Academic literature on the topic 'Weeds Biological control South Australia'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Weeds Biological control South Australia.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Weeds Biological control South Australia"

1

Scott, John K. "Biology and climatic requirements of Perapion antiquum (Coleoptera: Apionidae) in southern Africa: implications for the biological control of Emexspp. in Australia." Bulletin of Entomological Research 82, no. 3 (September 1992): 399–406. http://dx.doi.org/10.1017/s0007485300041195.

Full text
Abstract:
AbstractThe potential distribution of the South African weevil, Perapion antiquum (Gyllenhal), a biological control agent for the weeds Emex spp., was deter mined by the computer program CLIMEX, using its native distribution, phenology and abundance together with development parameters. The predicted distribution included parts of Hawaii where the weevil successfully controlled Emex australis and E. spinosa. In Australia, sites of past unsuccessful releases have climates that this analysis indicates are unsuitable for the insect. The most favourable regions for establishment of the weevil are
APA, Harvard, Vancouver, ISO, and other styles
2

Leys, AR, RL Amor, AG Barnett, and B. Plater. "Evaluation of herbicides for control of summer-growing weeds on fallows in south-eastern Australia." Australian Journal of Experimental Agriculture 30, no. 2 (1990): 271. http://dx.doi.org/10.1071/ea9900271.

Full text
Abstract:
Eighteen herbicides or herbicide tankmixes were evaluated over 3 years (1987-89) for their control of 11 important summer-growing weeds on fallows in southern New South Wales and the Wimmera area of Victoria. Each of the weeds was effectively controlled by at least 1 herbicide. The tank-mixes of glyphosate plus metsulfuron (270 + 4.2 g a.i./ha) and glyphosate plus 2,4-D ester (270 + 320 g a.i./ha) were the most effective treatments, each giving an average of 68% control of all species. Hogweed (Polygolzunz avicu1ar.e L.), prickly paddy melon (Cucumis myriocarpris Naudin), spear thistle [Cirsiu
APA, Harvard, Vancouver, ISO, and other styles
3

Scott, J. K., and P. B. Yeoh. "Bionomics and the predicted distribution of the aphid Brachycaudus rumexicolens (Hemiptera: Aphididae)." Bulletin of Entomological Research 89, no. 1 (January 1999): 97–106. http://dx.doi.org/10.1017/s0007485399000127.

Full text
Abstract:
AbstractDevelopment rates of the aphid, Brachycaudus rumexicolens (Patch), a recent arrival in Australia and a potential biological control agent against weeds in the family Polygonaceae, were measured over a range of constant temperatures. The theoretical lower limit for development is 6.4°C and the upper limit 32°C. Maximum fecundity per day was reached at 19°C. The rate of increase peaked at about 28°C giving a population doubling time of less than two days. These values were used with the current distribution to develop a CLIMEX model to predict the potential world distribution of the aphi
APA, Harvard, Vancouver, ISO, and other styles
4

Walker, S. R., I. N. Taylor, G. Milne, V. A. Osten, Z. Hoque, and R. J. Farquharson. "A survey of management and economic impact of weeds in dryland cotton cropping systems of subtropical Australia." Australian Journal of Experimental Agriculture 45, no. 1 (2005): 79. http://dx.doi.org/10.1071/ea03189.

Full text
Abstract:
In dryland cotton cropping systems, the main weeds and effectiveness of management practices were identified, and the economic impact of weeds was estimated using information collected in a postal and a field survey of Southern Queensland and northern New South Wales. Forty-eight completed questionnaires were returned, and 32 paddocks were monitored in early and late summer for weed species and density. The main problem weeds were bladder ketmia (Hibiscus trionum), common sowthistle (Sonchus oleraceus), barnyard grasses (Echinochloa spp.), liverseed grass (Urochloa panicoides) and black bindwe
APA, Harvard, Vancouver, ISO, and other styles
5

Taylor, AJ. "Influence of weed competition on autumn-sown lucerne in south-eastern Australia and the field comparison of herbicides and mowing for weed control." Australian Journal of Experimental Agriculture 27, no. 6 (1987): 825. http://dx.doi.org/10.1071/ea9870825.

Full text
Abstract:
A field experiment in autumn-sown lucerne was conducted at Tatura to quantify the growth of winter weeds and the effects of weeds on lucerne seedling establishment, plant densities and hay production over the first year of cutting. In addition, mowing treatments and a range of herbicides were evaluated with respect to weed control. Weed growth rates in spring of up to 114 kg ha-l day-1 DM and high yields of annual winter weeds excluded lucerne (Medicago sativa L. cv. Delkalb 167) almost entirely from the first hay cut and significantly reduced seedling vigour and plant densities. The unsprayed
APA, Harvard, Vancouver, ISO, and other styles
6

Lemerle, D., B. Verbeek, and S. Diffey. "Influences of field pea (Pisum sativum) density on grain yield and competitiveness with annual ryegrass (Lolium rigidum) in south-eastern Australia." Australian Journal of Experimental Agriculture 46, no. 11 (2006): 1465. http://dx.doi.org/10.1071/ea04233.

Full text
Abstract:
The variation in field pea grain yield and competitiveness with annual ryegrass due to crop density, row spacing and cultivar was determined to enable farmers to better manage weeds with cultural control tactics. Crop density varied with seeding rate, cultivar, row spacing and year. Higher seeding rates were required to reach equivalent plant densities in cv. Dinkum (short, semi-leafless) compared with cv. Dundale (tall, conventional-leaf), and at 36 cm compared with 18 cm row spacing. Field pea grain yield was reduced more at low crop densities, in Dinkum, at 36 cm row spacing, and in the pre
APA, Harvard, Vancouver, ISO, and other styles
7

Giles, I., P. T. Bailey, R. Fox, R. Coles, and T. J. Wicks. "Prospects for biological control of cutleaf mignonette, Reseda lutea (Resedaceae), by Cercospora resedae and other pathogens." Australian Journal of Experimental Agriculture 42, no. 1 (2002): 37. http://dx.doi.org/10.1071/ea01070.

Full text
Abstract:
Four leaf pathogens were screened as biological control agents for the weed Reseda lutea (Resedaceae) in South Australia. Cercospora resedae isolated from Reseda luteola growing in south-eastern Australia produced a maximum damage to R. lutea seedlings of 54% of leaf area damaged at 22°C and 96% of leaf area damaged at 27°C under laboratory test conditions. By contrast, European isolates of C. resedae from both R. lutea and R. luteola produced a maximum of 10% leaf area damage to R. lutea seedlings. Field releases of Australian C. resedae failed to establish in dense populations of R. lutea on
APA, Harvard, Vancouver, ISO, and other styles
8

Seymour, M. "Narbon bean (Vicia narbonensis) agronomy in south-western Australia." Australian Journal of Experimental Agriculture 46, no. 10 (2006): 1355. http://dx.doi.org/10.1071/ea04091.

Full text
Abstract:
Narbon bean (Vicia narbonensis L.) shows promise as a fodder, green manure and grain crop in south-western Australia. This study examines the effect of time of sowing (2 experiments), plant density (3 experiments) and reaction to herbicides (4 experiments on tolerance to herbicides and 1 experiment on removing narbon bean from a wheat crop) in 10 separate field experiments sown at 4 locations in the mallee region of Western Australia from 1998 to 2001. Narbon bean was found to be unresponsive to changes in sowing date with yield maintained until the first week of June. The optimum plant densit
APA, Harvard, Vancouver, ISO, and other styles
9

Adair, R. J., and J. K. Scott. "Distribution, life history and host specificity of Chrysolina picturata and Chrysolina sp. B (Coleoptera: Chrysomelidae), two biological control agents for Chrysanthemoides monilifera (Compositae)." Bulletin of Entomological Research 87, no. 4 (August 1997): 331–41. http://dx.doi.org/10.1017/s0007485300037354.

Full text
Abstract:
AbstractThe southern African shrubs Chrysanthemoides monilifera monilifera and C. m. rotundata (Compositae) are serious weeds of native vegetation in Australia and are targets for classical biological control. In host specificity tests using 69 species from 25 families, two leaf-feeding chrysomelid beetles, Chrysolina picturata (Clark) and Chrysolina sp. B, were able to complete development on only Chrysanthemoides monilifera and C. incana. The subspecies Chrysanthemoides m. monilifera was the superior host for both Chrysolina picturata and Chrysolina sp. B. Feeding and limited development of
APA, Harvard, Vancouver, ISO, and other styles
10

Campbell, MH. "Extending the frontiers of aerially sown pastures in temperate Australia: a review." Australian Journal of Experimental Agriculture 32, no. 1 (1992): 137. http://dx.doi.org/10.1071/ea9920137.

Full text
Abstract:
Over the past 40 years large areas of pastures on hill country in temperate Australia have been improved through aerial distribution of herbicides, pesticides, seed, and fertiliser, which has increased animal production and helped to control weeds. Refinements detailed in this review could extend the use of these techniques to promote sustainable systems by the establishment of perennial pasture species on unploughed land. It is argued that the most urgent requirement is ensuring that aerial spraying is not abolished by government regulation in response to demands by specialist groups, because
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Weeds Biological control South Australia"

1

Baker, Jeanine. "Factors affecting the establishment of a classical biological control agent, the horehound plume moth (Wheeleria spilodactylus) in South Australia." Title page, summary and contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phb1677.pdf.

Full text
Abstract:
Includes bibliographical references (leaves 168-198) The horehound plume moth (Wheeleria spilodactylus Curits), an agent introduced to control the invasive weed horehound (Murrubium vulgare L.), was used as a model system to investigate factors believed to influence the successful establishment of an introduced natural enemy. Retrospectively tests the use of generic population viability analysis and decision making tools for determining optimal release strategies for the horehound plume moth in South Australia and to compare outcomes with the emprical data collected during the course of this p
APA, Harvard, Vancouver, ISO, and other styles
2

Minkey, David Mark. "Weed seed predation by ants in the crop growing areas of Western Australia." University of Western Australia. Faculty of Natural and Agricultural Sciences, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0089.

Full text
Abstract:
[Truncated abstract] In the crop growing areas of Western Australia, two economically important weed species, Lolium rigidum Gaud. (annual ryegrass) and Raphanus raphanistrum L. (wild radish), have evolved widespread herbicide resistance to multiple chemistry groups. Consequently, grain growers in the region have adopted an integrated approach to weed management that includes many non herbicide tools, however many more are needed as these weed species become increasingly more difficult to control. This thesis examines, in a series of field trials carried out in the Western Australian crop grow
APA, Harvard, Vancouver, ISO, and other styles
3

Mayo, Gwenda Mary. "Genetic variation in Hypericum perforatum L. and resistance to the biological control agent Aculus hyperici liro /." Title page, table of contents and abstract only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09phm4731.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heystek, Fritz. "Laboratory and field host utilization by established biological control agents of Lantana camara L. in South Africa." Thesis, Rhodes University, 2006. http://eprints.ru.ac.za/255/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gordon, Antony John. "The biological control of Hakea sericea Schrader by the Hakea seed-moth, Carposina autologa Meyrick, in South Africa." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005330.

Full text
Abstract:
Hakea sericea Schrader was introduced to South Africa from Australia and has become a major problem in nearly all the coastal mountain ranges of the Cape Province. The hakea seed-moth, Carposina autologa Meyrick was released in South Africa for the biological control of H. sericea. The impact of the moth on the canopy-stored seeds of H. sericea was evaluated at two study sites in the south-western Cape over three years. The moth has reduced the accumulated seeds at the two study sites by 59.4% and 42.6%, respectively. The moth has shown a surprising ability to disperse and establish new coloni
APA, Harvard, Vancouver, ISO, and other styles
6

Alfaro, Lemus Ana Lilia. "Factors influencing the control of citrophilous mealybug Pseudococcus calceolarie (Maskell) by Coccophagus gurneyi Compere in the Riverland of South Australia." Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09IM/09iml562.pdf.

Full text
Abstract:
Includes bibliographical references (leaves 102-114) The highly successful biological control of the citrophilous mealybug Pseudococcus calceolarie (Maskell) (CM) by the parasitic wasp Coccophagus gurneyi Compere in several countries led to the release of this parasitoid in the Riverland of South Australia as part of an integrated pest management program. However CM has not been successfully controlled in this region. The results of this study may help to explain the lack of effective biological control of CM in Riverland citrus.
APA, Harvard, Vancouver, ISO, and other styles
7

Stafford, Martha Louise. "Biological control as an integrated control method in the management of aquatic weeds in an urban environmental and socio-political landscape : case study : Cape Town Metropolitan Area." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1013015.

Full text
Abstract:
Aquatic weeds transform and degrade the ecosystems which they invade, impacting various aspects of their surroundings ranging from the community level to disrupting important processes affecting ecosystem services. All of the major aquatic weeds of South Africa are found in the Cape Town Metropolitan Area. Landowners, whether private or public, are legally obliged to manage the listed invasive species through applying environmentally acceptable methodologies. This thesis provides an overview of the strategic management options, prevention, early detection, rapid response and eradication of new
APA, Harvard, Vancouver, ISO, and other styles
8

Soleyman-Nezhadiyan, Ebrahim. "The ecology of Melangyna viridiceps and Simosyrphus grandicornis (Diptera : Syrphidae) and their impact on populations of the rose aphid, Macrosiphum rosae." Title page, contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phs685.pdf.

Full text
Abstract:
Bibliography: leaves 213-233. This thesis studies the influence of the two common syrphid species on populations of rose aphids in rose gardens in Adelaide. The study determines whether the provision of attractive flowers increases the suppressive effect of syrphids on rose aphids and analyses some ecological and biological aspects of two syrphid species -- Melangyana viridiceps (Macquart) and Simosyrphus grandicornis (Macquart) -- in a Mediteranean climate to obtain a better understanding of their biological control potential.
APA, Harvard, Vancouver, ISO, and other styles
9

Van, der Westhuizen Liamé. "The evaluation of Phenrica sp.2 (Coleoptera: Chrysomelidae: Alticinae), as a possible biological control agent for Madeira vine, Anredera cordifolia (Ten.) Steenis in South Africa." Thesis, Rhodes University, 2006. http://hdl.handle.net/10962/d1005375.

Full text
Abstract:
Anredera cordifolia (Basellaceae), Madeira vine, is a perennial, semi- succulent climber native from Paraguay to southern Brazil and northern Argentina. It has a history of weediness and difficulty of control once established. In South Africa Madeira vine has a wide range and distribution with altitudes ranging from 10-1800m above sea level. Described as a transformer species, its sheer weight is capable of breaking branches off trees, causing the potential collapse of forest canopies. Chemical and mechanical control methods are expensive, labour intensive and may provide only temporary relief
APA, Harvard, Vancouver, ISO, and other styles
10

Bownes, Angela. "Evaluation of a plant-herbivore system in determining potential efficacy of a candidate biological control agent, cornops aquaticum for water hyacinth, eichhornia crassipes." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1005373.

Full text
Abstract:
Water hyacinth, Eichhornia crassipes Mart. Solms-Laubach (Pontederiaceae), a freefloating aquatic macrophyte of Neotropical origin, was introduced into South Africa as an ornamental aquarium plant in the early 1900’s. By the 1970’s it had reached pest proportions in dams and rivers around the country. Due to the sustainability, cost efficiency and low environmental risk associated with biological control, this has been a widely used method in an attempt to reduce infestations to below the threshold where they cause economic and ecological damage. To date, five arthropod and one pathogen biocon
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Weeds Biological control South Australia"

1

Victoria, Weed Society of, ed. Bush invaders of South-East Australia: A guide to the identification and control of environmental weeds found in South-East Australia. Meredith, Vic: R.G. and F.J. Richardson, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

South Carolina. Dept. of Natural Resources. South Carolina aquatic invasive species management plan. [Columbia, S.C.]: South Carolina Department of Natural Resources, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

South Carolina. Dept. of Natural Resources. South Carolina aquatic invasive species management plan. [Columbia, S.C.]: South Carolina Department of Natural Resources, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Biological Control of Weeds in Australia. CSIRO PUBLISHING, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Julien, Mic, Rachel McFadyen, and Jim Cullen, eds. Biological Control of Weeds in Australia. CSIRO Publishing, 2012. http://dx.doi.org/10.1071/9780643104204.

Full text
Abstract:
Biological control of weeds has been practised for over 100 years and Australia has been a leader in this weed management technique. The classical example of control of prickly pears in Australia by the cactus moth Cactoblastis cactorum, which was imported from the Americas, helped to set the future for biocontrol of weeds in many countries. Since then there have been many projects using Classical Biological Control to manage numerous weed species, many of which have been successful. Importantly, there have been no serious negative non-target impacts – the technique, when practised as it is in
APA, Harvard, Vancouver, ISO, and other styles
6

Biological Control of Weeds in Australia. CSIRO Publishing, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

T, Olckers, Hill M. P, and Entomological Society of Southern Africa., eds. Biological control of weeds in South Africa (1990-1998). [South Africa]: Entomological Society of Southern Africa, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Standing Committee on Agriculture. Biological Control of Insect Pests and Weeds in Australia (SCARM Technical Report). CSIRO Publishing, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Washington (State). Dept. of Agriculture., ed. Environmental checklist: South Puget Sound. Olympia: The Dept., 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Weeds Biological control South Australia"

1

"Advances in Fish Tagging and Marking Technology." In Advances in Fish Tagging and Marking Technology, edited by David W. Schmarr, Ian D. Whittington, Ian D. Whittington, Jennifer R. Ovenden, and Tim M. Ward. American Fisheries Society, 2012. http://dx.doi.org/10.47886/9781934874271.ch27.

Full text
Abstract:
<i>Abstract</i>.—This study assesses the suitability of genetic approaches, parasitology and otolith microchemistry for determining the stock structure of spotted chub mackerel <i>Scomber australasicus </i>in Australasian waters and establishes protocols for using these techniques to determine variability within and among putative stocks. Seventy-five fish from three locations across the geographical distribution of <i>S. australasicus </i>in Australian waters (SE Queensland, South Australia and SE Western Australia) and one location in New Zealand were examined. Genetics and parasite assemblage were analyzed for all fish; otolith microchemistry of Australian fish was also examined. Techniques were successfully developed to extract and amplify a segment of the mtDNA control region, and results showed significant genetic heterogeneity among fish from Western Australia, Queensland, and New Zealand. Parasite analysis identified several taxa that are suitable for use as biological tags and enabled discrimination of fish collected from the four locations. Studies of otolith microchemistry using LA-ICP-MS had sufficient power to distinguish fish from the three Australian locations. This study suggests that there are multiple stocks of <i>S. australasicus </i>within Australian waters, proposes protocols for future studies of finer scale stock structure, and discusses the efficacy of each technique for stock discrimination.
APA, Harvard, Vancouver, ISO, and other styles
2

Schlesinger, William H., and Sandy L. Tartowski. "Nutrient Cycling within an Arid Ecosystem." In Structure and Function of a Chihuahuan Desert Ecosystem. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195117769.003.0010.

Full text
Abstract:
Low quantities of soil nitrogen limit plant growth in the Chihuahuan Desert (Ettershank et al. 1978; Fisher et al. 1988; Lajtha and Whitford 1989; Mun and Whitford 1989) and in other deserts of the world (Wallace et al. 1980; Breman and de Wit 1983; Sharifi et al. 1988; Link et al. 1995). Indeed, although deserts are often regarded as water-limited systems, colimitation by water and N may be the more general rule (Hooper and Johnson 1999; Austin and Sala 2002). In a broad survey of desert ecosystems, Hooper and Johnson (1999) found evidence for colimitation by water and N even at the lowest levels of rainfall. In arid ecosystems, water is delivered in discrete events separated by drier periods, which restrict biological activity and uncouple plant uptake of nutrients from decomposition. Local variations in net primary production in arid and semiarid ecosystems are largely determined by processes that control the redistribution of water and soil nutrients across the landscape (Noy-Meir 1985; Schlesinger and Jones 1984; Wainwright et al. 2002; see also chapter 11). In this chapter we focus on the N cycle in different plant communities of the Jornada Basin with the recognition that after water, N is the most likely resource to determine the plant productivity of this ecosystem. Where arid environments are dominated by shrubby vegetation, the distribution of soil properties is markedly patchy with strong accumulations of plant nutrients under shrubs and relatively infertile soils in the intershrub spaces (Noy-Meir 1985). These islands of fertility are particularly well described in the Chihuahuan Desert and other areas of the American Southwest. Local accumulations of nutrients under vegetation are also documented for desert habitats on other continents, including Europe (Gallardo et al. 2000), Africa (Gerakis and Tsangarakis 1970; Belsky et al. 1989; Wezel et al. 2000), Australia (Tongway and Ludwig 1994; Facelli and Brock 2000), and South America (Rostagno et al. 1991; Mazzarino et al. 1991, 1998; Gutierrez et al. 1993). In the Jornada Basin, Schlesinger et al. (1996) used geostatistics to compare the scale of soil heterogeneity in arid habitats dominated by shrubs and in adjacent areas of arid grassland.
APA, Harvard, Vancouver, ISO, and other styles
3

"of control. The state of Queensland has generous expertise in this area, with the CSIRO Division of Entomology – Lands Department group in Brisbane boasting spectacular success against Salvinia and Eichhornia, and near the reservoir at James Cook University a USDA unit was involved in successes with the Tennessee Valley Authority (TVA) (see Chapter 12) using a range of stem-boring and leaf-mining insects (Balciunas et al. 1993). One might consider the herbivorous grass carp Ctenopharyngodon idella, originally from China, more as a harvester than a biological control agent. This fish grazes on submerged weeds such as Hydrilla, Myriophyllum, Chara, Potamogeton and Ceratophyllum, and at stocking rates of 75 fish/ha control is rapidly achieved. Some introductions in the USA have resulted in removal of all vegetation (Leslie et al. 1987), and in the Australian context the use of sterile (triploid) fish (Cassani and Canton 1985) could be the only consideration. However, in view of the damage already done by grass carp to some inland waterways in Australia, it is suspected that this option would be greeted with horror. Mechanical control involves the physical removal of weeds from a problem area and is useful in situations where the use of herbicides is not practical or poses risks to human health or the environment. Mobile harvesters sever, lift and carry plants to the shore. Most are intended for harvesting submerged plants, though some have been designed or adapted to harvest floating plants. Handling the harvested weed is a problem because of their enormous water content, therefore choppers are often incorporated into harvesting machinery design. However, many mechanical harvesters have a small capacity and the process of disposing of harvested plant material is time-consuming. Any material that remains may affect water quality during the decay process by depleting the water of oxygen. Furthermore, nutrients released by decay may cause algal blooms (Mitchell 1978). Another disadvantage of mechanical removal is that disturbance often promotes rapid new growth and germination of seed, and encourages the spread of weed by fragmentation. Some direct uses of macrophytes include the following: livestock food; protein extraction; manufacture of yeast; production of alcohol and other by-products; the formation of composts, mulches and fertilizers; and use for methane generation (Williams 1977). Herbicides either kill on contact, or after translocation through the plant. Some are residual and retain their toxicity for a period of time. Where herbicides are used for control of plants, some contamination of the water is inevitable (Bill 1977). The degree of contamination depends on the toxicity of the material, its fate and persistence in the water, the concentration used and the main purpose served by the water. After chemical defoliation of aquatic vegetation, the masses of decaying organic debris produced can interfere with fish production. Several factors must be taken into account when selecting and adapting herbicides for aquatic purposes, including: type of water use; toxicity of the herbicide to humans, fish, stock, and wildlife; rate of disappearance of residues, species affected and duration of control; concentration of herbicide; and cost (Bill 1977). The TVA has successfully used EPA-approved herbicides such as Endothall, Diquat, Fluridone and Komeen against Hydrilla (Burns et al. 1992), and a list of approved." In Water Resources, 153–54. CRC Press, 1998. http://dx.doi.org/10.4324/9780203027851-40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!