Journal articles on the topic 'Weakly Interacting Massive Particle (WIMP)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Weakly Interacting Massive Particle (WIMP).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Choi, Ki-Young, Jinn-Ouk Gong, and Chang Sub Shin. "Small Scale Isocurvature Perturbation of Weakly Interacting Massive Particle." International Journal of Modern Physics: Conference Series 43 (January 2016): 1660202. http://dx.doi.org/10.1142/s2010194516602027.
Full textFunk, Stefan. "Indirect detection of dark matter with γ rays". Proceedings of the National Academy of Sciences 112, № 40 (2014): 12264–71. http://dx.doi.org/10.1073/pnas.1308728111.
Full textthe LUX and LZ Collaborations, Vitaly Kudryavtsev for. "Recent Results from LUX and Prospects for Dark Matter Searches with LZ." Universe 5, no. 3 (2019): 73. http://dx.doi.org/10.3390/universe5030073.
Full textJagemann, Thomas. "CRESST Detectors for Nonbaryonic Cold Dark Matter Particles." Symposium - International Astronomical Union 220 (2004): 493–94. http://dx.doi.org/10.1017/s0074180900183901.
Full textGreen, Anne M. "WIMP direct detection and halo structure." Symposium - International Astronomical Union 220 (2004): 483–88. http://dx.doi.org/10.1017/s0074180900183871.
Full textULLIO, PIERO. "SEARCHES FOR DARK MATTER PARTICLES THROUGH COSMIC RAY MEASUREMENTS." International Journal of Modern Physics A 17, no. 12n13 (2002): 1777–86. http://dx.doi.org/10.1142/s0217751x02011278.
Full textSHAN, CHUNG-LIN. "EFFECTS OF RESIDUE BACKGROUND EVENTS IN DIRECT DETECTION EXPERIMENTS ON IDENTIFYING WIMP DARK MATTER." International Journal of Modern Physics D 20, no. 08 (2011): 1453–61. http://dx.doi.org/10.1142/s0218271811019633.
Full textSahu, R., V. K. B. Kota, and T. S. Kosmas. "Event Rates for the Scattering of Weakly Interacting Massive Particles from 23Na and 40Ar." Particles 4, no. 1 (2021): 75–92. http://dx.doi.org/10.3390/particles4010010.
Full textDutta, Koushik, Avirup Ghosh, Arpan Kar, and Biswarup Mukhopadhyaya. "MeV to multi-TeV thermal WIMPs: most conservative limits." Journal of Cosmology and Astroparticle Physics 2023, no. 08 (2023): 071. http://dx.doi.org/10.1088/1475-7516/2023/08/071.
Full textCui, Yanou. "A review of WIMP baryogenesis mechanisms." Modern Physics Letters A 30, no. 37 (2015): 1530028. http://dx.doi.org/10.1142/s0217732315300281.
Full textAllen, Roland E., and Aritra Saha. "Dark matter candidate with well-defined mass and couplings." Modern Physics Letters A 32, no. 25 (2017): 1730022. http://dx.doi.org/10.1142/s0217732317300221.
Full textChen, Shu. "Analysis of Dark Matter Candidates and Detection Scenarios." Highlights in Science, Engineering and Technology 38 (March 16, 2023): 678–84. http://dx.doi.org/10.54097/hset.v38i.5929.
Full textKlapdor-Kleingrothaus, H. V., I. V. Krivosheina, and C. Tomei. "New limits on spin-dependent weakly interacting massive particle (WIMP) nucleon coupling." Physics Letters B 609, no. 3-4 (2005): 226–31. http://dx.doi.org/10.1016/j.physletb.2004.12.081.
Full textSun, Wenrong. "Demonstration of Models and Detection Scenarios for WIMP And Axion." Highlights in Science, Engineering and Technology 38 (March 16, 2023): 665–71. http://dx.doi.org/10.54097/hset.v38i.5923.
Full textCERDEÑO, DAVID G. "DETECTION AND IDENTIFICATION OF DARK MATTER." International Journal of Modern Physics: Conference Series 01 (January 2011): 98–107. http://dx.doi.org/10.1142/s2010194511000134.
Full textBiswas, Anirban, Arpan Kar, Bum-Hoon Lee, et al. "WIMPs in dilatonic Einstein Gauss-Bonnet cosmology." Journal of Cosmology and Astroparticle Physics 2023, no. 08 (2023): 024. http://dx.doi.org/10.1088/1475-7516/2023/08/024.
Full textKhlopov, Maxim Yu. "Probes for dark matter physics." International Journal of Modern Physics D 27, no. 06 (2018): 1841013. http://dx.doi.org/10.1142/s0218271818410134.
Full textKadota, Kenji, and Hiroyuki Tashiro. "Radio bounds on the mixed dark matter scenarios of primordial black holes and WIMPs." Journal of Cosmology and Astroparticle Physics 2022, no. 08 (2022): 004. http://dx.doi.org/10.1088/1475-7516/2022/08/004.
Full textVisinelli, Luca. "(Non-)Thermal Production of WIMPs during Kination." Symmetry 10, no. 11 (2018): 546. http://dx.doi.org/10.3390/sym10110546.
Full textBai, Yu, Weichao Sun, and Chung-Lin Shan. "Effects of threshold energy on reconstructions of properties of low-mass WIMPs in direct dark matter detection experiments." International Journal of Modern Physics A 33, no. 20 (2018): 1850120. http://dx.doi.org/10.1142/s0217751x18501208.
Full textAcharyya, A., A. Archer, P. Bangale, et al. "Search for Ultraheavy Dark Matter from Observations of Dwarf Spheroidal Galaxies with VERITAS." Astrophysical Journal 945, no. 2 (2023): 101. http://dx.doi.org/10.3847/1538-4357/acbc7b.
Full textFaulkner, John. "Constraints on central solar conditions from helioseismology and neutrino counts." Symposium - International Astronomical Union 123 (1988): 105–9. http://dx.doi.org/10.1017/s0074180900157845.
Full textShan, Chung-Lin. "Reconstructing the WIMP velocity distribution from direct dark matter detection data with a nonnegligible threshold energy." International Journal of Modern Physics D 24, no. 11 (2015): 1550090. http://dx.doi.org/10.1142/s021827181550090x.
Full textKhlopov, Maxim. "Cosmoparticle physics of dark matter." EPJ Web of Conferences 222 (2019): 01006. http://dx.doi.org/10.1051/epjconf/201922201006.
Full textSiripak, J., Y. Yan, U. Sawangwit, and N. Sangungsuk. "Machine learning application for dark matter - background classification in JUNO experiment." Journal of Physics: Conference Series 2431, no. 1 (2023): 012094. http://dx.doi.org/10.1088/1742-6596/2431/1/012094.
Full textThrom, Maxwell, Reagan Thornberry, John Killough, Brian Sun, Gentill Abdulla, and Roland E. Allen. "Two natural scenarios for dark matter particles coexisting with supersymmetry." Modern Physics Letters A 34, no. 02 (2019): 1930001. http://dx.doi.org/10.1142/s0217732319300015.
Full textDRUKIER, A. K., and S. NUSSINOV. "TOWARDS DETECTION OF LOW MASS WIMPs (MWIMP<10GeV/c2): MINI-REVIEW." International Journal of Modern Physics A 28, no. 26 (2013): 1330033. http://dx.doi.org/10.1142/s0217751x13300330.
Full textHE, XIAO-GANG, TONG LI, XUE-QIAN LI, JUSAK TANDEAN, and HO-CHIN TSAI. "CONSTRAINTS ON SCALAR DARK MATTER FROM DIRECT EXPERIMENTAL SEARCHES." International Journal of Modern Physics: Conference Series 01 (January 2011): 257–65. http://dx.doi.org/10.1142/s2010194511000377.
Full textRenzi, G. "Search for dark matter from the centre of the Earth with 8 years of IceCube data." Journal of Instrumentation 16, no. 11 (2021): C11012. http://dx.doi.org/10.1088/1748-0221/16/11/c11012.
Full textCook, R. H. W., N. Seymour, K. Spekkens, et al. "Searching for dark matter signals from local dwarf spheroidal galaxies at low radio frequencies in the GLEAM survey." Monthly Notices of the Royal Astronomical Society 494, no. 1 (2020): 135–45. http://dx.doi.org/10.1093/mnras/staa726.
Full textBelotsky, K. M., E. A. Esipova, M. Yu Khlopov, and M. N. Laletin. "Dark Coulomb binding of heavy neutrinos of fourth family." International Journal of Modern Physics D 24, no. 13 (2015): 1545008. http://dx.doi.org/10.1142/s021827181545008x.
Full textAngevaare, J. R., G. Bertone, A. P. Colijn, M. P. Decowski, and B. J. Kavanagh. "Complementarity of direct detection experiments in search of light Dark Matter." Journal of Cosmology and Astroparticle Physics 2022, no. 10 (2022): 004. http://dx.doi.org/10.1088/1475-7516/2022/10/004.
Full textMahanta, Devabrat, and Debasish Borah. "WIMPy leptogenesis in non-standard cosmologies." Journal of Cosmology and Astroparticle Physics 2023, no. 03 (2023): 049. http://dx.doi.org/10.1088/1475-7516/2023/03/049.
Full textBasu, Arghyadeep, Nirupam Roy, Samir Choudhuri, Kanan K. Datta, and Debajyoti Sarkar. "Stringent constraint on the radio signal from dark matter annihilation in dwarf spheroidal galaxies using the TGSS." Monthly Notices of the Royal Astronomical Society 502, no. 2 (2021): 1605–11. http://dx.doi.org/10.1093/mnras/stab120.
Full textSmith, Peter F. "Status of Experiments for Direct Detection of Galactic Dark Matter Particles." Symposium - International Astronomical Union 201 (2005): 312–21. http://dx.doi.org/10.1017/s0074180900216409.
Full textVollmann, Martin, Volker Heesen, Timothy W. Shimwell, et al. "Radio constraints on dark matter annihilation in Canes Venatici I with LOFAR†." Monthly Notices of the Royal Astronomical Society 496, no. 3 (2020): 2663–72. http://dx.doi.org/10.1093/mnras/staa1657.
Full textGREEN, ANNE M. "ASTROPHYSICAL UNCERTAINTIES ON DIRECT DETECTION EXPERIMENTS." Modern Physics Letters A 27, no. 03 (2012): 1230004. http://dx.doi.org/10.1142/s0217732312300042.
Full textLopes, José, and Ilídio Lopes. "Dark matter capture and annihilation in stars: Impact on the red giant branch tip." Astronomy & Astrophysics 651 (July 2021): A101. http://dx.doi.org/10.1051/0004-6361/202140750.
Full textEbadi, Reza, Mason C. Marshall, David F. Phillips, et al. "Directional detection of dark matter using solid-state quantum sensing." AVS Quantum Science 4, no. 4 (2022): 044701. http://dx.doi.org/10.1116/5.0117301.
Full textMizukoshi, K., T. Maeda, Y. Nakano, S. Higashino, and K. Miuchi. "Scintillation light increase of carbontetrafluoride gas at low temperature." Journal of Instrumentation 16, no. 12 (2021): P12033. http://dx.doi.org/10.1088/1748-0221/16/12/p12033.
Full textBernal, Nicolás, and Yong Xu. "WIMPs during reheating." Journal of Cosmology and Astroparticle Physics 2022, no. 12 (2022): 017. http://dx.doi.org/10.1088/1475-7516/2022/12/017.
Full textEldridge, C., N. J. C. Spooner, A. G. McLean, et al. "Directional dark matter readout with a novel multi-mesh ThGEM for SF6 negative ion operation." Journal of Instrumentation 18, no. 08 (2023): P08021. http://dx.doi.org/10.1088/1748-0221/18/08/p08021.
Full textCerdeño, D. G., C. Marcos, M. Peiró, et al. "Scintillating bolometers: A key for determining WIMP parameters." International Journal of Modern Physics A 29, no. 19 (2014): 1443009. http://dx.doi.org/10.1142/s0217751x1443009x.
Full textDrukier, A. K., R. L. Fagaly, and R. Bielski. "Nano-booms — A new class of WIMP detectors." International Journal of Modern Physics A 29, no. 19 (2014): 1443006. http://dx.doi.org/10.1142/s0217751x14430064.
Full textKHLOPOV, MAXIM YU. "PHYSICS OF DARK MATTER IN THE LIGHT OF DARK ATOMS." Modern Physics Letters A 26, no. 38 (2011): 2823–39. http://dx.doi.org/10.1142/s0217732311037194.
Full textSahu, R., and V. K. B. Kota. "Deformed shell model study of event rates for WIMP-73Ge scattering." Modern Physics Letters A 32, no. 38 (2017): 1750210. http://dx.doi.org/10.1142/s0217732317502108.
Full textMUÑOZ, CARLOS. "DARK MATTER DETECTION IN THE LIGHT OF RECENT EXPERIMENTAL RESULTS." International Journal of Modern Physics A 19, no. 19 (2004): 3093–169. http://dx.doi.org/10.1142/s0217751x04018154.
Full textCarr, Bernard, Florian Kühnel, and Luca Visinelli. "Black holes and WIMPs: all or nothing or something else." Monthly Notices of the Royal Astronomical Society 506, no. 3 (2021): 3648–61. http://dx.doi.org/10.1093/mnras/stab1930.
Full textAlfaro, R., C. Alvarez, J. C. Arteaga-Velázquez, et al. "Searching for TeV Dark Matter in Irregular Dwarf Galaxies with HAWC Observatory." Astrophysical Journal 945, no. 1 (2023): 25. http://dx.doi.org/10.3847/1538-4357/acb5f1.
Full textRegis, Marco. "A Novel Approach in the WIMP Quest: Cross-Correlation of Gamma-Ray Anisotropies and Cosmic Shear." Acta Polytechnica CTU Proceedings 1, no. 1 (2014): 34–37. http://dx.doi.org/10.14311/app.2014.01.0034.
Full text