Academic literature on the topic 'Wearable Sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wearable Sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wearable Sensors"
Kalupahana, Ayanga Imesha Kumari, Ananta Narayanan Balaji, Xiaokui Xiao, and Li-Shiuan Peh. "SeRaNDiP." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7, no. 2 (June 12, 2023): 1–38. http://dx.doi.org/10.1145/3596252.
Full textYin, Yunlei, Cheng Guo, Hong Li, Hongying Yang, Fan Xiong, and Dongyi Chen. "The Progress of Research into Flexible Sensors in the Field of Smart Wearables." Sensors 22, no. 14 (July 6, 2022): 5089. http://dx.doi.org/10.3390/s22145089.
Full textAroganam, Gobinath, Nadarajah Manivannan, and David Harrison. "Review on Wearable Technology Sensors Used in Consumer Sport Applications." Sensors 19, no. 9 (April 28, 2019): 1983. http://dx.doi.org/10.3390/s19091983.
Full textKandpal, Jyoti. "Exploring the Potential of Wearable Electronics for Healthcare Monitoring and Diagnosis." Mathematical Statistician and Engineering Applications 71, no. 2 (March 6, 2022): 658–69. http://dx.doi.org/10.17762/msea.v71i2.2195.
Full textWu, Chenggen, Xun Zhang, Rui Wang, Li Jun Chen, Meng Nie, Zhiqiang Zhang, Xiaodong Huang, and Lei Han. "Low-dimensional material based wearable sensors." Nanotechnology 33, no. 7 (November 25, 2021): 072001. http://dx.doi.org/10.1088/1361-6528/ac33d1.
Full textOzanich, Richard. "Chem/bio wearable sensors: current and future direction." Pure and Applied Chemistry 90, no. 10 (October 25, 2018): 1605–13. http://dx.doi.org/10.1515/pac-2018-0105.
Full textChen, Hui, Han Wang, Peilun Yu, and Xiaoyang Yang. "Wearable Strain Sensors and Their Applications." SHS Web of Conferences 157 (2023): 03029. http://dx.doi.org/10.1051/shsconf/202315703029.
Full textAMAlANATHAN, SELVIA AM, ABDULAZIZ ASIRI, and AMER AL ALI. "Mental Health Prediction Using Artificial Intelligence- Machine Learning: Pain and Stress Detection Using Wearable Sensors and Devices—A Review." YMER Digital 21, no. 08 (August 12, 2022): 528–42. http://dx.doi.org/10.37896/ymer21.08/45.
Full textKim, SangUn, TranThuyNga Truong, JunHyuk Jang, and Jooyong Kim. "The Programmable Design of Large-Area Piezoresistive Textile Sensors Using Manufacturing by Jacquard Processing." Polymers 15, no. 1 (December 25, 2022): 78. http://dx.doi.org/10.3390/polym15010078.
Full textDumais, Kelly, Adam Jagodinsky, Saima Khakwani, Rebecca Bonaker, Bryan McDowell, and Kristen Sowalsky. "Abstract PO5-11-12: The use of wearable sensors and patient-reported outcomes in breast cancer research: A literature survey." Cancer Research 84, no. 9_Supplement (May 2, 2024): PO5–11–12—PO5–11–12. http://dx.doi.org/10.1158/1538-7445.sabcs23-po5-11-12.
Full textDissertations / Theses on the topic "Wearable Sensors"
Moustafa, Ahmed, and Johan Danmo. "Wearable Sensors in Prosthetic Socket." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263928.
Full textDet finns ett stort intresse bland forskade och läkare att kunna övervaka tryckfördelningen inuti en benprotes. En sådan lösning kan möjliggöra bedömningen om användarens komfort och identifiera problematiska områden i benprotesen som bör åtgärdas. En sensor som kan användas i en sådan lösning kallas Force Sensitive Resistor (FSR). Detta mastersarbete har jämfört och testat två typer av FSR. Den första sensorn är en prototyp och kommer från företaget, Quantum Technology Supersensor (QTSS) och den andra sensorn säljs kommersiellt och kommer från företaget, Interlink. Sensorerna utsattes för statiska och dynamiska trycktester för att jämföra egenskaper som hysteres, drift och repeterbarhet. Sensorerna placerades även på två typer av underlag vid dessa tester. Det första underlaget var silikon med en hårdhet på 20 A och det andra var plexiglas. Detta gjordes för att dokumentera effekten av materialets hårdhet som omgav sensorerna vid testerna. QTSS sensorn nådde 109,5 % i statisk drift på silikon med ett tryck på 185 kPa. Procentantalet minskar betydligt vid högre vikt och med plexiglas som material, vilket resulterade i 5,4 % statisk drift med ett tryck på 348 kPa. Sensorn från Interlink presterade dock relativt bra vid båda testerna. Den högsta uppmätta statiska driften var 3,2 % och inträffade då sensorn placerades på silikon med ett tryck på 185 kPa. Vidare visade det sig att sensorn från QTSS presterade bättre när den inte tilläts vila mellan testerna. Med ett tryck på 348 kPa på plexiglas hade sensorn från QTSS en statisk drift på 3,1 %. Sensorn från QTSS presterade sämre vid hysteres- och repeterbarhettesterna än sensorn från Interlink. Vidare tillverkades en sensormatris, som sensorn från QTSS var integrerad i, för att kunna studera tryckfördelningen i en benprotes. I brist på tid och utrustning kunde tester på en artificiell benprotes inte utföras. Sensorn placerades därför på undersidan av en sko för att avgöra ifall det finns ett mönster i tryckfördelningen när en testperson går med denna sko. Resultatet var lovande, då det var möjligt att identifiera minst 3 faser i en gångcykel. En viktig sidoflik är att sensorn från QTSS som användes i detta masterarsbete är en tidig prototyp och att många modifikationer har gjorts på denna typ av sensor sedan starten av denna studie. Det är därför viktigt att en ny studie bör utföras med en senare version av denna sensor innan slutsatser kan dras om sensorns prestanda.
Clarkson, Brian Patrick 1975. "Life patterns : structure from wearable sensors." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8030.
Full textIncludes bibliographical references (leaves 123-129).
In this thesis I develop and evaluate computational methods for extracting life's patterns from wearable sensor data. Life patterns are the reoccurring events in daily behavior, such as those induced by the regular cycle of night and day, weekdays and weekends, work and play, eating and sleeping. My hypothesis is that since a "raw, low-level" wearable sensor stream is intimately connected to the individual's life, it provides the means to directly match similar events, statistically model habitual behavior and highlight hidden structures in a corpus of recorded memories. I approach the problem of computationally modeling daily human experience as a task of statistical data mining similar to the earlier efforts of speech researchers searching for the building block that were believed to make up speech. First we find the atomic immutable events that mark the succession of our daily activities. These are like the "phonemes" of our lives, but don't necessarily take on their finite and discrete nature. Since our activities and behaviors operate at multiple time-scales from seconds to weeks, we look at how these events combine into sequences, and then sequences of sequences, and so on. These are the words, sentences and grammars of an individual's daily experience. I have collected 100 days of wearable sensor data from an individual's life. I show through quantitative experiments that clustering, classification, and prediction is feasible on a data set of this nature. I give methods and results for determining the similarity between memories recorded at different moments in time, which allow me to associate almost every moment of an individual's life to another similar moment. I present models that accurately and automatically classify the sensor data into location and activity.
(cont.) Finally, I show how to use the redundancies in an individual's life to predict his actions from his past behavior.
by Brian Patrick Clarkson.
Ph.D.
Ojetola, O. "Detection of human falls using wearable sensors." Thesis, Coventry University, 2013. http://curve.coventry.ac.uk/open/items/93d006a7-540d-4ceb-8e19-df03e2f6c67f/1.
Full textBesrour, Marouen. "Wearable electronic sensors for vital sign monitoring." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/29543.
Full textWe propose in this project a wearable electronic Patch Radar sensor that can monitor respiration rate and respiration depth continuously in real-time and transmit data to a base station for analysis. The device relies on a two-antenna configuration. Both antennas are bent to the patient chest, and when the patient breathes, the mechanical movement of the chest wall changes the distance between them. The system measures the relative distance between the antennas to extract the respiration pattern. The key feature of the sensor is that it transduces respiration movements to phase shifts in RF wave signals which make it very robust against external interferences. The design was implemented on a PCB (46mm x 46mm) to demonstrate a proof of concept for the proposed device. The system was able to acquire respiration signals and even cardiac frequency. Experimental results are presented for three different subjects, an adult male and female and a child. The data gathered gives enough sensitivity and accuracy to state that the device can work with different physical morphologies.
Zellers, Brian Andrew. "3D Printed Wearable Electronic Sensors with Microfluidics." Youngstown State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1575874880525156.
Full textBharti, Pratool. "Context-based Human Activity Recognition Using Multimodal Wearable Sensors." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/7000.
Full textSimoes, Mario Alves. "Feasibility of Wearable Sensors to Determine Gait Parameters." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3346.
Full textReyes, Sabrina Ensign. "Evaluating human-EVA suit injury using wearable sensors." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105623.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 81-82).
All the current flown spacesuits are gas pressurized and require astronauts to exert a substantial amount of energy in order to move the suit into a desired position. The pressurization of the suit therefore limits human mobility, causes discomfort, and leads to a variety of contact and strain injuries. While suit-related injuries have been observed for many years and some basic countermeasures have been implemented, there is still a lack of understanding of how humans move within the spacesuit. The rise of wearable technologies is changing the paradigm of biomechanics and allowing a continuous monitoring of motion performance in fields like athletics or medical rehabilitation. Similarly, pressure sensors allow a sensing capability to better locate the areas and magnitudes of contact between the human and their interface and reduce the risk of injuries. Coupled together these sensors allow a better understanding of the complex interactions between the astronaut and his suit, enhance astronauts performance through a real time monitoring and reducing the risk of injury. The first set of objectives of this research are: to gain a greater understanding of this human-spacesuit interaction and potential for injury by analyzing the suit-induced pressures against the body, to determine the validity of the particular sensors used with suggested alternatives, and to extend the wearable technology application to other relatable fields such as soldier armor and protective gear. An experiment was conducted in conjunction with David Clark Incorporated Company on the Launch Entry Development spacesuit analyzing the human-spacesuit system behavior for isolated and functional upper body movement tasks: elbow flexion/extension, shoulder flexion/extension, shoulder abduction/adduction and cross body reach, which is a complex succession of critical motions for astronaut and pilot task. The contact pressure between the person and the spacesuit was measured by three low-pressure sensors (the Polipo) over the arm, and one high-pressure sensor located on the shoulder (Novel). The same sensors were used in a separate experiment conducted in conjunction with Protect the Force Company on several different United States Marine Corps (USMC) protective gear configurations, which analyzed the human-gear interactions for: shoulder flexion/extension, horizontal shoulder abduction/adduction, vertical shoulder abduction/adduction, and the cross body reach. Findings suggest that as suit pressurization increases, contact pressure across the top of the shoulder increases for all motion types. While it proved to be a perfectly acceptable method for gathering shoulder data, improvements can be made on the particular sensors used and the type of data collected and analyzed. In the future, human-suit interface data can be utilized to influence future gas-pressurized spacesuit design. Additionally, this thesis briefly explores the incompatibilities between Russian and U.S. EVA capabilities in order to make a case for equipment standardization.
by Sabrina Reyes.
S.M.
Ali, Syed Muhammad Raza. "Behaviour profiling using wearable sensors for pervasive healthcare." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/10929.
Full textDello, Preite Davide. "M-Health: analisi e sviluppo dei wearable sensors." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3092/.
Full textBooks on the topic "Wearable Sensors"
Mukhopadhyay, Subhas C., ed. Wearable Electronics Sensors. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18191-2.
Full textLee, James, Keane Wheeler, and Daniel A. James. Wearable Sensors in Sport. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3777-2.
Full textYang, Canjun, G. S. Virk, and Huayong Yang, eds. Wearable Sensors and Robots. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2404-7.
Full textGupta, Ram K. Flexible and Wearable Sensors. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003299455.
Full textJames, Daniel A., and Nicola Petrone. Sensors and Wearable Technologies in Sport. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0992-1.
Full textD, Lara Yejas Oscar, ed. Human activity recognition: Using wearable sensors and smartphones. Boca Raton: Taylor & Francis, 2013.
Find full textDanilo, De Rossi, and SpringerLink (Online service), eds. Wearable Monitoring Systems. Boston, MA: Springer Science+Business Media, LLC, 2011.
Find full textHuman activity recognition and gesture spotting with body-worn sensors. Konstanz: Hartung-Gorre Verlag, 2005.
Find full textYlli, Klevis, and Yiannos Manoli. Energy Harvesting for Wearable Sensor Systems. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4448-8.
Full textJaafar, Mariatti, and Ye Zar Ni Htwe. Nanomaterials Based Printed Strain Sensor for Wearable Health Monitoring Applications. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5780-4.
Full textBook chapters on the topic "Wearable Sensors"
Fang, Bin, Fuchun Sun, Huaping Liu, Chunfang Liu, and Di Guo. "Wearable Sensors." In Wearable Technology for Robotic Manipulation and Learning, 33–63. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5124-6_2.
Full textFoster, Robert, Tuba Yilmaz, Max Munoz, and Yang Hao. "Wearable Sensors." In Springer Series on Chemical Sensors and Biosensors, 95–125. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/5346_2012_28.
Full textNag, Anindya, and Subhas Chandra Mukhopadhyay. "Wearable Electronics Sensors: Current Status and Future Opportunities." In Wearable Electronics Sensors, 1–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18191-2_1.
Full textPimentel, Marco A. F., Peter H. Charlton, and David A. Clifton. "Probabilistic Estimation of Respiratory Rate from Wearable Sensors." In Wearable Electronics Sensors, 241–62. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18191-2_10.
Full textOcchiuzzi, C., C. Vallese, S. Amendola, S. Manzari, and G. Marrocco. "Ambient Intelligence System for the Remote Monitoring and Control of Sleep Quality." In Wearable Electronics Sensors, 263–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18191-2_11.
Full textLi, Guangyi, Tao Liu, and Yoshio Inoue. "Measurement of Human Gait Using a Wearable System with Force Sensors and Inertial Sensors." In Wearable Electronics Sensors, 283–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18191-2_12.
Full textHanson, Valerie, and Kofi Odame. "Towards a Brain-Machine System for Auditory Scene Analysis." In Wearable Electronics Sensors, 299–320. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18191-2_13.
Full textLin, Yingzi, and David Schmidt. "Wearable Sensing for Bio-feedback in Human Robot Interaction." In Wearable Electronics Sensors, 321–32. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18191-2_14.
Full textXu, Wenyao, and Ming-Chun Huang. "TOTAL HEALTH: Toward Continuous Personal Monitoring." In Wearable Electronics Sensors, 37–56. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18191-2_2.
Full textPirbhulal, Sandeep, Heye Zhang, Wanqing Wu, and YuanTing Zhang. "A Novel Biometric Algorithm to Body Sensor Networks." In Wearable Electronics Sensors, 57–79. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18191-2_3.
Full textConference papers on the topic "Wearable Sensors"
Gibbs, Peter, and H. Harry Asada. "Wearable Conductive Fiber Sensors for Continuous Joint Movement Monitoring." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59271.
Full textMihajlovic, Vojkan, Shrishail Patki, and Jiawei Xu. "Noninvasive wearable brain sensing." In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234430.
Full textYokus, Murat A., Talha Agcayazi, Matt Traenkle, Alper Bozkurt, and Michael A. Daniele. "Wearable Sweat Rate Sensors." In 2020 IEEE SENSORS. IEEE, 2020. http://dx.doi.org/10.1109/sensors47125.2020.9278818.
Full textAbshirini, Mohammad, Mohammad Charara, Mrinal C. Saha, M. Cengiz Altan, and Yingtao Liu. "Optimization of 3D Printed Elastomeric Nanocomposites for Flexible Strain Sensing Applications." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11467.
Full textRomero, Alberto Alonso, Koffi Amouzou, Andréane Richard-Denis, Jean-Marc Mac-Thiong, Yvan Petit, Jean-Marc Lina, and Bora Ung. "Development of a Wearable Optoelectronic Pressure Sensor Based on the Bending Loss of Plastic Optical Fiber and Polydimethylsiloxane." In Optical Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sensors.2022.stu4c.3.
Full textKukkapalli, Ruthvik, Nilanjan Banerjee, Ryan Robucci, and Yordan Kostov. "Micro-radar wearable respiration monitor." In 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808741.
Full textYokus, Murat A., Cheyanne Hass, Talha Agcayazi, Alper Bozkurt, and Michael A. Daniele. "Towards a wearable perspiration sensor." In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234296.
Full textMeguerdichian, Saro, Hyduke Noshadi, Foad Dabiri, and Miodrag Potkonjak. "Semantic multimodal compression for wearable sensing systems." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690381.
Full textAmft, Oliver. "A wearable earpad sensor for chewing monitoring." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690449.
Full textFrancioso, L., C. De Pascali, I. Farella, C. Martucci, P. Creti, P. Siciliano, and A. Perrone. "Flexible thermoelectric generator for wearable biometric sensors." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690757.
Full textReports on the topic "Wearable Sensors"
Hegarty-Craver, Meghan, Hope Davis-Wilson, Pooja Gaur, Howard Walls, David Dausch, and Dorota Temple. Wearable Sensors for Service Members and First Responders: Considerations for Using Commercially Available Sensors in Continuous Monitoring. RTI Press, February 2024. http://dx.doi.org/10.3768/rtipress.2024.op.0090.2402.
Full textClaus, Ana, Borzooye Jafarizadeh, Azmal Huda Chowdhury, Neziah Pala, and Chunlei Wang. Testbed for Pressure Sensors. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009771.
Full textSlattery, Patrick, Luis Eduardo Cofre Lizama, Jon Wheat, Paul Gastin, Ben Dascombe, and Kane Middleton. The Agreement Between Wearable Sensors and Force Plates for the Analysis of Stride Time. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317494.
Full textImzilene, Ayoub, and Ayoub Lansi. "From Multi-Parameter to Single-Parameter: A Systematic review of Wearable Sensors sensitivity in Seizure Detection". INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2023. http://dx.doi.org/10.37766/inplasy2023.12.0011.
Full textAdlakha, Deepi, Jane Clarke, Perla Mansour, and Mark Tully. Walk-along and cycle-along: Assessing the benefits of the Connswater Community Greenway in Belfast, UK. Property Research Trust, 2021. http://dx.doi.org/10.52915/ghcj1777.
Full textChon, Ki, and Yitzhak Mendelson. Wearable Wireless Sensor for Multi-Scale Physiological Monitoring. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada590832.
Full textBernhart, Severin, Eric Harbour, Ulf Jensen, and Thomas Finkenzeller. Wearable Chest Sensor for Running Stride and Respiration Detection. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317495.
Full textBoero, Riccardo, Peter Thomas Hraber, Kimberly Ann Kaufeld, Elisabeth Ann Moore, Ethan Romero-Severson, John Joseph Ambrosiano, John Leslie Whitton, and Benjamin Hayden Sims. Analysis of Multimodal Wearable Sensor Data to Characterize Social Groups and Influence in Organizations. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1570596.
Full textJones, Michael, Sarah Ridge, Mia Caminita, Kirk E. Bassett, and Dustin Bruening. Automatic Classification of Take-off Type in Figure Skating Jumps Using a Wearable Sensor. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317496.
Full textPayne, John A. Sensing Disaster: The Use of Wearable Sensor Technology to Decrease Firefighter Line-of-Duty Deaths. Fort Belvoir, VA: Defense Technical Information Center, December 2015. http://dx.doi.org/10.21236/ad1009193.
Full text