Academic literature on the topic 'Weakly hyperbolic systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Weakly hyperbolic systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Weakly hyperbolic systems"

1

YONEDA, GEN, and HISA-AKI SHINKAI. "CONSTRUCTING HYPERBOLIC SYSTEMS IN THE ASHTEKAR FORMULATION OF GENERAL RELATIVITY." International Journal of Modern Physics D 09, no. 01 (2000): 13–34. http://dx.doi.org/10.1142/s0218271800000037.

Full text
Abstract:
Hyperbolic formulations of the equations of motion are essential technique for proving the well-posedness of the Cauchy problem of a system, and are also helpful for implementing stable long time evolution in numerical applications. We, here, present three kinds of hyperbolic systems in the Ashtekar formulation of general relativity for Lorentzian vacuum spacetime. We exhibit several (I) weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's original equations form a weakly hyperbolic system. We dis
APA, Harvard, Vancouver, ISO, and other styles
2

Arbieto, Alexander, André Junqueira, and Bruno Santiago. "On Weakly Hyperbolic Iterated Function Systems." Bulletin of the Brazilian Mathematical Society, New Series 48, no. 1 (2016): 111–40. http://dx.doi.org/10.1007/s00574-016-0018-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krylovas, A., and R. Čiegis. "Asymptotic Approximation of Hyperbolic Weakly Nonlinear Systems." Journal of Nonlinear Mathematical Physics 8, no. 4 (2001): 458–70. http://dx.doi.org/10.2991/jnmp.2001.8.4.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spagnolo, Sergio, and Giovanni Taglialatela. "Analytic Propagation for Nonlinear Weakly Hyperbolic Systems." Communications in Partial Differential Equations 35, no. 12 (2010): 2123–63. http://dx.doi.org/10.1080/03605300903440490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Colombini, F., and Guy Métivier. "The Cauchy problem for weakly hyperbolic systems." Communications in Partial Differential Equations 43, no. 1 (2017): 25–46. http://dx.doi.org/10.1080/03605302.2017.1399906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arbieto, Alexander, Carlos Matheus, and Maria José Pacifico. "The Bernoulli Property for Weakly Hyperbolic Systems." Journal of Statistical Physics 117, no. 1/2 (2004): 243–60. http://dx.doi.org/10.1023/b:joss.0000044058.99450.c9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

D'Ancona, Piero, Tamotu Kinoshita, and Sergio Spagnolo. "Weakly hyperbolic systems with Hölder continuous coefficients." Journal of Differential Equations 203, no. 1 (2004): 64–81. http://dx.doi.org/10.1016/j.jde.2004.03.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Souza, Rafael R. "Sub-actions for weakly hyperbolic one-dimensional systems." Dynamical Systems 18, no. 2 (2003): 165–79. http://dx.doi.org/10.1080/1468936031000136126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alabau-Boussouira, Fatiha. "Indirect Boundary Stabilization of Weakly Coupled Hyperbolic Systems." SIAM Journal on Control and Optimization 41, no. 2 (2002): 511–41. http://dx.doi.org/10.1137/s0363012901385368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

DREHER, MICHAEL, and INGO WITT. "ENERGY ESTIMATES FOR WEAKLY HYPERBOLIC SYSTEMS OF THE FIRST ORDER." Communications in Contemporary Mathematics 07, no. 06 (2005): 809–37. http://dx.doi.org/10.1142/s0219199705001969.

Full text
Abstract:
For a class of first-order weakly hyperbolic pseudo-differential systems with finite time degeneracy, well-posedness of the Cauchy problem is proved in an adapted scale of Sobolev spaces. These Sobolev spaces are constructed in correspondence to the hyperbolic operator under consideration, making use of ideas from the theory of elliptic boundary value problems on manifolds with singularities. In addition, an upper bound for the loss of regularity that occurs when passing from the Cauchy data to the solutions is established. In many examples, this upper bound turns out to be sharp.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Weakly hyperbolic systems"

1

Gaito, Stephen Thomas. "Shadowing of weakly pseudo-hyperbolic pseudo-orbits in discrete dynamical systems." Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/109461/.

Full text
Abstract:
We consider Cr (r ≥ 1 +γ) diffeomorphisms of compact Riemannian manifolds. Our aim is to develop the analytic machinery required to describe the topological symbolic dynamics of sets of weakly hyperbolic orbits. The Pesin set is an example of such a set. For Axiom-A dynamical systems, that is, for diffeomorphisms which have a uniformly hyperbolic nonwandering set which is the closure of the periodic orbits, this analytic machinery is provided by the Shadowing Lemma. This lemma is a consequence of the Stable Manifold Theorem, and the local product structure of the nonwandering set of an Axiom-A
APA, Harvard, Vancouver, ISO, and other styles
2

GRIFO', Gabriele. "Pattern formation in hyperbolic reaction-transport systems and applications to dryland ecology." Doctoral thesis, Università degli Studi di Palermo, 2023. https://hdl.handle.net/10447/580054.

Full text
Abstract:
Pattern formation and modulation is an active branch of mathematics, not only from the perspective of fundamental theory but also for its huge applications in many fields of physics, ecology, chemistry, biology, and other sciences. In this thesis, the occurrence of Turing and wave instabilities, giving rise to stationary and oscillatory patterns, respectively, is theoretically investigated by means of two-compartment reaction-transport hyperbolic systems. The goal is to elucidate the role of inertial times, which are introduced in hyperbolic models to account for the finite-time propagation of
APA, Harvard, Vancouver, ISO, and other styles
3

Chaisemartin, Stéphane de. "Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2009. http://www.theses.fr/2009ECAP0011/document.

Full text
Abstract:
Le modèle multi-fluide permet de décrire par une approche Eulérienne les sprays polydispersés et apparaît donc comme une méthode indiquée pour les applications de combustion diphasique. Sa pertinence pour la simulation à l’échelle d’applications industrielles est évaluée dans ce travail, par sa mise en oeuvre dans des configurations bi-dimensionnelle et tri-dimensionnelle plus représentatives de ce type de simulations. Cette évaluation couple une étude de faisabilité en terme de coût de calcul avec une analyse de la précision obtenue, par des comparaisons avec les résultats de méthodes de réfé
APA, Harvard, Vancouver, ISO, and other styles
4

Dongmo, Nguepi Guissel Lagnol. "Modèles mathématiques et numériques avancés pour la simulation du polymère dans les réservoirs pétroliers." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG077.

Full text
Abstract:
Une technique efficace pour accroître la production d’un champ pétrolier consiste à y injecter un mélange d’eau et de polymère. La viscosité du polymère réduit en effet la mobilité de l’eau, qui pousse alors mieux l’huile, d’où un taux d’extraction plus élevé. La simulation numérique d’un tel procédé de récupération d’hydrocarbures revêt donc d’une importance capitale. Or, malgré des décennies de recherche, la modélisation des écoulements avec polymère en milieu poreux et sa résolution numérique demeurent un sujet difficile. D’une part, les modèles habituellement employés par les ingénieurs de
APA, Harvard, Vancouver, ISO, and other styles
5

Trad, Farah. "Stability of some hyperbolic systems with different types of controls under weak geometric conditions." Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. http://www.theses.fr/2024UPHF0015.

Full text
Abstract:
Le but de cette thèse est d'étudier la stabilisation de certaines équations d'évolution du second ordre. Tout d’abord, nous nous concentrons sur l’étude de la stabilisation d’équations d’évolution du second ordre de type hyperbolique localement faiblement couplées, caractérisées par un amortissement direct dans une seule des deux équations. Comme de tels systèmes ne sont pas exponentiellement stables, nous souhaitons déterminer les taux de décroissance de l’énergie polynomiale. Nos principales contributions concernent les propriétés abstraites de stabilité forte et polynomiale, qui sont dérivé
APA, Harvard, Vancouver, ISO, and other styles
6

Fougeirol, Jérémie. "Structure de variété de Hilbert et masse sur l'ensemble des données initiales relativistes faiblement asymptotiquement hyperboliques." Thesis, Avignon, 2017. http://www.theses.fr/2017AVIG0417/document.

Full text
Abstract:
La relativité générale est une théorie physique de la gravitation élaborée il y a un siècle, dans laquelle l'univers est modélisé par une variété Lorentzienne (N,gamma) de dimension 4 appelée espace-temps et vérifiant les équations d'Einstein. Lorsque l'on sépare la dimension temporelle des trois dimensions spatiales, les équations de contrainte découlent naturellement de la décomposition 3+1 des équations d'Einstein. Elles constituent une condition nécessaire et suffisante pour pouvoir considérer l'espace-temps N comme l'évolution temporelle d'une hypersurface Riemannienne (m,g) plongée dans
APA, Harvard, Vancouver, ISO, and other styles
7

Leguil, Martin. "Cocycle dynamics and problems of ergodicity." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC159/document.

Full text
Abstract:
Le travail qui suit comporte quatre chapitres : le premier est centré autour de la propriété de mélange faible pour les échanges d'intervalles et flots de translation. On y présente des résultats obtenus avec Artur Avila qui renforcent des résultats précédents dus à Artur Avila et Giovanni Forni. Le deuxième chapitre est consacré à un travail en commun avec Zhiyuan Zhang et concerne les propriétés d'ergodicité et d'accessibilité stables pour des systèmes partiellement hyperboliques de dimension centrale au moins égale à deux. On montre que sous des hypothèses de cohérence dynamique, center bun
APA, Harvard, Vancouver, ISO, and other styles
8

Fino, Ahmad. "Contributions aux problèmes d'évolution." Phd thesis, Université de La Rochelle, 2010. http://tel.archives-ouvertes.fr/tel-00437141.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à l'étude de trois équations aux dérivées partielles et d'évolution non-locales en espace et en temps. Les solutions de ces trois solutions peuvent exploser en temps fini. Dans une première partie de cette thèse, nous considérons l'équation de la chaleur nonlinéaire avec une puissance fractionnaire du laplacien, et obtenons notamment que, dans le cas d'exposant sur-critique, le comportement asymptotique de la solution lorsque $t\rightarrow+\infty$ est déterminé par le terme de diffusion anormale. D'autre part, dans le cas d'exposant sous-critique, l'effe
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Shih Tzung, and 陳世宗. "A WEAK AND NUMERICAL METHOD FOR SYSTEM OF HYPERBOLIC EQUATION." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/41475657908484436065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Su, Ying-Chin, and 蘇萾欽. "Global Existence of Weak Solutions to the Initial-BoundaryValue Problem of Inhomogeneous Hyperbolic Systems of Conservation Laws." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/24884536149658156044.

Full text
Abstract:
博士<br>國立中央大學<br>數學研究所<br>96<br>In this article we provide a generalized version of Glimm scheme to study the global existence of weak solutions to the initial-boundary value problem of 2 by 2 hyperbolic systems of conservation laws with source terms. Due to the structure of source terms, we extend the methods invented in [10,13] to construct the weak solutions of Riemann and boundary Riemann problems, which can be dopted as a building block of the approximate solution by Glimm scheme. By modifying the results in [7] and showing the weak convergence of residuals, we establish the stability and
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Weakly hyperbolic systems"

1

Gaito, Stephen Thomas. Shadowing of weakly pseudo-hyperbolic pseudo-orbits in discrete dynamical systems. typescript, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zeitlin, Vladimir. Rotating Shallow-Water Models as Quasilinear Hyperbolic Systems, and Related Numerical Methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0007.

Full text
Abstract:
The chapter contains the mathematical background necessary to understand the properties of RSW models and numerical methods for their simulations. Mathematics of RSW model is presented by using their one-dimensional reductions, which are necessarily’one-and-a-half’ dimensional, due to rotation and include velocity in the second direction. Basic notions of quasi-linear hyperbolic systems are recalled. The notions of weak solutions, wave breaking, and shock formation are introduced and explained on the example of simple-wave equation. Lagrangian description of RSW is used to demonstrate that rot
APA, Harvard, Vancouver, ISO, and other styles
3

Kaloshin, Vadim, and Ke Zhang. Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202525.001.0001.

Full text
Abstract:
Arnold diffusion, which concerns the appearance of chaos in classical mechanics, is one of the most important problems in the fields of dynamical systems and mathematical physics. Since it was discovered by Vladimir Arnold in 1963, it has attracted the efforts of some of the most prominent researchers in mathematics. The question is whether a typical perturbation of a particular system will result in chaotic or unstable dynamical phenomena. This book provides the first complete proof of Arnold diffusion, demonstrating that that there is topological instability for typical perturbations of five
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Weakly hyperbolic systems"

1

Korsch, Andrea. "Weakly Coupled Systems of Conservation Laws on Moving Surfaces." In Theory, Numerics and Applications of Hyperbolic Problems II. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91548-7_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pesin, Ya B., and Ya G. Sinai. "Space-time chaos in the system of weakly interacting hyperbolic systems." In Selecta. Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-87870-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jakobsen, E. R., K. H. Karlsen, and N. H. Risebro. "On the Convergence Rate of Operator Splitting for Weakly Coupled Systems of Hamilton-Jacobi Equations." In Hyperbolic Problems: Theory, Numerics, Applications. Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8372-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hawerkamp, Maryse, Dietmar Kröner, and Hanna Moenius. "Optimal Controls in Flux, Source, and Initial Terms for Weakly Coupled Hyperbolic Systems." In Theory, Numerics and Applications of Hyperbolic Problems I. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91545-6_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hsiao, Ling, and Hailiang Li. "Asymptotic Behavior of Entropy Weak Solution for Hyperbolic System with Damping." In Hyperbolic Problems: Theory, Numerics, Applications. Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8372-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liebscher, Stefan. "Stable, Oscillatory Viscous Profiles of Weak Shocks in Systems of Stiff Balance Laws." In Hyperbolic Problems: Theory, Numerics, Applications. Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8372-6_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brio, M. "Admissibility Conditions for Weak Solutions of Nonstrictly Hyperbolic Systems." In Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications. Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-87869-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feireisl, E. "Asymptotic Properties of a Class of Weak Solutions to the Navier–Stokes–Fourier System." In Hyperbolic Problems: Theory, Numerics, Applications. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75712-2_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Floch, Philippe. "Entropy Weak Solutions to Nonlinear Hyperbolic Systems in Nonconservation Form." In Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications. Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-87869-4_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ndjinga, Michaël. "Weak Convergence of Nonlinear Finite Volume Schemes for Linear Hyperbolic Systems." In Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05684-5_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Weakly hyperbolic systems"

1

ORIVE, R. "WEAKLY NONLINEAR LONG-TIME BEHAVIOR OF SOLUTIONS TO A HYPERBOLIC RELAXATION SYSTEMS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

POPIVANOV, PETAR, and IORDAN IORDANOV. "ANOMALOUS SINGULARITIES OF THE SOLUTIONS TO SEVERAL CLASSES OF WEAKLY HYPERBOLIC SEMILINEAR SYSTEMS: EXAMPLES." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Popivanov, Petar, and Iordan Iordanov. "On the anomalous singularities of the solutions to some classes of weakly hyperbolic semilinear systems. Examples." In Evolution Equations Propagation Phenomena - Global Existence - Influence of Non-Linearities. Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc60-0-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davlatov, Jasur, Kholmatjon Imomnazarov, and Abdulkhamid Kholmurodov. "Weak approximation method for the Cauchy problem for one-dimensional hyperbolic system." In INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE ON ACTUAL PROBLEMS OF MATHEMATICAL MODELING AND INFORMATION TECHNOLOGY. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0210419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Provotorov, V. V. "Unique weak solvability of a hyperbolic systems with distributed parameters on the graph." In 2018 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) (STAB). IEEE, 2018. http://dx.doi.org/10.1109/stab.2018.8408390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bock, Igor. "On the Dynamic Contact Problem for a Viscoelastic Plate." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24130.

Full text
Abstract:
We deal with an initial-boundary value problem describing the perpendicular vibrations of an anisotropic viscoelastic plate free on its boundary and with a rigid inner obstacle. A weak formulation of the problem is in the form of the hyperbolic variational inequality. We solve the problem using the discretizing the time variable. The elliptic variational inequalities for every time level are uniquely solved. We derive the a priori estimates and the convergence of the sequence of segment line functions to a variational solution of the considered problem.
APA, Harvard, Vancouver, ISO, and other styles
7

Haarer, D., and H. Maier. "Tunneling Dynamics and Spectral Diffusion in the Millikelvin Regime." In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.thd3.

Full text
Abstract:
The tunneling model [1] is the theoretical basis for several anomalous and time dependent phenomena in amorphous materials, which are caused by a broad distribution of relaxation rates of the so-called two-level systems (TLS). This model has also been applied to interpret spectral diffusion in glasses and to explain the observation of time dependent spectral linewidths [2]. In terms of spectral hole-burning, the TLS dynamics leads to a logarithmic hole broadening for times larger than the minimum TLS relaxation time, while the hole widths approach a constant value for times larger than the max
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!