Academic literature on the topic 'Web-logs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Web-logs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Web-logs"
Reddy, K. Sudheer, G. Partha Saradhi Varma, and I. Ramesh Babu. "Preprocessing the web server logs." ACM SIGSOFT Software Engineering Notes 37, no. 3 (May 16, 2012): 1–5. http://dx.doi.org/10.1145/2180921.2180940.
Full textM., B., and Haseena Begum. "An Efficient Web Recommender System for Web Logs." International Journal of Computer Applications 152, no. 3 (October 17, 2016): 9–12. http://dx.doi.org/10.5120/ijca2016911795.
Full textSong, Bo, and Sheng Bo Chen. "Reorganization of Web Site Structure Using Web Logs." Advanced Materials Research 756-759 (September 2013): 1828–34. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.1828.
Full textJoshila Grace, L. K., V. Maheswari, and Dhinaharan Nagamalai. "Analysis of Web Logs And Web User In Web Mining." International Journal of Network Security & Its Applications 3, no. 1 (January 28, 2011): 99–110. http://dx.doi.org/10.5121/ijnsa.2011.3107.
Full textIngram, Albert L. "Using Web Server Logs in Evaluating Instructional Web Sites." Journal of Educational Technology Systems 28, no. 2 (December 1999): 137–57. http://dx.doi.org/10.2190/r3ae-ucry-njvr-ly6f.
Full textManchanda, Mahesh. "Web Usage Mining: Dynamic Methodology to Preprocessing Web Logs." HELIX 8, no. 5 (August 31, 2018): 3810–15. http://dx.doi.org/10.29042/2018-3810-3815.
Full textMasseglia, F., P. Poncelet, M. Teisseire, and A. Marascu. "Web usage mining: extracting unexpected periods from web logs." Data Mining and Knowledge Discovery 16, no. 1 (September 15, 2007): 39–65. http://dx.doi.org/10.1007/s10618-007-0080-z.
Full textB. Raut, Aditi. "Web Logs Analysis for Finding Brand Status." IOSR Journal of Computer Engineering 16, no. 4 (2014): 78–85. http://dx.doi.org/10.9790/0661-16467885.
Full textHarika, B., and T. Sudha. "Extraction of Knowledge from Web Server Logs Using Web Usage Mining." Asian Journal of Computer Science and Technology 8, S3 (June 5, 2019): 12–15. http://dx.doi.org/10.51983/ajcst-2019.8.s3.2113.
Full textChang, Chih-Kai, Gwo-Dong Chen, and Kou-Liang Ou. "Student Portfolio Analysis by Data Cube Technology for Decision Support of Web-Based Classroom Teacher." Journal of Educational Computing Research 19, no. 3 (October 1998): 307–28. http://dx.doi.org/10.2190/k6x6-9fmd-yeen-kn42.
Full textDissertations / Theses on the topic "Web-logs"
Rao, Rashmi Jayathirtha. "Modeling learning behaviour and cognitive bias from web logs." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492560600002105.
Full textLam, Yin-wan, and 林燕雲. "Senior secondary students use of web-logs in writing Chinese." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37198361.
Full textChiara, Ramon. ""Aplicação de técnicas de data mining em logs de servidores web"." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19012004-093205/.
Full textHolmes, Ashley Joyce. "Web logs in the Post-Secondary Writing Classroom: A Study of Purposes." NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-03222005-205901/.
Full textVillalobos, Luengo César Alexis. "Análisis de archivos Logs semi-estructurados de ambientes Web usando tecnologías Big-Data." Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/140417.
Full textActualmente el volumen de datos que las empresas generan es mucho más grande del que realmente pueden procesar, por ende existe un gran universo de información que se pierde implícito en estos datos. Este proyecto de tesis logró implementar tecnologías Big Data capaces de extraer información de estos grandes volúmenes de datos existentes en la organización y que no eran utilizados, de tal forma de transformarlos en valor para el negocio. La empresa elegida para este proyecto se dedicada al pago de cotizaciones previsionales de forma electrónica por internet. Su función es ser el medio por el cual se recaudan las cotizaciones de los trabajadores del país. Cada una de estas cotizaciones es informada, rendida y publicada a las instituciones previsionales correspondientes (Mutuales, Cajas de Compensación, AFPs, etc.). Para realizar su función, la organización ha implementado a lo largo de sus 15 años una gran infraestructura de alto rendimiento orientada a servicios web. Actualmente esta arquitectura de servicios genera una gran cantidad de archivos logs que registran los sucesos de las distintas aplicaciones y portales web. Los archivos logs tienen la característica de poseer un gran tamaño y a la vez no tener una estructura rigurosamente definida. Esto ha causado que la organización no realice un eficiente procesamiento de estos datos, ya que las actuales tecnologías de bases de datos relaciones que posee no lo permiten. Por consiguiente, en este proyecto de tesis se buscó diseñar, desarrollar, implementar y validar métodos que sean capaces de procesar eficientemente estos archivos de logs con el objetivo de responder preguntas de negocio que entreguen valor a la compañía. La tecnología Big Data utilizada fue Cloudera, la que se encuentra en el marco que la organización exige, como por ejemplo: Que tenga soporte en el país, que esté dentro de presupuesto del año, etc. De igual forma, Cloudera es líder en el mercado de soluciones Big Data de código abierto, lo cual entrega seguridad y confianza de estar trabajando sobre una herramienta de calidad. Los métodos desarrollados dentro de esta tecnología se basan en el framework de procesamiento MapReduce sobre un sistema de archivos distribuido HDFS. Este proyecto de tesis probó que los métodos implementados tienen la capacidad de escalar horizontalmente a medida que se le agregan nodos de procesamiento a la arquitectura, de forma que la organización tenga la seguridad que en el futuro, cuando los archivos de logs tengan un mayor volumen o una mayor velocidad de generación, la arquitectura seguirá entregando el mismo o mejor rendimiento de procesamiento, todo dependerá del número de nodos que se decidan incorporar.
Vasconcelos, Leandro Guarino de. "Uma abordagem para mineração de logs para apoiar a construção de aplicações web adaptativas." Instituto Nacional de Pesquisas Espaciais (INPE), 2017. http://urlib.net/sid.inpe.br/mtc-m21b/2017/07.24.15.06.
Full textCurrently, there are more than 1 billion websites available. In this huge hyperspace, there are many websites that provide exactly the same content or service. Therefore, when the user does not find what she is looking for easily or she faces difficulties during the interaction, she tends to search for another website. In order to fullfil the needs and preferences of todays web users, adaptive websites have been proposed. Existing adaptation approaches usually adapt the content of pages according to the user interest. However, the adaptation of the interface structure in order to meet user needs and preferences is still incipient. In this thesis, an approach is proposed to analyze the user behavior of Web applications during navigation, exploring the mining of client logs, called RUM (Real-time Usage Mining). In this approach, user actions are collected in the applications interface and processed synchronously. Thus, RUM is able to detect usability problems and behavioral patterns for the current application user, while she is browsing the application. In order to facilitate its deployment, RUM provides a toolkit which allows the application to consume information about the user behavior. By using this toolkit, developers are able to code adaptations that are automatically triggered in response to the data provided by the toolkit. Experiments were conducted on different websites to demonstrate the efficiency of the approach in order to support interface adaptations that improve the user experience.
Tanasa, Doru. "Web usage mining : contributions to intersites logs preprocessing and sequential pattern extraction with low support." Nice, 2005. http://www.theses.fr/2005NICE4019.
Full textThe Web use mining (WUM) is a rather research field and it corresponds to the process of knowledge discovery from databases (KDD) applied to the Web usage data. It comprises three main stages : the pre-processing of raw data, the discovery of schemas and the analysis (or interpretation) of results. The quantity of the web usage data to be analysed and its low quality (in particular the absence of structure) are the principal problems in WUM. When applied to these data, the classic algorithms of data mining, generally, give disappointing results in terms of behaviours of the Web sites users (E. G. Obvious sequential patterns, stripped of interest). In this thesis, we bring two significant contributions for a WUM process, both implemented in our toolbox, the Axislogminer. First, we propose a complete methodology for pre-processing the Web logs whose originality consists in its intersites aspect. We propose in our methodology four distinct steps : the data fusion, data cleaning, data structuration and data summarization. Our second contribution aims at discovering from a large pre-processed log file the minority behaviours corresponding to the sequential patterns with low support. For that, we propose a general methodology aiming at dividing the pre-processed log file into a series of sub-logs. Based on this methodology, we designed three approaches for extracting sequential patterns with low support (the sequential, iterative and hierarchical approaches). These approaches we implemented in hybrid concrete methods using algorithms of clustering and sequential pattern mining
Allam, Amir Ali. "Measuring the use of online corporate annual reports through the analysis of web server logs." Thesis, University of Birmingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633067.
Full textTanasa, Doru. "Fouille de données d'usage du Web : Contributions au prétraitement de logs Web Intersites et à l'extraction des motifs séquentiels avec un faible support." Phd thesis, Université de Nice Sophia-Antipolis, 2005. http://tel.archives-ouvertes.fr/tel-00178870.
Full textMantella, Dana G. ""Pro-ana" Web-log uses and gratifications towards understanding the pro-anorexia paradox." unrestricted, 2007. http://etd.gsu.edu/theses/available/etd-04182007-194043/.
Full textCynthia Hoffner, committee chair; Jaye Atkinson, Mary Ann Romski, committee members. Electronic text (90 p.) : digital, PDF file. Title from file title page. Description based on contents viewed Dec. 14, 2007. Includes bibliographical references (p. 67-74).
Books on the topic "Web-logs"
Kline, David. Blog!: How the newest media revolution is changing politics, business, and culture. New York, NY: CDS Books, 2005.
Find full textEisenberg, Bryan, and Jim Novo. The marketer's common sense guide to e-metrics: 22 benchmarks to understand the major trends, key opportunities, and hidden hazards your web logs uncover. [S.l.]: Future Now, Inc., 2002.
Find full textStauffer, Todd. Blog On: Building Online Communities with Web Logs. McGraw-Hill/OsborneMedia, 2002.
Find full textStauffer, Todd. Blog on: Building Online Communities with Web Logs. Tandem Library, 2002.
Find full textStauffer, Todd. Blog On: Building Online Communities with Web Logs. McGraw-Hill/OsborneMedia, 2002.
Find full textBook chapters on the topic "Web-logs"
Fei, Bennie, Jan Eloff, Martin Olivier, and Hein Venter. "Analysis of Web Proxy Logs." In IFIP Advances in Information and Communication Technology, 247–58. Boston, MA: Springer New York, 2006. http://dx.doi.org/10.1007/0-387-36891-4_20.
Full textSchmitz, Andreas, and Olga Yanenko. "Web Server Logs und Logfiles." In Handbuch Methoden der empirischen Sozialforschung, 847–54. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-531-18939-0_65.
Full textSchmitz, Andreas, and Olga Yanenko. "Web Server Logs und Logfiles." In Handbuch Methoden der empirischen Sozialforschung, 991–99. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-21308-4_70.
Full textLabbaci, Hamza, Brahim Medjahed, and Youcef Aklouf. "Learning Interactions from Web Service Logs." In Lecture Notes in Computer Science, 275–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64471-4_22.
Full textYang, Qiang, Charles X. Ling, and Jianfeng Gao. "Mining Web Logs for Actionable Knowledge." In Intelligent Technologies for Information Analysis, 169–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07952-2_8.
Full textYang, Qiang, Henry Haining Zhang, Ian T. Y. Li, and Ye Lu. "Mining Web Logs to Improve Web Caching and Prefetching." In Web Intelligence: Research and Development, 483–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45490-x_62.
Full textGu, Yingqin, Jianwei Cui, Hongyan Liu, Xuan Jiang, Jun He, Xiaoyong Du, and Zhixu Li. "Detecting Hot Events from Web Search Logs." In Web-Age Information Management, 417–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14246-8_41.
Full textSun, Liping, and Xiuzhen Zhang. "Efficient Frequent Pattern Mining on Web Logs." In Advanced Web Technologies and Applications, 533–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24655-8_58.
Full textSun, Hui, Jianhua Sun, and Hao Chen. "Mining Frequent Attack Sequence in Web Logs." In Green, Pervasive, and Cloud Computing, 243–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39077-2_16.
Full textBillerbeck, Bodo, Gianluca Demartini, Claudiu S. Firan, Tereza Iofciu, and Ralf Krestel. "Ranking Entities Using Web Search Query Logs." In Research and Advanced Technology for Digital Libraries, 273–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15464-5_28.
Full textConference papers on the topic "Web-logs"
Kumar, Ravi. "Mining web logs." In the 15th ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1557019.1557022.
Full textSudhamathy, G. "Mining web logs." In the 1st Amrita ACM-W Celebration. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1858378.1858435.
Full textHassan, Muhammad Umair, Kamran Shaukat, Dongmie Niu, Sundas Mahreen, Yingjun Ma, Xiuyang Zhao, and Muhammad Ahmad Shabir. "Web-Logs Prediction with Web Mining." In 2018 2nd IEEE Advanced Information Management,Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2018. http://dx.doi.org/10.1109/imcec.2018.8469256.
Full textJoshi, Karuna P., Anupam Joshi, Yelena Yesha, and Raghu Krishnapuram. "Warehousing and mining Web logs." In the second international workshop. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/319759.319792.
Full textZhou, Jin, Chen Ding, and Dimitrios Androutsos. "Improving web site search using web server logs." In the 2006 conference of the Center for Advanced Studies. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1188966.1188996.
Full textHøjgaard, Christian, Joachim Sejr, and Yun-Gyung Cheong. "Query Disambiguation from Web Search Logs." In Information Technology and Computer Science 2016. Science & Engineering Research Support soCiety, 2016. http://dx.doi.org/10.14257/astl.2016.133.17.
Full textSisodia, Dilip Singh, and Shrish Verma. "Web usage pattern analysis through web logs: A review." In 2012 International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2012. http://dx.doi.org/10.1109/jcsse.2012.6261924.
Full textMalik, S. K., N. Prakash, and S. A. M. Rizvi. "Ontology and Web Usage Mining towards an Intelligent Web Focusing Web Logs." In 2010 International Conference on Computational Intelligence and Communication Networks (CICN 2010). IEEE, 2010. http://dx.doi.org/10.1109/cicn.2010.90.
Full textGoel, Neha, and C. K. Jha. "Preprocessing web logs: A critical phase in web usage mining." In 2015 International Conference on Advances in Computer Engineering and Applications (ICACEA). IEEE, 2015. http://dx.doi.org/10.1109/icacea.2015.7164776.
Full textRožanc, Igor, and Marko Poženel. "Reconstruction of the Web Application Hypertext Model using Web Logs." In Software Engineering / 811: Parallel and Distributed Computing and Networks / 816: Artificial Intelligence and Applications. Calgary,AB,Canada: ACTAPRESS, 2014. http://dx.doi.org/10.2316/p.2014.810-032.
Full textReports on the topic "Web-logs"
Joshi, Anupam, and Raghu Krishnapuram. On Mining Web Access Logs. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada461525.
Full text