Academic literature on the topic 'Wearable health monitoring system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wearable health monitoring system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wearable health monitoring system"
Singh, Harkanwal, and Choudhary Mayur Lalchand. "Self Powered Wearable Health Monitoring System." Advanced Materials Research 403-408 (November 2011): 3839–46. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.3839.
Full textEvangeline, C. Suganthi, and Ashmiya Lenin. "Human health monitoring using wearable sensor." Sensor Review 39, no. 3 (May 20, 2019): 364–76. http://dx.doi.org/10.1108/sr-05-2018-0111.
Full textKishimoto, Masamichi, Toshihiko Yoshida, Hiromi Nakamura, Masahiko Okubo, Yuta Suzuki, Sinbae Kim, Tomoaki Hayasaka, et al. "Development of a wearable system for monitoring health condition(1E2 Human Dynamics & Stability)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2007.3 (2007): S84. http://dx.doi.org/10.1299/jsmeapbio.2007.3.s84.
Full textSharma, Atul, Mihaela Badea, Swapnil Tiwari, and Jean Louis Marty. "Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring." Molecules 26, no. 3 (February 1, 2021): 748. http://dx.doi.org/10.3390/molecules26030748.
Full textGarcía Michel, Eduardo, Pedro C. Santana-Mancilla, Silvia B. Fajardo-Flores, Laura S. Gaytan-Lugo, Víctor H. Pérez Andrade, Geraldyluz Amezcua Cobián, Oscar Virgen Casillas, and Sergio A. Zaizar Fregoso. "An IoMT system for health monitoring in athletes." Avances en Interacción Humano-Computadora, no. 1 (November 30, 2020): 62. http://dx.doi.org/10.47756/aihc.y5i1.68.
Full textRákay, Róbert, and Alena Galajdová. "CONCEPT FOR PHYSIOLOGICAL FUNCTION MONITORING WITH WEARABLE SENSORS." Technical Sciences and Technologies, no. 4(22) (2020): 190–97. http://dx.doi.org/10.25140/2411-5363-2020-4(22)-190-197.
Full textMa, Hao, Xiu Juan Fan, and Xiao Yun Yin. "The Design of Wearable Sub-Health Monitoring System." Applied Mechanics and Materials 727-728 (January 2015): 670–74. http://dx.doi.org/10.4028/www.scientific.net/amm.727-728.670.
Full textLee, Ming-yih, and Wen-yen Lin. "Wearable cardiac health monitoring and early warning system." Impact 2018, no. 2 (March 29, 2018): 35–37. http://dx.doi.org/10.21820/23987073.2018.2.35.
Full textLee, Ming-yih, and Wen-yen Lin. "Wearable cardiac health monitoring and early warning system." Impact 2017, no. 8 (October 20, 2017): 55–57. http://dx.doi.org/10.21820/23987073.2017.8.55.
Full textDias, Duarte, and João Paulo Silva Cunha. "Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies." Sensors 18, no. 8 (July 25, 2018): 2414. http://dx.doi.org/10.3390/s18082414.
Full textDissertations / Theses on the topic "Wearable health monitoring system"
Pantelopoulos, Alexandros A. "¿¿¿¿¿¿¿¿¿¿¿¿PROGNOSIS: A WEARABLE SYSTEM FOR HEALTH MONITORING OF PEOPLE AT RISK." Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1284754643.
Full textHellström, Per Anders Rickard. "Wireless Wearable Measurement System Based on Pedobarography for Monitoring of Health." Licentiate thesis, Mälardalens högskola, Inbyggda system, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-32101.
Full textKostnaderna för vår hälsovård har ökat de senaste årtiondena på grund av att vi lever allt längre. Till följd av detta har forskning inom personlig hälsomonitorering (PHM) ökat. PHM medför fördelar såsom rörlighet (hälsoövervakning på jobbet och i hemmet), tidig upptäckt av hälsoproblem medför möjlighet till åtgärd i ett tidigt skede samt en minskning av kostnaderna för hälsovård. Analys av människors rörelser, med hjälp av till exempel tröghetsmätare och pedobarografi, är en viktig underkategori inom PHM. Pedobarografi (PBG) är studien av tryckfält som uppstår på grund av krafter som verkar mellan fotens undersida och en uppbärande yta. Analys av gångstil och kroppshållning, utvärdering av proteser samt monitorering av återhämtning från skada eller sjukdom är exempel på tillämpningar av PBG. Portabel PBG kan exempelvis utföras med hjälp av resistiva kraftsensorer implementerade i skors inläggssulor. I överrensstämmelse med detta är målet för forskningen i den här licentiatavhandlingen att designa, bygga och utvärdera ett trådlöst bärbart mätsystem baserat på pedobarografi för övervakning av hälsa. För att uppfylla forskningsmålet utfördes litteraturstudier och problem med existerande skobaserade system identifierades. Tvärsnittsstudier användes vid valideringen. Forskningsområdet är tvärvetenskapligt och omfattar biomedicinska mätningar, elektronik och datavetenskap. De främsta vetenskapliga bidragen inkluderar design och implementering av ett pedobarografiskt mätsystem bestående av öppet tillgängliga komponenter, en ny metod för att välja ut uppmätta värden för uppskattning av vikt av buren last under gång, samt en ny analysmetod för gångintensitet med hjälp av kraft-tidsintegraler i stegets avstampsfas. Forskningsresultaten implicerar att det nya pedobarografisystemet, i kombination med de två nya analysmetoderna, är lämpliga att användas i bärbara system för övervakning av hälsa. Mätningar vid personlig hälsomonitorering utförs för att hjälpa till vid beslutsfattande som rör hälsa. Följaktligen strävar framtida forskning mot design av olika beslutsstödsystem.
Abbasi, Saddedine. "Critical evaluation and novel design of a non-invasive and wearable health monitoring system." Thesis, Brunel University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.553648.
Full textSung, Michael 1975. "Non-invasive wearable sensing systems for continuous health monitoring and long-term behavior modeling." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/36181.
Full textIncludes bibliographical references (p. 212-228).
Deploying new healthcare technologies for proactive health and elder care will become a major priority over the next decade, as medical care systems worldwide become strained by the aging populations. This thesis presents LiveNet, a distributed mobile system based on low-cost commodity hardware that can be deployed for a variety of healthcare applications. LiveNet embodies a flexible infrastructure platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification capabilities. Using LiveNet, we are able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. Most clinical sensing technologies that exist have focused on accuracy and reliability, at the expense of cost-effectiveness, burden on the patient, and portability. Future proactive health technologies, on the other hand, must be affordable, unobtrusive, and non-invasive if the general population is going to adopt them.
(cont.) In this thesis, we focus on the potential of using features derived from minimally invasive physiological and contextual sensors such as motion, speech, heart rate, skin conductance, and temperature/heat flux that can be used in combination with mobile technology to create powerful context-aware systems that are transparent to the user. In many cases, these non-invasive sensing technologies can completely replace more invasive diagnostic sensing for applications in long-term monitoring, behavior and physiology trending, and real-time proactive feedback and alert systems. Non-invasive sensing technologies are particularly important in ambulatory and continuous monitoring applications, where more cumbersome sensing equipment that is typically found in medical and clinical research settings is not usable. The research in this thesis demonstrates that it is possible to use simple non-invasive physiological and contextual sensing using the LiveNet system to accurately classify a variety of physiological conditions. We demonstrate that non-invasive sensing can be correlated to a variety of important physiological and behavioral phenomenon, and thus can serve as substitutes to more invasive and unwieldy forms of medical monitoring devices while still providing a high level of diagnostic power.
(cont.) From this foundation, the LiveNet system is deployed in a number of studies to quantify physiological and contextual state. First, a number of classifiers for important health and general contextual cues such as activity state and stress level are developed from basic non-invasive physiological sensing. We then demonstrate that the LiveNet system can be used to develop systems that can classify clinically significant physiological and pathological conditions and that are robust in the presence of noise, motion artifacts, and other adverse conditions found in real-world situations. This is highlighted in a cold exposure and core body temperature study in collaboration with the U.S. Army Research Institute of Environmental Medicine. In this study, we show that it is possible to develop real-time implementations of these classifiers for proactive health monitors that can provide instantaneous feedback relevant in soldier monitoring applications. This thesis also demonstrates that the LiveNet platform can be used for long-term continuous monitoring applications to study physiological trends that vary slowly with time.
(cont.) In a clinical study with the Psychiatry Department at the Massachusetts General Hospital, the LiveNet platform is used to continuously monitor clinically depressed patients during their stays on an in-patient ward for treatment. We show that we can accurately correlate physiology and behavior to depression state, as well as to track changes in depression state over time through the course of treatment. This study demonstrates how long-term physiology and behavioral changes can be captured to objectively measure medical treatment and medication efficacy. In another long-term monitoring study, the LiveNet platform is used to collect data on people's everyday behavior as they go through daily life. By collecting long-term behavioral data, we demonstrate the possibility of modeling and predicting high-level behavior using simple physiologic and contextual information derived solely from ambulatory mobile sensing technology.
by Michael Sung.
Ph.D.
Ferreira, Gonzalez Javier. "Textile-enabled Bioimpedance Instrumentation for Personalised Health Monitoring Applications." Licentiate thesis, KTH, Medicinska sensorer, signaler och system (MSSS), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120373.
Full textQC 20130405
Celik, Numan. "Wireless graphene-based electrocardiogram (ECG) sensor including multiple physiological measurement system." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15698.
Full textHauke, Adam J. "An Integrated System for Sweat Stimulation, Sampling and Sensing." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535371796736114.
Full textChowdhury, Nusrat Jahan, Joseph Blevins, Phoenix Ragsdale, Tahsin Rezwana, and Ferdaus Ahmed Dr Kawsar. "Design and Development of a Comprehensive and Interactive Diabetic Parameter Monitoring System." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/asrf/2019/schedule/51.
Full textChowdhury, Nusrat. "Design and Development of a Comprehensive and Interactive Diabetic Parameter Monitoring System - BeticTrack." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/etd/3646.
Full textVeta, Jacob E. "Analysis and Development of a Lower Extremity Osteological Monitoring Tool Based on Vibration Data." Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami1595879294258019.
Full textBooks on the topic "Wearable health monitoring system"
Danilo, De Rossi, and SpringerLink (Online service), eds. Wearable Monitoring Systems. Boston, MA: Springer Science+Business Media, LLC, 2011.
Find full textJaw, Link C. Aircraft engine controls: Design, system analysis, and health monitoring. Reston, VA: American Institute of Aeronautics and Astronautics, 2009.
Find full textMalik, Hasmat, Nuzhat Fatema, and Jafar A. Alzubi, eds. AI and Machine Learning Paradigms for Health Monitoring System. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4412-9.
Full textBennett, Stan. Outline of a national monitoring system for cardiovascular disease. Canberra: The Institute, 1995.
Find full textSchuhmann, Martin U. Intracranial Pressure and Brain Monitoring XIV. Vienna: Springer Vienna, 2012.
Find full textKoht, Antoun. Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. New York, NY: Springer New York, 2012.
Find full textKoht, Antoun, Tod B. Sloan, and J. Richard Toleikis, eds. Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-0308-1.
Full textJawaid, Mohammad, Ahmad Hamdan, and Mohamed Thariq Hameed Sultan, eds. Structural Health Monitoring System for Synthetic, Hybrid and Natural Fiber Composites. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8840-2.
Full textKoht, Antoun, Tod B. Sloan, and J. Richard Toleikis, eds. Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46542-5.
Full textBhattacharya, C. B. Towards a system for monitoring brand health from store scanner data. Cambridge, Mass: Marketing Science Institute, 2000.
Find full textBook chapters on the topic "Wearable health monitoring system"
Khan, Ali Mehmood. "Wearable Health Monitoring System." In Communications in Computer and Information Science, 173–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39476-8_36.
Full textAu, Lawrence, Brett Jordan, Winston Wu, Maxim Batalin, and William J. Kaiser. "Design of Wireless Health Platforms." In Wearable Monitoring Systems, 81–97. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7384-9_4.
Full textArredondo, Maria Teresa, Sergio Guillén, I. Peinado, and G. Fico. "Scenarios for the Interaction Between Personal Health Systems and Chronic Patients." In Wearable Monitoring Systems, 253–75. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7384-9_12.
Full textYuan, Jian, and Kok Kiong Tan. "Inexpensive and Power-Efficient Wireless Health Monitoring System for the Aging Population." In Wearable Electronics Sensors, 107–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18191-2_5.
Full textKassem, Ahmed, Mohamed Tamazin, and Moustafa H. Aly. "An Intelligent IoT-Based Wearable Health Monitoring System." In Recent Advances in Engineering Mathematics and Physics, 373–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39847-7_29.
Full textJena, Mihir Kumar, and Irshad Ahmad Ansari. "Design of Wearable Health and Hazard Monitoring Device." In Advances in Intelligent Systems and Computing, 947–57. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0751-9_88.
Full textLi, Na, YiBin Hou, and ZhangQin Huang. "An Event-Driven Energy Efficient Framework for Wearable Health-Monitoring System." In Active Media Technology, 176–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35236-2_18.
Full textRao, Hiteshwar, Dhruv Saxena, Saurabh Kumar, G. V. Sagar, Bharadwaj Amrutur, Prem Mony, Prashanth Thankachan, Kiruba Shankar, Suman Rao, and Swarnarekha Bhat. "Design of a Wearable Remote Neonatal Health Monitoring Device." In Biomedical Engineering Systems and Technologies, 34–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26129-4_3.
Full textBoulemtafes, Amine, and Nadjib Badache. "Wearable Health Monitoring Systems: An Overview of Design Research Areas." In Annals of Information Systems, 17–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23341-3_2.
Full textPugo-Méndez, Edisson, Juan Cabrera-Zeas, Luis Serpa-Andrade, Eduardo Pinos-Vélez, and Freddy Bueno-Palomeque. "Wearable Spine Postural Monitoring Embedded System for Occupational Health in Sitting Position." In IFMBE Proceedings, 538–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30648-9_70.
Full textConference papers on the topic "Wearable health monitoring system"
Aboughaly, Ali A., and Mohamed A. Abd El Ghany. "Unobtrusive Wearable Health Monitoring System." In 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2017. http://dx.doi.org/10.1109/isvlsi.2017.52.
Full textFei, Haolin, and Masood Ur-Rehman. "A Wearable Health Monitoring System." In 2020 International Conference on UK-China Emerging Technologies (UCET). IEEE, 2020. http://dx.doi.org/10.1109/ucet51115.2020.9205468.
Full textJi, Yanxin, Chengwei Mi, Feng Gao, Fang Deng, and Chao Zheng. "Wearable Human Health Monitoring System." In 2018 37th Chinese Control Conference (CCC). IEEE, 2018. http://dx.doi.org/10.23919/chicc.2018.8483751.
Full textHughes, E., M. Masilela, P. Eddings, A. Rafiq, C. Boanca, and R. Merrell. "VMote: A Wearable Wireless Health Monitoring System." In 2007 9th International Conference on e-Health Networking, Application and Services. IEEE, 2007. http://dx.doi.org/10.1109/health.2007.381665.
Full textXu, Yue, Yanxin Ji, Fang Deng, Haonan Huang, Qun Hao, and Yukun Bao. "Wireless Distributed Wearable Health Monitoring System." In 2018 Chinese Automation Congress (CAC). IEEE, 2018. http://dx.doi.org/10.1109/cac.2018.8623215.
Full textKhatate, Prathamesh, Anagha Savkar, and C. Y. Patil. "Wearable Smart Health Monitoring System for Animals." In 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, 2018. http://dx.doi.org/10.1109/icoei.2018.8553844.
Full textTanaka, Tomoya, Koji Sonoda, Sayaka Okochi, Alex Chan, Manabu Nii, Kensuke Kanda, Takayuki Fujita, Kohei Higuchi, and Kazusuke Maenaka. "Wearable Health Monitoring System and Its Applications." In 2011 4th International Conference on Emerging Trends in Engineering and Technology (ICETET). IEEE, 2011. http://dx.doi.org/10.1109/icetet.2011.34.
Full textJalaliniya, Shahram, and Thomas Pederson. "A wearable kids' health monitoring system on smartphone." In the 7th Nordic Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2399016.2399150.
Full textOmer, Rebaz Mohammed Dler, and Nawzad Kameran Al-Salihi. "HealthMate: Smart Wearable System for Health Monitoring (SWSHM)." In 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2017. http://dx.doi.org/10.1109/icnsc.2017.8000185.
Full textBao, Shenjie, Tuan Nguyen Gia, Wei Chen, and Tomi Westerlund. "Wearable Health Monitoring System using Flexible Materials Electrodes." In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). IEEE, 2020. http://dx.doi.org/10.1109/wf-iot48130.2020.9221282.
Full textReports on the topic "Wearable health monitoring system"
Kynor, David B., and William E. Audette. Diver Health Monitoring System. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada550401.
Full textKynor, David B., and William E. Audette. Diver Health Monitoring System: User Manual. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada550477.
Full textCronkite, J., B. Dickson, W. Martin, and G. Collinwood. Operational Evaluation of a Health and Usage Monitoring System (HUMS). Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada345863.
Full textStoupis, James, and Mirrasoul Mousavi. Real-Time Distribution Feeder Performance Monitoring, Advisory Control, and Health Management System. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1132766.
Full textMiller, Timothy C. Determining Stress Sensor Requirements for a Health Monitoring System Using Finite Elements. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada417203.
Full textMurrill, Steven R., and Michael V. Scanlon. Design of a Heart Sound Extraction Algorithm for an Acoustic-Based Health Monitoring System. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada409127.
Full textTang, Wei, and Stylianos Chatzidakis. REAL-TIME CANISTER WELDING HEALTH MONITORING AND PREDICTION SYSTEM FOR SPENT FUEL DRY STORAGE. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1649019.
Full textRoach, Dennis Patrick, David Villegas Jauregui, and Andrew Nicholas Daumueller. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure. Office of Scientific and Technical Information (OSTI), February 2012. http://dx.doi.org/10.2172/1035338.
Full textConn, Marvin A., Gregory Mitchell, Derwin Washington, Andrew Bayba, and Kwok F. Tom. Design, Development, and Demonstration of a Prognostic and Diagnostics Health Monitoring System for the CROWS Platform. Fort Belvoir, VA: Defense Technical Information Center, June 2010. http://dx.doi.org/10.21236/ada523873.
Full textJones, Allen E. Testing and Evaluation of the CDITM, 3M Health Care CDTM 400 Extracorporeal Blood Gas Monitoring System. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada357834.
Full text