Dissertations / Theses on the topic 'Web usage log mining'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Web usage log mining.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Khairo-Sindi, Mazin Omar. "Framework for web log pre-processing within web usage mining." Thesis, University of Manchester, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488456.
Full textShun, Yeuk Kiu. "Web mining from client side user activity log /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?COMP%202002%20SHUN.
Full textIncludes bibliographical references (leaves 85-90). Also available in electronic version. Access restricted to campus users.
Vlk, Vladimír. "Získávání znalostí z webových logů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236196.
Full textTanasa, Doru. "Web usage mining : contributions to intersites logs preprocessing and sequential pattern extraction with low support." Nice, 2005. http://www.theses.fr/2005NICE4019.
Full textThe Web use mining (WUM) is a rather research field and it corresponds to the process of knowledge discovery from databases (KDD) applied to the Web usage data. It comprises three main stages : the pre-processing of raw data, the discovery of schemas and the analysis (or interpretation) of results. The quantity of the web usage data to be analysed and its low quality (in particular the absence of structure) are the principal problems in WUM. When applied to these data, the classic algorithms of data mining, generally, give disappointing results in terms of behaviours of the Web sites users (E. G. Obvious sequential patterns, stripped of interest). In this thesis, we bring two significant contributions for a WUM process, both implemented in our toolbox, the Axislogminer. First, we propose a complete methodology for pre-processing the Web logs whose originality consists in its intersites aspect. We propose in our methodology four distinct steps : the data fusion, data cleaning, data structuration and data summarization. Our second contribution aims at discovering from a large pre-processed log file the minority behaviours corresponding to the sequential patterns with low support. For that, we propose a general methodology aiming at dividing the pre-processed log file into a series of sub-logs. Based on this methodology, we designed three approaches for extracting sequential patterns with low support (the sequential, iterative and hierarchical approaches). These approaches we implemented in hybrid concrete methods using algorithms of clustering and sequential pattern mining
Kilic, Sefa. "Clustering Frequent Navigation Patterns From Website Logs Using Ontology And Temporal Information." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12613979/index.pdf.
Full textBenkovská, Petra. "Web Usage Mining." Master's thesis, Vysoká škola ekonomická v Praze, 2007. http://www.nusl.cz/ntk/nusl-3950.
Full textTanasa, Doru. "Fouille de données d'usage du Web : Contributions au prétraitement de logs Web Intersites et à l'extraction des motifs séquentiels avec un faible support." Phd thesis, Université de Nice Sophia-Antipolis, 2005. http://tel.archives-ouvertes.fr/tel-00178870.
Full textNgok, Man Chan. "Log mining to support web query expansions." Thesis, University of Macau, 2008. http://umaclib3.umac.mo/record=b1783608.
Full textLeibold, Markus. "Web Log Mining als Controllinginstrument der PR." [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11675715.
Full textOosthuizen, Craig Peter. "Web usage mining of organisational web sites." Thesis, Nelson Mandela Metropolitan University, 2005. http://hdl.handle.net/10948/399.
Full textNorguet, Jean-Pierre. "Semantic analysis in web usage mining." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210890.
Full textIndeed, according to organizations theory, the higher levels in the organizations need summarized and conceptual information to take fast, high-level, and effective decisions. For Web sites, these levels include the organization managers and the Web site chief editors. At these levels, the results produced by Web analytics tools are mostly useless. Indeed, most of these results target Web designers and Web developers. Summary reports like the number of visitors and the number of page views can be of some interest to the organization manager but these results are poor. Finally, page-group and directory hits give the Web site chief editor conceptual results, but these are limited by several problems like page synonymy (several pages contain the same topic), page polysemy (a page contains several topics), page temporality, and page volatility.
Web usage mining research projects on their part have mostly left aside Web analytics and its limitations and have focused on other research paths. Examples of these paths are usage pattern analysis, personalization, system improvement, site structure modification, marketing business intelligence, and usage characterization. A potential contribution to Web analytics can be found in research about reverse clustering analysis, a technique based on self-organizing feature maps. This technique integrates Web usage mining and Web content mining in order to rank the Web site pages according to an original popularity score. However, the algorithm is not scalable and does not answer the page-polysemy, page-synonymy, page-temporality, and page-volatility problems. As a consequence, these approaches fail at delivering summarized and conceptual results.
An interesting attempt to obtain such results has been the Information Scent algorithm, which produces a list of term vectors representing the visitors' needs. These vectors provide a semantic representation of the visitors' needs and can be easily interpreted. Unfortunately, the results suffer from term polysemy and term synonymy, are visit-centric rather than site-centric, and are not scalable to produce. Finally, according to a recent survey, no Web usage mining research project has proposed a satisfying solution to provide site-wide summarized and conceptual audience metrics.
In this dissertation, we present our solution to answer the need for summarized and conceptual audience metrics in Web analytics. We first described several methods for mining the Web pages output by Web servers. These methods include content journaling, script parsing, server monitoring, network monitoring, and client-side mining. These techniques can be used alone or in combination to mine the Web pages output by any Web site. Then, the occurrences of taxonomy terms in these pages can be aggregated to provide concept-based audience metrics. To evaluate the results, we implement a prototype and run a number of test cases with real Web sites.
According to the first experiments with our prototype and SQL Server OLAP Analysis Service, concept-based metrics prove extremely summarized and much more intuitive than page-based metrics. As a consequence, concept-based metrics can be exploited at higher levels in the organization. For example, organization managers can redefine the organization strategy according to the visitors' interests. Concept-based metrics also give an intuitive view of the messages delivered through the Web site and allow to adapt the Web site communication to the organization objectives. The Web site chief editor on his part can interpret the metrics to redefine the publishing orders and redefine the sub-editors' writing tasks. As decisions at higher levels in the organization should be more effective, concept-based metrics should significantly contribute to Web usage mining and Web analytics.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Mendoza, Rocha Marcelo Gabriel. "Query log mining in search engines." Tesis, Universidad de Chile, 2007. http://www.repositorio.uchile.cl/handle/2250/102877.
Full textLa Web es un gran espacio de información donde muchos recursos como documentos, imágenes u otros contenidos multimediales pueden ser accesados. En este contexto, varias tecnologías de la información han sido desarrolladas para ayudar a los usuarios a satisfacer sus necesidades de búsqueda en la Web, y las más usadas de estas son los motores de búsqueda. Los motores de búsqueda permiten a los usuarios encontrar recursos formulando consultas y revisando una lista de respuestas. Uno de los principales desafíos para la comunidad de la Web es diseñar motores de búsqueda que permitan a los usuarios encontrar recursos semánticamente conectados con sus consultas. El gran tamaño de la Web y la vaguedad de los términos más comúnmente usados en la formulación de consultas es un gran obstáculo para lograr este objetivo. En esta tesis proponemos explorar las selecciones de los usuarios registradas en los logs de los motores de búsqueda para aprender cómo los usuarios buscan y también para diseñar algoritmos que permitan mejorar la precisión de las respuestas recomendadas a los usuarios. Comenzaremos explorando las propiedades de estos datos. Esta exploración nos permitirá determinar la naturaleza dispersa de estos datos. Además presentaremos modelos que nos ayudarán a entender cómo los usuarios buscan en los motores de búsqueda. Luego, exploraremos las selecciones de los usuarios para encontrar asociaciones útiles entre consultas registradas en los logs. Concentraremos los esfuerzos en el diseño de técnicas que permitirán a los usuarios encontrar mejores consultas que la consulta original. Como una aplicación, diseñaremos métodos de reformulación de consultas que ayudarán a los usuarios a encontrar términos más útiles mejorando la representación de sus necesidades. Usando términos de documentos construiremos representaciones vectoriales para consultas. Aplicando técnicas de clustering podremos determinar grupos de consultas similares. Usando estos grupos de consultas, introduciremos métodos para recomendación de consultas y documentos que nos permitirán mejorar la precisión de las recomendaciones. Finalmente, diseñaremos técnicas de clasificación de consultas que nos permitirán encontrar conceptos semánticamente relacionados con la consulta original. Para lograr esto, clasificaremos las consultas de los usuarios en directorios Web. Como una aplicación, introduciremos métodos para la manutención automática de los directorios.
Ba-Omer, Hafidh Taher. "A framework for educational web usage mining." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492063.
Full textSalin, Suleyman. "Web Usage Mining And Recommendation With Semantic Information." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610483/index.pdf.
Full textPabarškaitė, Židrina. "Enhancements of pre-processing, analysis and presentation techniques in web log mining." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20090713_142203-05841.
Full textInternetui skverbiantis į mūsų gyvenimą, vis didesnis dėmesys kreipiamas į informacijos pateikimo kokybę, bei į tai, kaip informacija yra pateikta. Disertacijos tyrimų sritis yra žiniatinklio serverių kaupiamų duomenų gavyba bei duomenų pateikimo galutiniam naudotojui gerinimo būdai. Tam reikalingos žinios išgaunamos iš žiniatinklio serverio žurnalo įrašų, kuriuose fiksuojama informacija apie išsiųstus vartotojams žiniatinklio puslapius. Darbo tyrimų objektas yra žiniatinklio įrašų gavyba, o su šiuo objektu susiję dalykai: žiniatinklio duomenų paruošimo etapų tobulinimas, žiniatinklio tekstų analizė, duomenų analizės algoritmai prognozavimo ir klasifikavimo uždaviniams spręsti. Pagrindinis disertacijos tikslas – perprasti svetainių naudotojų elgesio formas, tiriant žiniatinklio įrašus, tobulinti paruošimo, analizės ir rezultatų interpretavimo etapų metodologijas. Darbo tyrimai atskleidė naujas žiniatinklio duomenų analizės galimybes. Išsiaiškinta, kad internetinių duomenų – žiniatinklio įrašų švarinimui buvo skirtas nepakankamas dėmesys. Parodyta, kad sumažinus nereikšmingų įrašų kiekį, duomenų analizės procesas tampa efektyvesnis. Todėl buvo sukurtas naujas metodas, kurį pritaikius žinių pateikimas atitinka tikruosius vartotojų maršrutus. Tyrimo metu nustatyta, kad naudotojų naršymo istorija yra skirtingų ilgių, todėl atlikus specifinį duomenų paruošimą – suformavus fiksuoto ilgio vektorius, tikslinga taikyti iki šiol nenaudotus praktikoje sprendimų medžių algoritmus... [toliau žr. visą tekstą]
Khalil, Faten. "Combining web data mining techniques for web page access prediction." University of Southern Queensland, Faculty of Sciences, 2008. http://eprints.usq.edu.au/archive/00004341/.
Full textLou, Wenwu. "Characterizing Web linking and usage with hierarchical models /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?COMP%202005%20LOU.
Full textKarlsson, Sophie. "Datainsamling med Web Usage Mining : Lagringsstrategier för loggning av serverdata." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9467.
Full textWeb applications complexity and the amount of advanced services increases. Logging activities can increase the understanding of users behavior and needs, but is used too much without relevant information. More advanced systems brings increased requirements for performance and logging becomes even more demanding for the systems. There is need of smarter systems, development within the techniques for performance improvements and techniques for data collection. This work will investigate how response times are affected when logging server data, according to the data collection phase in web usage mining, depending on storage strategies. The hypothesis is that logging may degrade response times even further. An experiment was conducted in which four different storage strategies are used to store server data with different table- and database structures, to see which strategy affects the response times least. The experiment proves statistically significant difference between the storage strategies with ANOVA. Storage strategy 4 proves the best effect for the performance average response time compared with storage strategy 2, which proves the most negative effect for the average response time. Future work would be interesting for strengthening the results.
Bayir, Murat Ali. "A New Reactive Method For Processing Web Usage Data." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12607323/index.pdf.
Full textSmart-SRA'
is introduced. Web usage mining is a type of web mining, which exploits data mining techniques to discover valuable information from navigations of Web users. As in classical data mining, data processing and pattern discovery are the main issues in web usage mining. The first phase of the web usage mining is the data processing phase including session reconstruction. Session reconstruction is the most important task of web usage mining since it directly affects the quality of the extracted frequent patterns at the final step, significantly. Session reconstruction methods can be classified into two categories, namely '
reactive'
and '
proactive'
with respect to the data source and the data processing time. If the user requests are processed after the server handles them, this technique is called as &lsquo
reactive&rsquo
, while in &lsquo
proactive&rsquo
strategies this processing occurs during the interactive browsing of the web site. Smart-SRA is a reactive session reconstruction techique, which uses web log data and the site topology. In order to compare Smart-SRA with previous reactive methods, a web agent simulator has been developed. Our agent simulator models behavior of web users and generates web user navigations as well as the log data kept by the web server. In this way, the actual user sessions will be known and the successes of different techniques can be compared. In this thesis, it is shown that the sessions generated by Smart-SRA are more accurate than the sessions constructed by previous heuristics.
Wu, Hao-cun, and 吳浩存. "A multidimensional data model for monitoring web usage and optimizing website topology." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B29528215.
Full textYilmaz, Hakan. "Using Ontology Based Web Usage Mining And Object Clustering For Recommendation." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611902/index.pdf.
Full textcontent ratings, user sessions are clustered on a iv semantic level to capture different behavioral groups. Since semantic information is used for the clustering distance function, each cluster represents a behavior group instead of simpler data groups. New users are then assigned to individual clusters that best represent their behavior and recommendations are generated accordingly. In this thesis we use the recommendation results as a means for measuring the effectiveness of the clusters we have generated. We have compared the results obtained using the ontological data and the results obtained without using it and shown that semantic integrating semantic knowledge increases both precision and recall.
Palmer, Bart C. "Web Usage Mining: Application To An Online Educational Digital Library Service." DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1215.
Full textDvořák, Jan Bc. "Web Usage Mining - popis, metody a nástroje, možné aplikace, konkrétní řešení." Master's thesis, Vysoká škola ekonomická v Praze, 2007. http://www.nusl.cz/ntk/nusl-1979.
Full textÖzakar, Belgin Püskülcü Halis. "Finding And Evaluating Patterns In Wes Repository Using Database Technology And Data Mining Algorithms/." [s.l.]: [s.n.], 2002. http://library.iyte.edu.tr/tezler/master/bilgisayaryazilimi/T000130.pdf.
Full textNagi, Mohamad. "Integrating Network Analysis and Data Mining Techniques into Effective Framework for Web Mining and Recommendation. A Framework for Web Mining and Recommendation." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14200.
Full textWang, Hui. "Mining novel Web user behavior models for access prediction /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?COMP%202003%20WANG.
Full textIncludes bibliographical references (leaves 83-91). Also available in electronic version. Access restricted to campus users.
Kong, Wei. "EXPLORING HEALTH WEBSITE USERS BY WEB MINING." Thesis, Universal Access in Human-Computer Interaction. Applications and Services Lecture Notes in Computer Science, 2011, Volume 6768/2011, 376-383, DOI: 10.1007/978-3-642-21657-2_40, 2011. http://hdl.handle.net/1805/2810.
Full textWith the continuous growth of health information on the Internet, providing user-orientated health service online has become a great challenge to health providers. Understanding the information needs of the users is the first step to providing tailored health service. The purpose of this study is to examine the navigation behavior of different user groups by extracting their search terms and to make some suggestions to reconstruct a website for more customized Web service. This study analyzed five months’ of daily access weblog files from one local health provider’s website, discovered the most popular general topics and health related topics, and compared the information search strategies for both patient/consumer and doctor groups. Our findings show that users are not searching health information as much as was thought. The top two health topics which patients are concerned about are children’s health and occupational health. Another topic that both user groups are interested in is medical records. Also, patients and doctors have different search strategies when looking for information on this website. Patients get back to the previous page more often, while doctors usually go to the final page directly and then leave the page without coming back. As a result, some suggestions to redesign and improve the website are discussed; a more intuitive portal and more customized links for both user groups are suggested.
Zhao, Hongkun. "Automatic wrapper generation for the extraction of search result records from search engines." Diss., Online access via UMI:, 2007.
Find full textSoztutar, Enis. "Mining Frequent Semantic Event Patterns." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611007/index.pdf.
Full textplay video event'
with properties '
video'
, '
length of video'
, '
name of video'
, etc. When the event objects belong to the domain model of the web site'
s ontology, they are referred as semantic events. In this work, we propose a new algorithm and associated framework for mining patterns of semantic events from the usage logs. We present a method for tracking and logging domain-level events of a web site, adding semantic information to events, an ordering of events in respect to the genericity of the event, and an algorithm for computing sequences of frequent events.
Mužík, Zbyněk. "Web Analytics." Master's thesis, Vysoká škola ekonomická v Praze, 2006. http://www.nusl.cz/ntk/nusl-295.
Full textJiang, Hao, and 江浩. "Personalized web search re-ranking and content recommendation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/197548.
Full textpublished_or_final_version
Computer Science
Doctoral
Doctor of Philosophy
Vollino, Bruno Winiemko. "Descoberta de perfis de uso de web services." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/83669.
Full textDuring the life cycle of a web service, several changes are made in its interface, which possibly are incompatible with regard to current usage and may break client applications. Providers must make decisions about changes on their services, most often without insight on the effect these changes will have over their customers. Existing research and tools fail to input provider with proper knowledge about the actual usage of the service interface’s features, considering the distinct types of customers, making it impossible to assess the actual impact of changes. This work presents a framework for the discovery of web service usage profiles, which constitute a descriptive model of the usage patterns found in distinct groups of clients, concerning the usage of service interface features. The framework supports a user in the process of knowledge discovery over service usage data through semi-automatic and configurable tasks, which assist the preparation and analysis of usage data with the minimum user intervention possible. The framework performs the monitoring of web services interactions, loads pre-processed usage data into a unified database, and supports the generation of usage profiles. Data mining techniques are used to group clients according to their usage patterns of features, and these groups are used to build service usage profiles. The entire process is configured via parameters, which allows the user to determine the level of detail of the usage information included in the profiles, and the criteria for evaluating the similarity between client applications. The proposal is validated through experiments with synthetic data, simulated according to features expected in the use of a real service. The experimental results demonstrate that the proposed framework allows the discovery of useful service usage profiles, and provide evidences about the proper parameterization of the framework.
Khasawneh, Natheer Yousef. "Toward Better Website Usage: Leveraging Data Mining Techniques and Rough Set Learning to Construct Better-to-use Websites." Akron, OH : University of Akron, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1120534472.
Full text"August, 2005." Title from electronic dissertation title page (viewed 01/14/2006) Advisor, John Durkin; Committee members, John Welch, James Grover, Yueh-Jaw Lin, Yingcai Xiao, Chien-Chung Chan; Department Chair, Alex Jose De Abreu-Garcia; Dean of the College, George Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
Villar, Escobar Osvaldo Pablo. "Minería y Personalización de un Sitio Web para Celulares." Tesis, Universidad de Chile, 2007. http://www.repositorio.uchile.cl/handle/2250/104823.
Full textAgarwal, Khushbu. "A partition based approach to approximate tree mining a memory hierarchy perspective /." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1196284256.
Full textKliegr, Tomáš. "Clickstream Analysis." Master's thesis, Vysoká škola ekonomická v Praze, 2007. http://www.nusl.cz/ntk/nusl-2065.
Full textNenadić, Oleg. "An implementation of correspondence analysis in R and its application in the analysis of web usage /." Göttingen : Cuvillier, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016229974&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textKhrouf, Laamouri Lilia. "Vers une meilleure compréhension des réactions des internautes à l'atmosphère des sites web marchands : rôle de l'imagerie mentale." Nantes, 2012. http://www.theses.fr/2012NANT4022.
Full textThe purpose of this research was to contribute to the comprehension of web surfers' reactions to commercial websites' atmosphere by taking into account mental imagery's role. Literature from different research areas (Internet, advertising, psychology, etc. ) and two exploratory studies allowed us to construct a conceptual model and to propose research hypotheses. The validation of the conceptual model was made through the implementation of an experiment to which 400 web surfers participated. The results showed that mental imagery conveyed by commercial websites mediates the impact of website's atmosphere on web surfers' reactions. Specifically, it was proven that when websites were picture-based and perceived as interactive, mental imagery was enhanced. It was also demonstrated that compared to red backgrounds websites, blue ones lead to mental images that are more vivid and positive but less numerous and related to oneself. The impact of the color of websites' backgrounds is however moderated by web surfers' involvement toward the product sold. Finally, it appears that vividness/clarity and valence of mental imagery improve affective, attitudinal and conative web surfers' reactions. Quantity/ease of mental images' construction and their self-relatedness only can enhance some of them. These results led to the proposition of managerial recommendations and some suggestions for future research
Jadhav, Ashutosh. "Knowledge Driven Search Intent Mining." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1464464707.
Full textFalchi, Cecilia. "Monitoring di un portale web: modello e implementazione." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7993/.
Full textCharrad, Malika. "Une approche générique pour l'analyse croisant contenu et usage des sites Web par des méthodes de bipartitionnement." Phd thesis, Conservatoire national des arts et metiers - CNAM, 2010. http://tel.archives-ouvertes.fr/tel-00516367.
Full textRigo, Sandro Jose. "Integração de recursos da web semântica e mineração de uso para personalização de sites." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2008. http://hdl.handle.net/10183/15324.
Full textOne of the reasons for the increasing development observed in Data Mining area is the raising in the quantity of documents generated and stored in digital format, structured or not. The Web plays central role in this context and some specific techniques can be observed, as structure, content and usage mining. This increasing information offer in the Web brings the cognitive overload problem. The Adaptive Hypermedia permits a reduction of this problem, when the contents of selected documents are presented in accordance with the user needs, preferences and objectives. Briefly put, this adaptation is carried out on the basis of relationship between information concerning the application domain and information concerning the user profile. One of the important points in Adaptive Hypermedia systems research is to be found in the generation and maintenance of the user profiles. Some approaches seek to create the user profile from data obtained from registration, others incorporate the results of interviews, and some have the objective of automatic acquisition of information by following the usage. Another fundamental research point is related with the applications construction, where can be observed the use of Web semantic resources, such as semantic annotation and domain ontologies. This work describes the architecture for automatic user profile acquisition, using domain ontologies and Web usage mining. The main objective is the integration of usage data, obtained from user sessions, with semantic description, obtained from a domain ontology. This way it is possible to identify more precisely the interests and needs of a typical user. The implementation of an Adaptive Hypermedia application based on the concepts of semantic application modeling and the use of Web services resources that were integrated into the proposal permitted greater flexibility and experimentation possibilities.
Lee, Jong Gun. "User behavior modeling of content generation and consumption in online social networks." Paris 6, 2011. http://www.theses.fr/2011PA066032.
Full textJudge, John Thomas. "A new model for the marginal distribution of HTTP request rate." School of Electrical, Computer and Telecommunications Engineering - Faculty of Informatics, 2004. http://ro.uow.edu.au/theses/265.
Full textGomes, João Fernando dos Anjos. "Recomendação de navegação em portais da internet como um serviço suportado em ferramentas Web Analytics." Master's thesis, Instituto Politécnico de Setúbal. Escola Superior de Ciências Empresariais, 2016. http://hdl.handle.net/10400.26/17292.
Full textCom o constante crescimento da utilização da Internet o número de websites e respetivas páginas contínua a evoluir também, por este motivo, verifica-se uma necessidade de alinhar a experiência de utilização com os objetivos gerais de um website. Para satisfazer esta necessidade o sistema de recomendação proposto sugere páginas ao utilizador que possam ser do seu interesse com base em perfis de navegação de um website em geral. A maioria dos sistemas de recomendação são baseados em regras de associação ou palavras chave (quando o conteúdo é considerado). No entanto, quando os dados não são suficientes ou são muito dispersos e a ordem é considerada, uma abordagem tradicional pode ser inadequada. Por outro lado, assumindo outro paradigma, a área de Web Analytics, tem obtido um crescimento considerável, através de ferramentas robustas que permitem a recolha e análise de dados da internet, a fim de compreender e otimizar eficiência e eficácia do website. O presente artigo propõe o desenvolvimento de um sistema de recomendação baseado na ferramenta Google Analytics. O protótipo é composto por dois componentes principais que são: 1) um serviço responsável pela construção e lógica associada à criação das recomendações; 2) uma biblioteca incorporável em qualquer website que providenciará um widget de recomendação configurável. Avaliações preliminares constataram que a implementação segue a lógica do modelo proposto.
As the Internet usage keeps increasing, the number of web sites and hence the number of web pages also keeps increasing, so there is a need to align the user experience with the overall websites purposes. Toward this requirement, the proposed recommendation systems suggest the user pages that might be of its interest based on past navigation profiles of overall site usage. Most of existing recommendation systems are based on association rules or based on keywords (when content is considered). However, on usage data shortage or sparse data and if sequential order is to be considered such traditional approaches may become unsuitable. Conversely, the Web Analytics arena, assuming other paradigm, has experienced a considerable growth through mature tools that allow the collection and analysis of internet data in order to understand and optimize website efficiency and efficacy. This work proposes the development of a recommendation system based on the Google Analytics tool. The prototype is constituted by two main components which are: 1) a service responsible for the construction and associated logic that underlies recommendations generation; 2) an embeddable library on any website that will furnish website with a configurable recommendation widget. Preliminary evaluations had showed that the implementation follows the logic of the proposed model.
Persson, Pontus. "Identifying Early Usage Patterns That Increase User Retention Rates In A Mobile Web Browser." Thesis, Linköpings universitet, Databas och informationsteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137793.
Full textMayer, Thomas. "Personalisierungsstrategien im E-Commerce : die Webloganalyse als Instrument der Personalisierung im Rahmen des eCRM /." Frankfurt am Main [u.a.] : Lang, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=015055243&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA.
Full textPabarškaitė, Židrina. "Žiniatinklio įrašų gavybos paruošimo, analizės ir rezultatų pateikimo naudotojui tobulinimas." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20090713_142146-18729.
Full textTopicality of the problem – Internet is becoming an important part of our life; therefore more attention is paid to the information quality on the web and how it is displayed to the user. This knowledge can be extracted by gathering web servers’ data – log files, where all users’ navigational patters are recorded. The research area of this work is web log data analysis in order to enhance information presentation on the web. Web log data analysis steps are similar to other kind of data analysis (e. g. financial, medical) but some processes are different and unique. The research objects of the dissertation are web log data cleaning methods, data mining algorithms and web text mining. The key aim of the work is to improve pattern discovery steps mining web log data in order to: 1. improve the quality of the data for researchers who analyse users behaviour, 2. improve the ways how information is presented, to speed up information display to the end user.
Bousbia, Nabila. "Analyse des traces de navigation des apprenants dans un environnement de formation dans une perspective de détection automatique des styles d'apprentissage." Paris 6, 2011. http://www.theses.fr/2011PA066011.
Full textMurgue, Thierry. "Extraction de données et apprentissage automatique pour les sites web adaptatifs." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2006. http://tel.archives-ouvertes.fr/tel-00366586.
Full text