17. http://dx.doi.org/10.17721/1812-5409.2018/4.16.
Full text