To see the other types of publications on this topic, follow the link: Weeds – Biological control – Zimbabwe.

Dissertations / Theses on the topic 'Weeds – Biological control – Zimbabwe'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Weeds – Biological control – Zimbabwe.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Mpofu, Bellah. "Biological control of waterhyacinth in Zimbabwe." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40203.

Full text
Abstract:
In a survey conducted in Zimbabwe in 1993, waterhyacinth was present in seven out of the eight provinces. No control measures were imposed on 35% of the infested dams and 61% of the infested rivers, while in 47% of the infested dams and 11% of the infested rivers control of waterhyacinth was being attempted with a combination of 2,4-D and mechanical control methods. The population of Neochetina eichhorniae and N. bruchi declined during the period 1993 to 1995 in the Hunyani River system. Several fungi were isolated from diseased waterhyacinth, and Fusarium moniliforme (isolate 2ex 12), F. solani (isolates 5a ex25 and 2a3), and F. pallidoroseum (isolate 3ex1) were found to be the most pathogenic. Large numbers of viable conidia were produced in shake-flask liquid fermentation with modified Richard's medium and in solid fermentation with food grains. Conidia production in straw was poor with the exception of waterhyacinth straw. Host range studies conducted in pots and in the field indicated that Commelina benghalensis was moderately susceptible to both isolates of F. solani in the field, while Setaria verticilata grown in pots was moderately susceptible to isolate 2a3. Brassica rapa and Crotalaria juncea grown in pots were moderately susceptible to F. moniliforme but they showed no infection in the field. Fifty-nine additional plant species of ecological and agricultural importance were not susceptible to the Fusarium species. When F. solani, F. pallidoroseum and Neochetina spp. were used individually in ponds, they did not control waterhyacinth. When the fungi were combined with Neochetina spp., the area covered by waterhyacinth and the volume of waterhyacinth were significantly reduced.
APA, Harvard, Vancouver, ISO, and other styles
2

Mutinda, Irene. "Biological control of mignonette weeds." Thesis, University of Reading, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hallett, Steven George. "A dual pathogen strategy for the biological control of weeds." Thesis, Lancaster University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shaw, Richard Hamilton. "Classical Biological Control of Weeds in Europe : Principles and Practice." Thesis, University of London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Diop, Ousseynou. "Management of invasive aquatic weeds with emphasis on biological control in Senegal." Thesis, Rhodes University, 2007. http://hdl.handle.net/10962/d1005414.

Full text
Abstract:
In 1985 the Diama Dam was built near the mouth of the Senegal River to regulate flows during the rainy season and prevent the intrusion of seawater during the dry season. This created ideal conditions upstream of the dam wall for invasion by two highly invasive aquatic weeds, first by water lettuce Pistia stratiotes Linnaeus (Araceae) in 1993, and then by salvinia Salvinia molesta D.S. Mitchell (Salviniaceae) in 1999. This study was focused on the management of P. stratiotes and S. molesta. Following successes that were achieved elsewhere in the world, biological control programmes involving two weevil species were inaugurated against both weeds and research was focused on several aspects. These included pre-release studies to determine the weevils' host-specificity and impact on the plants in the laboratory, their subsequent mass-rearing and releases at selected sites and post-release evaluations on their impact on the weed populations in the field. Both programmes, which reprepresented the first biocontrol efforts against aquatic weeds in Senegal, proved highly successful with severe damage inflicted on the weed populations and complete control achieved within a relatively short time span. A laboratory exclusion experiment with N. affinis on P. stratiotes showed that in treated tubs, the weevil strongly depressed plant performance as measured by the plant growth parameters: mass, rosette diameter, root length, number of leaves and daughter plants whereas control plants were healthy. Field releases started in September 1994 and water coverage by P. stratiotes at Lake Guiers was reduced by 25% in January 1995 and 50% in April 1995. A general decline of 65% in water coverage by P. stratiotes was observed in June 1995 and by August 1995, eight months after releases P. stratiotes mats were destroyed. Further, although no releases were made there, good results were obtained within 18 months at Djoudj Park water bodies, located 150 km NW from Lake Guiers indicating the potential of the weevil to disperse long distances. In 2005, P. stratiotes reappeared and the weevil N. affinis has located and controlled all of these P. stratiotes recurrences after new releases. In 1999, S. molesta covered an estimated area of 18 000 ha on the Senegal River Left Bank and tributaries (Senegal) and 7 840 ha on the Senegal River Right Bank (Mauritania). Military and Civil Development Committee (CCMAD) and community volunteers made an effort to control S. molesta using physical removal, but this costly and labour-intensive approach was unsustainable. Hence, biological control was adopted by Senegal and Mauritania to manage the weed. Host range tests to assess feeding by C. salviniae on S. molesta and non-target plants and carried out on 13 crop species showed that no feeding damage was observed on the latter and weevils only fed on S. molesta. Field releases of some 48 953 weevils at 270 sites were made from early January 2002 to August 2002. Within one year, weevils were established and were being recovered up to 50 km from the release sites. In a case study conducted at one of the release sites, the S. molesta infestation was reduced from 100% to less than 3% 24 months after release. These results are discussed in the context of the weeds’ negative impact on aquatic systems and riverside communities, and in the involvement of these communities in the programmes.
APA, Harvard, Vancouver, ISO, and other styles
6

De, Luna Lilian Z. "Pathogenicity of the three Curvularia isolates to Cyperaceae weeds and rice, Oryza sativa L." Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=35869.

Full text
Abstract:
Three isolates of Curvularia belonging to Curvularia tuberculata (isolates 93-020 and 93-022) and Curvularia oryzae (isolate 93-061) were obtained from diseased Cyperus difformis, Cyperus iria, and Fimbristylis miliacea, respectively, in the Philippines in 1993. Under greenhouse conditions, these fungal isolates caused high mortality and significant plant dry weight reduction in C. difformis, C. iria, and F. miliacea when sprayed at the rate of 1 x 108 spores/m3. Cross-pathogenicity of the isolates was demonstrated in three other sedge weed species. C. difformis, C. iria, and F. miliacea were killed but C. rotundus was resistant. Most of the thirteen rice varieties tested were resistant to the fungal isolates. The order of decreasing pathogenicity to rice was C. oryzae (93-061), C. tuberculata (93-020), and C. tuberculata (93-022). The infection process of C. tuberculata and C. oryzae was similar. Spore germination was polar for C. tuberculata and bipolar for C. oryzae. Germ tube growth was random and branching. Appressoria were formed preferentially over epidermal cell wall junctions on sedge hosts and over stomatal apertures in rice. Complex infection cushions were observed only on sedge hosts. Infection hyphae developed inter- and intracellularly, causing epidermal cell walls to separate and mesophyll cells to shrink and collapse. The vascular bundles were not invaded. Colonization of susceptible weeds was rapid and conidiophores emerged from the stomatal aperture between 96 to 120 hours post inoculation (HPI). Resistance to C. tuberculata and C. oryzae in C. rotundus and rice was expressed as a delay in appressorial formation, inhibition of fungal growth after penetration, and lack of sporulation.
APA, Harvard, Vancouver, ISO, and other styles
7

Léger, Christian. "Development of a Colletotrichum dematium as a bioherbicide for the control of fireweed." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29737.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crider, Kimberly Kay. "BIOLOGICAL CONTROL: EFFECTS OF TYRIA JACOBAEAE ON THE POPULATION DYNAMICS OF SENECIO JACOBAEA IN NORTHWEST MONTANA." The University of Montana, 2010. http://etd.lib.umt.edu/theses/available/etd-03092010-140634/.

Full text
Abstract:

Biological control, using introduced, specialist insects is a common strategy for controlling plant invasions. However, the efficacy of biological control agents in controlling their host plants is rarely quantified population level. I quantified the impact of a specialist biological control agent, the cinnabar moth (Tyria jacobaeae) on its host plant, tansy ragwort (Senecio jacobaea) in northwest Montana. Cinnabar moth damage and its effects on important plant vital rates were tested with and without specialist herbivores. The presence of moth larvae corresponded to a reduction in population growth rates to less than one, compared to herbivore-free controls, indicating the potential for successful biological control by this insect. However, delayed effects of cinnabar moth herbivory on tansy ragwort vital rates were realized during the year following moth herbivory, after the moths had disappeared from the system. Individual damage to flowering plants in 2005 led to increased survival of these plants in the following year compared to controls, by reverting back to a vegetative state. In addition, seed set was reduced in plants that were damaged as juvenile rosettes in 2005 that went on to flower in 2006. When these delayed effects were combined in matrix models, gains in adult survival did not outweigh the decreases in fecundity or transition rates in terms of population growth and our initial conclusions remained unchanged. However, further study revealed that moth larvae were more likely to be depredated by carpenter ants in xeric sites suggesting that moth populations may not be sustained in these areas. Cinnabar moth larvae can be effective in this system provided they consume a large number of seeds (>90%) in consecutive years, but requires that moth populations are established and sustained from year to year. While herbivores do show the ability to control an invasive plant species, this relationship is strongly contextual in this system. This work emphasizes the importance of recognizing the influence of habitat context on the outcome plant-herbivore interactions, specifically in invaded ecosystems.

APA, Harvard, Vancouver, ISO, and other styles
9

Morin, Louise. "Development of the field bindweed bioherbicide, Phomopsis convolvulus : spore production and disease development." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59614.

Full text
Abstract:
Phomopsis convolvulus Ormeno, a foliar pathogen of field bindweed, is a good candidate to be developed as a bioherbicide. Large numbers of infective propagules were produced in shake-flask liquid fermentation with modified Richard's (V-8) medium and in solid-substrate fermentation with pearl barley grains. In complex liquid media, pycnidium-like structures were observed. Most conidia stored at $-$70$ sp circ$C remained viable and virulent for at least six months.
In controlled environment studies, a minimum of 18 hr of dew was required for severe disease development on inoculated plants. The addition of gelatin, Sorbo $ sp{ rm TM}$, or BOND$ sp{ rm TM}$ to the inoculum did not enhance the disease under various leaf wetness periods. A continuous dew period of 18 hr was superior to the cumulative effect of three interrupted 6 hr dew periods. Secondary inoculum was produced on diseased plants placed under moist conditions for 48 hr or more.
In greenhouse experiments, seedlings at the cotyledon and 3- to 5- leaf stage were severely diseased and killed when inoculated with 10$ sp9$ conidia/m$ sp2$. This inoculum density adversely affected the regenerative ability of 4 wk old seedlings and established plants, but few plants were killed. Inoculation of the healthy regrowth from plants previously inoculated with the fungus resulted in much less disease symptoms than expected.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Wenming. "Biological control of Echinochloa species with pathogenic fungi." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40293.

Full text
Abstract:
Six pathogenic fungal species were isolated from naturally-infected Echinochloa species and evaluated as biological control agents for E. crus-galli, E. colona, and E. glabrescens in rice. Bipolaris sacchari, Curvularia geniculata, and Exserohilum monoceras were non-pathogenic to rice and caused high mortality of Echinochloa species. E. monoceras was selected for further study. Under regulated greenhouse conditions, an inoculum dose of 2.5 $ times$ 10$ sp7$ conidia/m$ sp2$ killed E. crus-galli and E. glabrescens seedlings while 5.0 $ times$ 10$ sp7$ conidia/m$ sp2$ caused 100% mortality of E. colona seedlings. The 1.5-leaf stage was the most susceptible growth stage for all three Echinochloa species. E. glabrescens was most susceptible to E. monoceras infection, E. crus-galli had an intermediate susceptibility, and E. colona was least susceptible. The optimum temperature for 100% mortality was between 20 and 30 C for all Echinochloa species, whereas the minimum dew period for 100% mortality was 16 h for E. colona, 12 h for E. crus-galli, and 8 h for E. glabrescens. Under screenhouse conditions and in the absence of an artificial dew period, over 90% of Echinochloa seedlings were killed when inoculum was sprayed in an oil emulsion or when applied as a dry powder to the water surface of a simulated paddy field. Maximum conidia production occurred on V-8 juice agar or centrifuged V-8 juice agar, at 28 C in the dark. No conidia were produced in liquid media. Of various agricultural products tested as solid substrates, the highest sporulation (1.81 $ times$ 10$ sp6$ conidia/g dry weight) occurred on corn leaves. Host range tests on 54 plant species in 43 genera and 19 families showed that Rottboellia cochinchinensis, was also highly susceptible to this fungus. Of the crops tested, only corn seedlings were lightly infected under optimum greenhouse conditions but no disease occurred on corn under field conditions. Bipolaris sacchari, Exserohilum monoceras, and E. oryzae
APA, Harvard, Vancouver, ISO, and other styles
11

Wondimu, Taye Tessema. "Investigation of pathogens for biological control of parthenium (Parthenium hysterophorus L.) in Ethiopia /." Berlin : Mensch & Buch, 2002. http://classificationweb.net/min/minaret?app=Class&mod=Browser&menu=/Auto/&auto=1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mayo, Gwenda Mary. "Genetic variation in Hypericum perforatum L. and resistance to the biological control agent Aculus hyperici liro /." Title page, table of contents and abstract only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09phm4731.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Allan, William. "Ascochyta hyalospora : a potential mycoherbicide for control of Chenopodium album." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=64031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Moore, Gareth Ryan. "The role of nutrients in the biological control of water lettuce, Pistia stratiotes lamarck (Araceae) by the leaf-feeding weevil, Neohydronomus affinis Hustache (Coleoptera: Curculionidae) with particular reference to eutrophic conditions." Thesis, Rhodes University, 2006. http://hdl.handle.net/10962/d1005447.

Full text
Abstract:
Water lettuce, Pistia stratiotes Lamarck (Araceae) is a South American plant that has the potential to be a very damaging and important aquatic weed in many tropical countries, including South Africa. It has the potential to rapidly multiply vegetatively and completely cover watercourses in a very short space of time outside of its natural range under ideal conditions and without its natural enemies. In such instances, the weed may cause hindrances to water transport and fishing, increasing chances of malaria, as well as affecting the natural ecology of the system. Water lettuce can also set seed, which may lay dormant for long periods, germinating when conditions are favourable. It is therefore very necessary to adopt control methods against the weed where it is a problem. However, water lettuce has also been effectively and completely controlled in many countries by the leaf-feeding weevil, Neohydronomus affinis Hustache. High nutrient levels in the form of nitrates and phosphates have been shown to have largely negative effects on biological control in several studies, with control being incomplete or taking longer than in similar areas with lower nutrient levels. The effectiveness of N. affinis on the biological control of water lettuce was investigated in a laboratory study, growing P. stratiotes plants with and without insects at different nutrient concentrations. In these studies biological control of water lettuce with N. affinis was found to be complete under eutrophic nutrient conditions, although control took longer when higher nutrient levels were tested. A field site study was conducted at a sewage settlement pond in Cape Recife Nature Reserve near Port Elizabeth, South Africa. This highly eutrophic system was used as a field example for the effectiveness of biocontrol of P. stratiotes by N. affinis under eutrophic conditions. The weevils at Cape Recife caused a massive and rapid crash in the percentage coverage of the weed, from 100% in May 2003, to approximately 0.5 % in September 2003. Plant growth parameters were also found to decrease considerably in size correspondingly with this crash from May 2003 until spring 2003. Plant size only again started to increase gradually but steadily through spring 2003 and into summer. In the laboratory studies, the fecundity of weevils was shown to be much higher on plants grown under higher nutrient concentrations than on plants grown in lower nutrient concentrations. The results from the wing-muscle analysis under different nutrient concentrations were not easy to interpret, and there were few differences in wing muscle state between most of the concentrations. From these findings it is suggested that nutrient concentration, particularly high levels of nitrates and phosphates is not a limiting factor in terms of effective biological control of P. stratiotes with N. affinis, but that under high nutrient conditions biological control might take longer.
APA, Harvard, Vancouver, ISO, and other styles
15

Chin, Alice. "Evaluation of Macrophoma sp. as a potential mycoherbicide for the control of Amaranthus retroflexus L. (redroot pigweed)." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23876.

Full text
Abstract:
Amaranthus retroflexus L. (redroot pigweed) is a major weed of many crops in North America including corn, soybean, and potato. It can be readily controlled by chemical and cultural methods. However, some populations of A. retroflexus have developed resistance against the application of triazine herbicides. Biololical control could be an alternative method to control this weed species. In 1990, a Macrophoma sp. causing foliar lesions was isolated from redroot pigweed and the potential of this plant pathogenic fungus as a mycoherbicide was evaluated. Large numbers of infective propagules were produced in solid substrate fermentation with chickpeas. When inoculated with 10$ sp8$ or 10$ sp9$ conidia m$ sp{-2}$, plants at the cotyledon to 2-leaf stage showed the most severe damage. Disease developed over a wide range of dew period durations (6 hr to 24 hr) and temperature regimes (14 C to 26 C), and the most rapid and destructive disease development occurred following a 24-hr dew period at 18 C. In controlled environment studies, this Macrophoma sp. was pathogenic to the genus Amaranthus and the closely related genus Celosia.
APA, Harvard, Vancouver, ISO, and other styles
16

Reeder, Robert H. "Biology of the grass weed Rottboellia cochinchinensis and the potential for its biological control using the head smut Sporisorium ophiuri." Thesis, University of Reading, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Potyka, Ingrid. "Emulsion-formulation of microbial herbicides." Thesis, University of Bristol, 1995. http://hdl.handle.net/1983/618a10ab-a6e4-49c4-bf4c-1b3c343c4135.

Full text
Abstract:
Development of microbial herbicides is constrained by unreliability in the field where conditions are often sub-optimal for infection. Crucially, sufficient moisture, often dew, is required to establish infection. Two model systems, Colletotrichum dematium (Pers. ex Fr. ) Grove on Chenopodium album L. and Mycocentrospora acerina (Hartig) Deighton on Viola arvensis Murr., have been investigated and formulation requirements for each system identified, principally to reduce the dew period necessary for infection. Effects of adjuvants (surfactants, stickers and humectants) on spore germination and appressorium formation were investigated in vitro. Few were toxic and then, principally, at high concentration. The surfactants Tween 40,60 and 80 were compatible with both pathogens. Similarly, the stickers acacia, ghatti, guar, karaya, locust bean and xanthan gums and low viscosity alginic acid were all non-toxic as was the humectant glycerol. Each pathogen reacted differently to the adjuvants and any potential microbial herbicide will need individual matching of adjuvants to give an effective formulation. A working formulation (rapeseed oil-in-water (1: 10 v/v) emulsion using 0.1 % v/v Tween 40 as the emulsifier) was found to reduce the dew period requirement of M. acerina from 36 to 18 hours. The formulation protected spores from desiccation for 24 hours after application, or for 16 hours following a sub-optimum dew period occurring immediately after application. Scanning electron microscopy showed that the applied spores, and the developing mycelium, were immersed in the oil deposit. Transmission electron microscopy of sections through formulation deposits on the leaf revealed that some inversion of the emulsion, to form a water-inoil deposit, had occurred, suggesting a mechanism of protection against desiccation. The oil phase infiltrated the cortical intercellular spaces only when the leaf was infected. This intercellular oil contained more water than that on the leaf surface. Emulsion-formulation applied to run-off with an 'air brush', consistently gave significantly better weed control under sub-optimal dew conditions than a formulation of surfactant only. When applied with a conventional hydraulic nozzle at 400 1 ha" the emulsion was only occasionally superior to the surfactant alone. Such interactions require further in-depth investigation. The importance of correct inoculum placement for maximum effectiveness, independent of formulation type, was highlighted. Unless all meristems are killed, survivors quickly grow, despite the death of neighbouring leaves and petioles, and the weed suffers merely a growth check. Formulation as emulsion improved diseasee stablishmenta nd diseasee xpressioni n the target weedo nly in somec ircumstancesF. urther researchin to spraya pplicationm ethodsa ndt heir interactions with formulation, host and environment is clearly necessary
APA, Harvard, Vancouver, ISO, and other styles
18

Baker, Jeanine. "Factors affecting the establishment of a classical biological control agent, the horehound plume moth (Wheeleria spilodactylus) in South Australia." Title page, summary and contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phb1677.pdf.

Full text
Abstract:
Includes bibliographical references (leaves 168-198) The horehound plume moth (Wheeleria spilodactylus Curits), an agent introduced to control the invasive weed horehound (Murrubium vulgare L.), was used as a model system to investigate factors believed to influence the successful establishment of an introduced natural enemy. Retrospectively tests the use of generic population viability analysis and decision making tools for determining optimal release strategies for the horehound plume moth in South Australia and to compare outcomes with the emprical data collected during the course of this project
APA, Harvard, Vancouver, ISO, and other styles
19

Scarr, Lowell Martin. "Assessing the value of public investment into biological control research for invasive alien plants : the ARC PPRI Weeds Research Division." Thesis, Rhodes University, 2016. http://hdl.handle.net/10962/d1020604.

Full text
Abstract:
This study investigates the economic impact of the ARC PPRI Weeds Research Division. The Division researches appropriate methods of biological control for invasive alien plants (IAPs). These plants pose an increasing threat to environmental integrity and ecosystem service provision impacting on economic potential. Since the work of the Division is considered a public good, a predominantly descriptive approach has been adopted for the valuation process. A combination of quantitative cost analysis and a qualitative study of the impacts of research and invasive alien plants is used to deal with the challenges associated with non-market valuation. The study found that investment into the Weeds Division is a valuable activity that supports the long-term growth potential of the South African economy. The role of a well-functioning environment is highlighted as an essential base for the creation of sustained growth opportunities in any society. It was determined that investment into the Division should be increased into the future to support efficient spending of scarce state funds. Biological control research was found to provide strategic future growth potential, creating opportunities for the development of a competitive advantage in the biotechnology and environmental management sectors. The study adds to the increasing move towards a more holistic view of economic valuation, taking factors other than pure finance and econometrics into consideration. This is an important shift in prevailing economic thought, as a realisation is reached that a single, or even triple, bottom line is an outdated and insufficient decision making basis.
APA, Harvard, Vancouver, ISO, and other styles
20

Carney, Vanessa A., and University of Lethbridge Faculty of Arts and Science. "Ecological interactions of biological control agent, Mecinus Janthinus Germar, and its target host, Linaria Dalmatica (L.) Mill." Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2003, 2003. http://hdl.handle.net/10133/214.

Full text
Abstract:
There has been little documentation of the success of introduced agents for classical weed biological control. Field evaluation of an insect's establishment, spread and early host impact within its new environment must be performed before agent success can either be doucmented or predicted. Population attributes of the ednophagous biological control agent, Mecinus janthinus Germar (Coleoptera: Curculionidae), and interactions with its target weed, Dalmation toadflax, (Linaria dalmatica (L.) Mill.) (Scrophulariaceae), were explored across variable levels of resource availability and insect abundance. Patterns of population growth and impact of this biocontrol agent were very consistent throughout this study. Within four years of release, populations of M. janthinus achieved outbreak population levels and virtually eliminated the seed producing shoots from toadflax stands. There is a tight but flexible relationship between oviposition site selection and offspring performance in this endophagous herbivore, maximizing offspring survival even under moderate to high M. janthinus densities. These attributes allow M.janthinus to be an effective biocontrol agent under changing levels of resource availability.
ix, 134 leaves : ill. ; 28 cm.
APA, Harvard, Vancouver, ISO, and other styles
21

Ou, Xiu. "In vitro mass rearing of the knapweed nematode, Subanguina dicridis and its use as a bioherbicide." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=70318.

Full text
Abstract:
A culture system was established for mass rearing of the Russian knapweed nematode, Subanguina picridis (Kirjanova) Brzeski. This system consisted of two parts; a shoot culture system used as the host plant source for the nematode culture, and a monoxenic nematode culture system. The nematode developed and reproduced in this system. Galls were induced on the leaves, stems, and shoot tips of cultured Russian knapweed (Acroptilon repens (L.) DC.) shoots. After 3 months in culture, the nematode number per petri dish increased from the initial 50 inoculated to 7,000-10,000, a 140 to 200 fold increase. This study represents the first time that an above-ground gall forming nematode has been propagated in vitro. It also represents a unique monoxenic nematode culture system to mass rear above-ground endoparasitic plant nematodes.
Various factors, including tissue type, tissue age, medium, and temperature, which affect the formation and development of galls, were examined. The nematode failed to reproduce in callus tissues, and it could not develop beyond the 4th stage in excised root cultures. The optimum incubation conditions determined were: 60-80 $ mu$molm$ sp{-2}$s$ sp{-1}$ light intensity, 20 C temperature, and 4-8 mm for shoot length.
The virulence of cultured nematodes was tested in the greenhouse on Russian knapweed seedlings and vegetative shoots from root segments. The results demonstrated the feasibility and application of this novel mass production system. Nematodes produced in this system were virulent and the growth rate of infested Russian knapweed were reduced.
APA, Harvard, Vancouver, ISO, and other styles
22

Hudgeons, Jeremy L. "The establishment, biological success and host impact of Diorhabda elongata, imported biological control agents of invasive Tamarix in the United States." Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dye, Jeremiah M. "An evaluation of two strains of Cyrtobagous salviniae Calder and Sands as natural enemies of the aquatic weeds salvinia molesta Mitchell and Salvinia minima Baker." Texas A&M University, 2005. http://hdl.handle.net/1969.1/3331.

Full text
Abstract:
The floating aquatic weeds common salvinia (Salvinia minima Baker) and giant salvinia (Salvinia molesta Mitchell) degrade aquatic systems through fast, mat forming growth. The Salvinia specialist weevil Cyrtobagous salviniae Calder and Sands has been used to reduce the severity of giant salvinia infestations and associated with reduced severity of common salvinia infestations. Genetically, morphologically and biologically distinct strains of C. salviniae exist, but their relative potential for success as biological control agents of Salvinia species has not been evaluated. This thesis (1) describes a recirculating water system designed for conducting such studies and (2) reports the results of C. salviniae strain comparisons. A recirculating water system with a high degree of replication and minimal variation in water flow, temperature and light intensity was used for laboratory experiments using sixty-day temperature profiles averaging 31.4, 26.5 and 8.0ºC derived from surface water temperatures measured at lakes in expected range of Salvinia species in the North America. Larval and adult population numbers of two C. salviniae strains (Australia and Florida) were determined for each temperature profile along with feeding induced plant necrosis on both Salvinia species. Australia C. salviniae had lower survivorship rates to adulthood on common salvinia than did Florida C. salviniae at the 31.4 and 26.5ºC temperature profiles. Neither strain reproduced, and no significant between-strain differences in plant necrosis were detected at the 8.0ºC temperature profile. At 31.4ºC there were no significant differences in adult counts, larval counts or plant damage between the two strains on giant salvinia. At 26.5ºC, however, significantly fewer larvae were collected from initially released adults and significantly less plant necrosis was associated with weevil feeding by Florida strain compared to Australia strain weevils. These results may have arisen from comparing Australia weevils from a growing colony to Florida weevils from a declining colony. Overall, the results indicate that only Florida C. salviniae should be released against common salvinia. Florida C. salviniae may be equally suitable to Australia C. salviniae for releases against giant salvinia, but further study is needed to fully assess the potential for using Florida C. salviniae against giant salvinia.
APA, Harvard, Vancouver, ISO, and other styles
24

DiTommaso, Antonio. "Effect of the fungal pathogen, Colletotrichum coccodes (Wallr.) Hughes, on growth, reproduction and competitive ability of velvetleaf (Abutilon theophrasti Medik.)." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=29012.

Full text
Abstract:
Field and growth bench experiments were performed to assess the effect of a selective fungal pathogen of Abutilon theophrasti (velvetleaf) on various aspects of intra- and interspecific competition between this vigorous agricultural weed and soybean (Glycine max). In the absence of the foliar pathogen, Colletotrichum coccodes, A. theophrasti and soybean responded differently to the presence of conspecies or to individuals of the other species. In pure stand, the deleterious effects of intraspecific competition on reproductive output were substantially greater for A. theophrasti than for soybean, especially at lower monoculture densities. In mixtures, however, A. theophrasti reproductive performance was markedly higher than at equivalent monoculture densities, particularly at the lower mixture densities. Soybean reproduction at these lower mixture densities (10 to 20 plants m$ sp{-2}$) was severely curtailed compared with reproductive output at equivalent pure stand densities. A. theophrasti reproductive output was limited more by the presence of conspecies than by the presence of soybean, whereas the opposite trend was observed for soybean. In pure stand, application of C. coccodes had limited impact on either A. theophrasti or soybean yield. However, application of the fungal pathogen in A. theophrasti monocultures caused significant (30-44%) aboveground biomass reductions within five weeks of inoculation, in two of the three years in one field study. Eight weeks following C. coccodes inoculation, A. theophrasti biomass within inoculated monoculture plots did not differ significantly from biomass within uninoculated control plots, although height hierarchies were significantly more developed. In mixtures, C. coccodes applications caused reductions in A. theophrasti growth and reproduction when provided with an adequate dew period. Alternatively, soybean yield losses within inoculated mixture plots were generally lower than for uninoculated control plots, althoug
APA, Harvard, Vancouver, ISO, and other styles
25

Saad, Fadia. "Formulation of Colletotrichum coccodes as a bioherbicide." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41025.

Full text
Abstract:
Colletotrichum coccodes (Wallr.) Hughes, a foliar pathogen of velvetleaf, is being developed as a bioherbicide. Formulation of living organisms for use as pest control products presents unique problems. This research has achieved the development of an adequate formulation of the pathogen by using kaolin clay or talcum powder (1:2.79 wt/wt) as the fillers to dry conidia. Formulated C. coccodes conidia stored at 4, 30C, or at room temperature in bags permeable to oxygen remained viable and able to infect velvetleaf plants at least six months in storage. Various reported germination stimulants increased germination of formulated conidia, although not significantly, whereas increasing concentrations of cutin resulted in subsequent decreases in germination and appressoria formation of fresh as well as formulated conidia. In controlled environment experiments, 14 day-old velvetleaf seedlings were severely diseased when stearic or oleic acids were added to conidia formulated in kaolin clay or talcum powder, respectively. Combinations of germination stimulants, cutinase and/or pectinase inducers did not significantly increase germination and appressoria formation of C. coccodes conidia. Germination of fresh and formulated conidia increased, although not significantly, with the addition of 1% sucrose.
APA, Harvard, Vancouver, ISO, and other styles
26

Ahn, Byeongseok. "Enhancing biocontrol activity of Colletotrichum coccodes." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82816.

Full text
Abstract:
Resistance responses of Abutilon theophrasti were investigated to determine defense mechanisms of the weed against Colletotrichum coccodes and to verify if some chemical suppression of the resistance mechanism could be exploited to enhance the virulence. Induced resistance in A. theophrasti has been confirmed in treatments with C. coccodes, benzothiadiazole, bentazon, and acifluorfen. Induction of peroxidase and phenylalanine ammonia lyase (PAL) activities in the leaves that did not contact with the inducing agents was observed after the localized stresses to the first leaf or the root of the plant with those agents. alpha-Amino-oxy acetic acid (AOA), 2-deoxy-D-glucose (DDG), mannose, oxalic acid, and analogues of oxalic acid and mannose were tested to enhance C. coccodes virulence. However, the compounds did not enhance C. coccodes virulence or affect A. theophrasti growth. Strong antifungal effects, poor inhibitory effects on plant defense mechanisms, or minor dependence of A. theophrasti on the defense mechanisms that the chemicals affected could be reasons. The efficacy of C. coccodes increased in the presence of 0.25 kg a.i. ha-1 bentazon more than when C. coccodes was applied alone, while the effect of glyphosate was minimal. Peroxidase activity was strongly induced by the treatment of C. coccodes and increased over time. PAL and activation of peroxidase was inhibited in the presence of bentazon, suggesting the synergy effect by bentazon is probably due to the suppression on the two defense-related enzymes. In conclusion, A. theophrasti exploits various biochemical and morphological types of defense mechanisms against C. coccodes infection. However, the activation of the defense responses can be suppressed or by-passed in an integrated weed management system.
APA, Harvard, Vancouver, ISO, and other styles
27

Pearson, Karen Aileen. "Characterisation of Fusarium isolates infecting roots of ragwort (Jacobaea vulgaris syn. Senecio jacobaea) and an assessment of their potential as a biological control agents." Thesis, University of Aberdeen, 2011. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=166174.

Full text
Abstract:
Ragwort (Jacobaea vulgaris syn. Senecio jacobaea), a common weed of pasture and poorly managed land worldwide, is toxic to livestock and horses. There is no fully satisfactory control option available. The aim of the work described in this thesis was to assess the potential of root infecting pathogens to cause disease in ragwort, and to examine the possibility of using them as biological control agents against this weed. Thirty-six root infecting isolates were obtained from ragwort roots, collected from a nationwide postal survey where Pony Club adult leaders were asked to provide samples. Twenty-one of these were identified as Fusarium spp. by morphological identification and tested for the ability to cause disease on aseptically raised ragwort seedlings. Twelve isolates demonstrated virulence towards ragwort when measured by disease score over a 14 day period. These isolates were identified by molecular means using the internal transcribed spacer and translation elongation factor genes, as either Fusarium avenaceum or F. acuminatum while isolates of F. solani, F. redolens, F. cerealis or F. culmorum did not exhibit virulence except one isolate of F. culmorum which was weakly virulent. To investigate the biological control potential of virulent isolates, a representative of F. avenaceum and F. acuminatum plus the one weakly virulent F. culmorum isolate, were tested against plants of agricultural importance in grasslands. Six grasses (crested dogs tail, Cynosurus cristatus; Timothy, Phleum pratense; red fescue Festuca rubra; Italian ryegrass, Lolium multiflorum; and two varieties of perennial ryegrass, L. perenne) were unaffected by inoculation with any of the isolates. There was no significant difference between the symptoms caused by F. avenaceum and F. acuminatum on ragwort, red clover (Trifolium pratense) and white clover (T. repens). F. culmorum was more virulent towards white clover than either red clover or ragwort. This suggests that although high concentrations of pure PA may inhibit fungal growth, the range of other nutrients in the plants can counteract this negative effect.
APA, Harvard, Vancouver, ISO, and other styles
28

Gordon, Antony John. "The biological control of Hakea sericea Schrader by the Hakea seed-moth, Carposina autologa Meyrick, in South Africa." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005330.

Full text
Abstract:
Hakea sericea Schrader was introduced to South Africa from Australia and has become a major problem in nearly all the coastal mountain ranges of the Cape Province. The hakea seed-moth, Carposina autologa Meyrick was released in South Africa for the biological control of H. sericea. The impact of the moth on the canopy-stored seeds of H. sericea was evaluated at two study sites in the south-western Cape over three years. The moth has reduced the accumulated seeds at the two study sites by 59.4% and 42.6%, respectively. The moth has shown a surprising ability to disperse and establish new colonies at low population levels. Factors contributing to the slow colonization of C. autologa in South Africa was investigated. The moths appear to be unable to distinguish between healthy and previously attacked fruits; 42.5% of the eggs were laid on attacked fruits. Only 13.1% of the healthy fruits with eggs yielded mature larvae. The high pre-penetration mortality found in the present study is similar to that found in Australia. The effect of the indigenous fungus, Colletotrichum gloeosporioides (Penz.) Sacc., on both H. sericea and C. autologa was investigated. H. sericea trees and branches that die as a result of fungus cause the accumulated fruits on the affected trees or branches to dehisce. This seed loss occurs at a crucial stage during C. autologa larval development. Only 42.1% and 33.0% of the trees were found to be healthy at the two study sites, respectively. One seed crop will always be available for regeneration, since recruitment is linked to fires, and wild-fires occur at a stage when the latest seed crop has escaped attack by c. autologa. C. autologa was released at six sites in the south-western Cape by attaching egg-bearing follicles to healthy fruits in the field. Three release sites were evaluated the year following release to determine whether the moth established or not. The role of C. autologa in the H. sericea biological control programme is discussed. Although seed destruction by C. autologa is not severe, it is expected to contribute to the control of H. sericea.
APA, Harvard, Vancouver, ISO, and other styles
29

Minkey, David Mark. "Weed seed predation by ants in the crop growing areas of Western Australia." University of Western Australia. Faculty of Natural and Agricultural Sciences, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0089.

Full text
Abstract:
[Truncated abstract] In the crop growing areas of Western Australia, two economically important weed species, Lolium rigidum Gaud. (annual ryegrass) and Raphanus raphanistrum L. (wild radish), have evolved widespread herbicide resistance to multiple chemistry groups. Consequently, grain growers in the region have adopted an integrated approach to weed management that includes many non herbicide tools, however many more are needed as these weed species become increasingly more difficult to control. This thesis examines, in a series of field trials carried out in the Western Australian crop growing area, the potential for weed seed predation of annual ryegrass and wild radish by naturally occurring granivores as a new weed management tool for grain growers . . . The study discusses the implications of these results with the view to manipulating predation of weed seed through agricultural management practices. Ants were shown to be the dominant seed predator in this environment, especially in the centre of fields. The study has identified that the ant species Melophorus turneri (Forel), Monomorium rothsteini (Forel), Pheidole hartmeyeri (Forel) and Rhytidoponera metallica (Smith) are potential biological control agents for annual ryegrass seeds while P. hartmeyeri was identified as the only species suitable for biological control of wild radish seed pods. Ants were found to be sensitive to disturbance and some to crop residue type and these effects are discussed in relation to seed removal. This study of weed seed predation in agricultural fields is the most complete in this environment and can be used to inform further work in this area. It has identified that naturally occurring granivores can be used as a weed management tool.
APA, Harvard, Vancouver, ISO, and other styles
30

Sartini. "The effect of inoculum density, virulency, and carrier systems of phoma sp. on biological control of giant foxtail (setaria faberi hermm.)." Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/955092.

Full text
Abstract:
The effect of spore titer, virulency, and carrier systems on biological control of giant foxtail (Setaria faberi hermm.) with a species of Phoma isolated from this weed wereinvestigated. The lowest concentration of Phoma conidia which significantly affected (lowered) growth of giant foxtail was 1x106 conidia/ml. In conducting Koch's postulates, all but one (FF2) of the Phoma, isolates tested infected giant foxtail. Isolates FF1 and FF9 were the most virulent against giant foxtail. No correlation was apparent between virulency and fungus germination rate. No visible difference occurred with in vitro germination rates of spores incubated upon pea vsr water agar media; nutrient rich vs. nutrient poor media, respectively. These results suggest that Phoma spores already contain sufficient nutrients required for infection of foxtail. A definitive answer as to the effect of carrier system (e.g. surfactant, sticker, spreader, etc.) on efficacy of Phoma to infect foxtail could not be determined from results obtained, based upon statistical analysis of variance (ANOVA) for the single experiment performed. Several of the surfactant treatments (e.g. Silwet 77 and 408) did produce significant biomass losses against foxtail due to the phytotoxicity of the carrier system alone, and not reflective of fungal (Phoma) infection. Inoculation of foxtail plants with a conidial suspension amended with carriers of either Tween 20 (0.05%-0.1%) or methylcellulose (0.1%) should optimize chances for sufficient infection resulting in biological control of this weed.
Department of Biology
APA, Harvard, Vancouver, ISO, and other styles
31

Heystek, Fritz. "Laboratory and field host utilization by established biological control agents of Lantana camara L. in South Africa." Thesis, Rhodes University, 2006. http://eprints.ru.ac.za/255/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lenz, Jennifer Marie. "A Physiological Age-Grading System for Female Hydrellia pakistanae Deonier (Diptera: Ephydridae)." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3280/.

Full text
Abstract:
Conflicting opinions about the effectiveness of H. pakistanae as a biological control agent for hydrilla prompt researchers to find a method for assessing the fly's success. Developing a physiological age-grading system for the fly using ovarian morphology to detect changes in reproductive activity is useful for evaluating reproductive status of the fly in field populations. Changes in the appearance of follicular relics in ovaries with oviposition provide a reliable method to estimate fecundity. Characteristics of follicular relics were used to develop a system with eight physiological age classes, three nulliparous and five parous. Changes that occur in the fat body were used to assist in classification of nulliparous females or those with low egg counts.
APA, Harvard, Vancouver, ISO, and other styles
33

Stafford, Martha Louise. "Biological control as an integrated control method in the management of aquatic weeds in an urban environmental and socio-political landscape : case study : Cape Town Metropolitan Area." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1013015.

Full text
Abstract:
Aquatic weeds transform and degrade the ecosystems which they invade, impacting various aspects of their surroundings ranging from the community level to disrupting important processes affecting ecosystem services. All of the major aquatic weeds of South Africa are found in the Cape Town Metropolitan Area. Landowners, whether private or public, are legally obliged to manage the listed invasive species through applying environmentally acceptable methodologies. This thesis provides an overview of the strategic management options, prevention, early detection, rapid response and eradication of new invasions, and containment and control species of established species. It discusses the different control methods available for managing aquatic weeds, namely mechanical, manual, chemical and biological, and the integration of different methods to improve their effectiveness. Although various studies have shown that biological control is the most cost–effective, environmentally-friendly and sustainable method, it is not yet fully integrated into weed management programmes in South Africa. In addition, the successes achieved in other parts of the world with the control of water hyacinth through biological control have not been repeated in the urban environment, despite the fact that South Africa has the highest number of biological control agents available for the weed. Urbanisation puts pressure on the natural environment and ecosystem functioning. Nutrient-enriched waters support aquatic weed growth and pose a challenge to the management thereof, in particular with regard to integrating biological control into management programmes. The aims of this study were to determine the reasons for the lack of integration of biological control into weed management programmes in South Africa, to determine the feasibility of integrating biological control in aquatic weed management programmes in a complex urban environmental and socio-political landscape by means of three case studies in the Cape Town Metropolitan Area, which showed that biological control is feasible in urban environments and should be considered. Two surveys were conducted to determine the reasons for the lack of integration of biological control into weed management programmes. The surveys showed that there is a gap between research and implementation as a result of poor communication, non-supporting institutional arrangements and a lack of appropriate capacity and skills at the implementation level. Recommendations were offered to address these issues.
APA, Harvard, Vancouver, ISO, and other styles
34

Barnewall, Emily C., and University of Lethbridge Faculty of Arts and Science. "Plant-insect interactions between yellow toadflax, Linaria vulgaris, and a potential biocontrol agent, the gall-forming weevil, Rhinusa pilosa." Thesis, Lethbridge, Alta. : University of Lethbridge, Department of Biological Sciences, c2011, 2011. http://hdl.handle.net/10133/2618.

Full text
Abstract:
Yellow toadflax, Linaria vulgaris (L.) Mill. (Plantaginaceae), is a non-native invasive plant. Rhinusa pilosa Germar (Coleoptera: Curculionidae) is a proposed biocontrol agent. Gall development by R. pilosa was described using histological methods and compared between plant populations from native and introduced ranges. Key stages of oviposition were isolated histologically to determine their importance in gall induction. Rhinusa pilosa galled and developed on four geographically distinct Canadian populations in a pre-release quarantine study. Low agent densities only negatively affected one population. High densities of R. pilosa reduced potential reproductive output and plant biomass. Conducting detailed investigations into the biology, impact, and development of R. pilosa on populations from invasive and native ranges may help predict the efficacy of R. pilosa in the field if approved for release and.goes beyond current pre-release testing requirements.
ix, 168 leaves : ill. (chiefly col.) ; 29 cm
APA, Harvard, Vancouver, ISO, and other styles
35

Van, der Westhuizen Liamé. "The evaluation of Phenrica sp.2 (Coleoptera: Chrysomelidae: Alticinae), as a possible biological control agent for Madeira vine, Anredera cordifolia (Ten.) Steenis in South Africa." Thesis, Rhodes University, 2006. http://hdl.handle.net/10962/d1005375.

Full text
Abstract:
Anredera cordifolia (Basellaceae), Madeira vine, is a perennial, semi- succulent climber native from Paraguay to southern Brazil and northern Argentina. It has a history of weediness and difficulty of control once established. In South Africa Madeira vine has a wide range and distribution with altitudes ranging from 10-1800m above sea level. Described as a transformer species, its sheer weight is capable of breaking branches off trees, causing the potential collapse of forest canopies. Chemical and mechanical control methods are expensive, labour intensive and may provide only temporary relief. A biological control programme was therefore initiated in 2003. Cf Phenrica sp. 2 (Coleoptera: Chrysomelidae: Alticinae), was field collected from A. cordifolia in Brazil, SSW of Cascavel in the Paraná Province during a survey in November 2003. Eggs are laid in groups of 16 with the average fertility rate being 89%. After going though three larval instars, the larvae pupate in the soil with the adults eclosing after a period of 17 days. The total developmental time for a generation from egg to egg ranges between 7-8 weeks. Biological traits that favour the flea beetle as a possible biological control agent include long-lived adults (up to 5 months) and multiple generations during the summer period. Both adults and larvae feed extensively on leaves and stems and although developmental rates will slow down during the winter period, no indication of a definite diapause was found under the prevailing laboratory conditions. After completing the larval no-choice trials with twenty-six plant species from 14 plant families Phenrica sp. 2 proved to be adequately host specific, as larval development was only supported by 3 Basellaceae species (including the control A. cordifolia) and one Portulacaceae species. All of these are introduced species in South Africa. The only indigenous Basella species could not be tested as it has a very marginal distribution, and because it’s inconspicuous nature, it is seldom seen or collected. Adult multi-choice trials were restricted to species that could sustain larval development to give some indication of the acceptability of these species for adult feeding and oviposition. Although adult feeding was initially concentrated on B. alba, the oviposition preference was clear-cut as females only oviposited on A. cordifolia. In order to quantify the impact of Phenrica sp. 2 on plant biomass and to assess the incidence and intensity of foliar damage, a pair of adults was confined to the host plant, for 2 generations, with different levels of larval densities. The results indicated that the host plant, due to both larval and adult feeding, suffered leaf losses of up to 55%. Anredera cordifolia was however still capable of enlarging the root mass despite suffering huge leaf losses. This would imply that A. cordifolia has an effective re-growth capacity and it will only be vulnerable to attack of the storage organs that enable re-growth, or to repeated attack of other plant parts through which reserves are exhausted. Unfortunately the period of exposure (24 days) was too short to prove that Phenrica sp. 2 impacts on the below ground dry mass, but should the plant be completely defoliated, as was observed in the field, the host plant would be forced to deplete stored resources. Phenrica sp.2 has shown to be very host specific and although A.cordifoia loses its leaves during the winter period in most provinces in South Africa, the adults are long-lived and should be able to survive the leafless periods. Further more the relatively short life cycle, high fecundity and 3 generations per year should theoretically insure a strong population build-up that would improve the chances of establishment in the field. All indications are that Phenrica sp. 2 is an agent well worth considering for the biological control of A. cordifolia.
APA, Harvard, Vancouver, ISO, and other styles
36

Langa, Sílvia da Fátima. "The impact and control of waterweeds in the Southern Mozambique Basin rivers." Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1001905.

Full text
Abstract:
In Mozambique, establishment of aquatic weeds has been enhanced through the increased enrichment of water bodies by nutrient runoffs from human and agricultural wastes that lead to an increase in nitrate and phosphate in the water. The aquatic weeds, water hyacinth (Eichhornia crassipes), red water fern ( Azolla microphylla), water lettuce (Pistia stratiotes) and salvinia (Salvinia molesta) were found in most watercourses in Mozambique and are becoming aggressive in some watercourses, especially in the Umbeluzi and Incomati rivers. Farmers and people living along the rivers are aware of the negative impact of the water weeds because the large mats of weeds cause loss of shoreline and navigability along the rivers. Other commonly perceived effects of aquatic invasive plants in Mozambique rivers include: reduced navigable surface area; difficulties for fishermen, which reduces income; increased prevalence of insects and insect-borne disease, and decreased aesthetic value. The methods currently used for the control and management of the aquatic weeds are mechanical and manual control. Both methods are costly, time consuming, and only provide a short-term solution to the problem. The study found that the weevils Neochetina eichhorniae and N. bruchi were effective biological control agents in the study area but their impact is too gradual compared to the aggressive proliferation of water hyacinth. The one year lab-experiment clearly demonstrated that the water lettuce weed had a significant impact on the recruitment of macro-invertebrates to the artificial substrates, and water lettuce contributed to the reduction of oxygen in the water and consequent reduction of macro-invertebrate abundance and diversity. The biodiversity recovered at the same time in the pools containing water lettuce controlled by N. affinis and water lettuce controlled by herbicide, but richness and diversity of macro-invertebrates was higher in the water lettuce controlled by N affinis during the first sampling occasion compared to the water lettuce in pools controlled by herbicide, where macro-invertebrates increased only when DO levels recovered after water lettuce mat decay. The number of taxa recorded in this study is an indication of the significance of macro-invertebrates in an aquatic environment. This therefore emphasizes the need for more research efforts into macrophyte and macro-invertebrate associations in the aquatic system to better understand the implications of habitat modification arising from human activities. It will also enable us to be better equipped with a more appropriate ecological understanding for aquatic resources management.
APA, Harvard, Vancouver, ISO, and other styles
37

Suryani, Titik. "The effects of temperature, hours of leaf wetness, age of giant foxtail (setaria faberi herrm.), and host specificity of phoma sp. as a biological herbicide." Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/941362.

Full text
Abstract:
Inoculation studies were conducted in controlled environments with isolates of a Phoma sue. collected from leaf spot lesions on the weed giant foxtail. Limited host specificity studies resulted in this potential bioherbicide fungus killing all three foxtail species tested including Setaria faberi (giant), a. viridis (green) and S. lutescens (yellow). Several agronomically important plant species tested exhibited a hypersensitive-type response to infection, but these plants soon grew out of this symptom and appeared healthy. This bioherbicide preferred cool temperatures, exhibiting optimal biomass loss (100%) or death against foxtail seedlings following 120 hours leaf wetness with plants incubated at 20°C. At more conducive growth temperatures for the weed (25'C-300C), optimum biomass loss achieved was only 70% following 50 hours leaf wetness. Susceptibility to this Phoma sue. greatly decreased as foxtail seedlings attained 4 or more leaves per plant. To kill this weed, the author recommends inoculation of foxtail seedlings in early evening to take advantage of cooler temperatures and to inoculate plants between cotyledon to 3-leaf stages of growth.
Department of Biology
APA, Harvard, Vancouver, ISO, and other styles
38

Bownes, Angela. "Evaluation of a plant-herbivore system in determining potential efficacy of a candidate biological control agent, cornops aquaticum for water hyacinth, eichhornia crassipes." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1005373.

Full text
Abstract:
Water hyacinth, Eichhornia crassipes Mart. Solms-Laubach (Pontederiaceae), a freefloating aquatic macrophyte of Neotropical origin, was introduced into South Africa as an ornamental aquarium plant in the early 1900’s. By the 1970’s it had reached pest proportions in dams and rivers around the country. Due to the sustainability, cost efficiency and low environmental risk associated with biological control, this has been a widely used method in an attempt to reduce infestations to below the threshold where they cause economic and ecological damage. To date, five arthropod and one pathogen biocontrol agents have been introduced for the control of water hyacinth but their impact has been variable. It is believed that their efficacy is hampered by the presence of highly eutrophic systems in South Africa in which plant growth is prolific and the negative effects of herbivory are therefore mitigated. It is for these reasons that new, potentially more damaging biocontrol agents are being considered for release. The water hyacinth grasshopper, Cornops aquaticum Brüner (Orthoptera: Acrididae), which is native to South America and Mexico, was brought into quarantine in Pretoria, South Africa in 1995. Although the grasshopper was identified as one of the most damaging insects associated with water hyacinth in its native range, it has not been considered as a biocontrol agent for water hyacinth anywhere else in the world. After extensive host-range testing which revealed it to be safe for release, a release permit for this candidate agent was issued in 2007. However, host specificity testing is no longer considered to be the only important component of pre-release screening of candidate biocontrol agents. Investigating biological and ecological aspects of the plant-herbivore system that will assist in determination of potential establishment, efficacy and the ability to build up good populations in the recipient environment are some of the important factors. This thesis is a pre-release evaluation of C. aquaticum to determine whether it is sufficiently damaging to water hyacinth to warrant its release. It investigated interactions between the grasshopper and water hyacinth under a range of nutrient conditions found in South African water bodies as well as the impact of the grasshopper on the competitive performance of water hyacinth. Both plant growth rates and the response of water hyacinth to herbivory by the grasshopper were influenced by nutrient availability to the plants. The ability of water hyacinth to compensate for loss of tissue through herbivory was greater under eutrophic nutrient conditions. However, a negative linear relationship was found between grasshopper biomass and water hyacinth performance parameters such as biomass accumulation and leaf production, even under eutrophic conditions. Water hyacinth’s compensatory ability in terms of its potential to mitigate to detrimental effects of insect feeding was dependent on the amount of damage caused by herbivory by the grasshopper. Plant biomass and the competitive ability of water hyacinth in relation to another freefloating aquatic weed species were reduced by C. aquaticum under eutrophic nutrient conditions, in a short space of time. It was also found that grasshopper feeding and characteristics related to their population dynamics such as fecundity and survival were significantly influenced by water nutrient availability and that environmental nutrient availability will influence the control potential of this species should it be released in South Africa. Cornops aquaticum shows promise as a biocontrol agent for water hyacinth but additional factors that were not investigated in this study such as compatibility with the South African climate and the current water hyacinth biocontrol agents need to be combined with these data to make a decision on its release. Possible management options for this species if it is to be introduced into South Africa are discussed.
APA, Harvard, Vancouver, ISO, and other styles
39

Zhao, Ming. "Removal and recovery of heavy metals from synthetic solutions and electroplating effluents using yeast and the water fern Azolla filiculoides." Thesis, Rhodes University, 1998. http://hdl.handle.net/10962/d1004061.

Full text
Abstract:
The aims of the project were twofold. The initial objective of the study, based on previous results, was to develop an economically viable methodology for immobilizing yeast cells for the treatment of heavy metal-laden waste water. The non-viable yeast cross-linked by 13% (w/v) formaldehyde/1N HNO₃ exhibited satisfactory mechanical strength and rigidity in a continuous-flow column operation. No apparent disruption of the biomass after repeated use was observed. The cost of immobilizing 1kg dry yeast pellets was estimated at less than US$I. Zn uptake capacity of FA-cross-linked pellets, on batch trials, remained similar to that of raw yeast, reflecting that the immobilizing procedure did not hinder its metal removing capacity. In column studies, cation metals were effectively removed by the yeast pellets from aqueous solution at natural pHs, and then recovered completely by washing the pellets in situ with O.1M HCl. The recovered metals were concentrated in such small volumes that recycling or precipitation of them was facilitated. The metal uptake capacity of the regenerated biomass remained constant in comparison with cycle 1, indicating that reuse of the yeast would be possible. In the case of Cr⁶⁺, a gradual breakthrough curve of Cr in the column profile was noted, with a simultaneous reduction of Cr⁶⁺ to Cr³⁺. However, Cr⁶⁺ in the effluent can be markedly minimised either by accumulation onto the biomass or reduction to its trivalent form. Desorption of bound Cr⁶⁺ with either alkali or salt could not accomplish the regeneration of the biomass. A combination of reduction and desorption with FA/HNO₃ appeared promising in regeneration of the saturated biomass at 4°C. The metal sorption capacities of the yeast pellets, on a batch or a fixed-bed system are relatively lower than that of documented sorbents. Apparently more of the yeast pellets would be required for treating a certain volume of waste effluent, than with other sorbents. Therefore Azolla filiculoides was examined as a suitable sorbent for this purpose. This constitutes the second part of the project. Azolla filiculoides, a naturally-abundant water fern, was screened for its metal sorption and recovering capacities, mechanical stability, flow-permeability and reusability. The azolla biomass appeared to have fulfilled the required mechanical criteria during the repeated sorption-desorption column operations. It is water-insoluble and appears flexible under pressure when rinsed with water. These characters are of crucial importance in a continuous-flow system since a column can be operated at high flow rates without apparent compact of the biomass and pressure loss. Therefore, immobilization of the biomass can be avoided. The sorption isotherm data, obtained from batch removal of Cr⁶⁺, showed that the sorption process was effective, endothermic and highly pH dependent. Considerable amounts of Cr⁶⁺ were accumulated at the optimum pHs of 2-2.5. Column sorption of Cr⁶⁺ at a low flow rate and pH of 2.5 showed optimum performance with a total Cr uptake of 50.4mg/g at 60% saturation of the biomass. Removal of Cr⁶⁺ from an electroplating effluent using an azolla column was deemed reasonably satisfactory, although the uptake declined slightly. Desorption of bound Cr⁶⁺ with various desorbents was incomplete, which resulted in a low regeneration efficiency of about 50%. However, removal and recovery of Cr³⁺ using the azolla column was than that of Cr⁶⁺. Desorption of Cr³⁺ from the spent biomass column was accomplished with the recovery of 80% using O.5N H₂SO₄, The regeneration efficiencies for Cr³⁺ removal were up to 90% and demonstrated that the biomass is reusable. Cation metal uptake capacities of azolla, obtained either from batch or column experiments, are reasonably high in comparison with other sorbents. The uptake of Ni or Zn ions from solution is pH dependent showing the optimum pH of around 6 to 6.5, under the current experimental conditions. The sorption kinetics for cation metals was rapid with about 80% of the bound Ni ions being taken up in the first 10 min. The character of rapid binding is extremely important in a column sorption process, especially on a large scale since it favours an optimum uptake of metals at high flow rates. The Ni or Zn uptakes in column sorption were not markedly affected when the flow rates were increased from 80mllh up to 800ml/h for the 5g biomass used. The cation heavy metals removed from waste effluents were recovered in a concentrated solution of small volume. The desorption of bound Ni and Zn ions from the saturated biomass was accomplished with either O.2N HCl or H₂SO₄ that resulted in recoveries of more than 95%. The metals recovered, in the case of Ni and Zn, are identical to that of plating agents ego nickel sulphate or chloride, so that recycling of the metals is possible. An effluent-free, closed loop of Ni or Zn treatment system was proposed, whereby the Ni or Zn ions can be recycled to the plating bath whilst the purified water is fed back to the rinse tanks. Ca and Mg ions, commonly present in the electroplating effluents, appeared to affect sorption of heavy metals by azolla when metal concentrations were relatively low, presumedly through its competitive binding for the shared sites on surfaces of azolla. The data obtained from column sorption of Ni and Zn follows the BDST model well, enabling the application of the model to predicting design parameters for scale-up of the biosorption column system. It is interesting that the values of metal uptake, expressed in molar quantities, obtained on respective single-metal solutions and the multiple metal system, are similar, implying that the mechanisms involved in the sorption of all metal cations are similar and that the binding sites on surfaces of azolla are probably shared by all cation metals. The surface of the biomass provides sites for metal binding estimated in the range of 0.45-0.57mmol/g, based on the current experiments. The biomass has a surface area of 429 m²/g and water retention of 14.3 ml/g. The functional groups on the surface of azolla were partially identified using chemical modification and metal binding comparison. Among the functional groups examined, carboxyl groups, provided by amino acids and polysaccharides, appeared to play an important role in metal cation binding. The infrared spectra of the samples support this conclusion.
APA, Harvard, Vancouver, ISO, and other styles
40

Nang'alelwa, Michael Mubitelela. "Effects of treatment on Lantana camara (L.) and the restoration potential of riparian seed banks in cleared areas of the Victoria Falls World Heritage Site, Livingstone, Zambia." Thesis, Rhodes University, 2010. http://hdl.handle.net/10962/d1003786.

Full text
Abstract:
The exotic plant Lantana camara L. has invaded the riparian areas of the Victoria Falls World Heritage Site in Livingstone, southern Zambia, threatening native plant communities which support populations of species of special concern. I trialled the mechanical control method of manual uprooting and 3 different herbicides applied through paint brushing of an imazapyr concentrate at 250g. l¯¹, spraying on cut stumps with metsulfron methyl at 600g.l¯¹, and foliar spraying on re-emergent lantana foliage with glyphosate at a dosage of 166g. l¯¹ in July 2008 in 20 100m2 treatment plots, 5 invaded control plots and 5 uninvaded controls. Follow-up treatments for re-sprouting lantana stumps and emerging seedlings were undertaken in June 2009. I measured effectiveness of the methods using adult lantana mortality in June 2009 and lantana seedling density in the different treatment plots during the follow-up exercise. The cost of the various methods and human labour applied were compared across the four treatments at initial clear and at follow-up. All treatments recorded a high adult lantana mortality rate, though there were no significant differences in lantana adult mortality amongst the treatments. Overall, uprooting had the highest adult mortality, followed by imazapyr, metsulfron and lastly glyphosate. Germination of lantana seedlings after clearing was high for all treatments but with no significant differences occurring between the treatments. Both adult lantana mortality and seedling density were however significantly different from the control. With labour included, chemical costs were far higher relative to uprooting, though uprooting costs were the highest when it came to the follow-up because of the emerging seedlings and some resprouting stumps. The effects of mechanical and chemical treatments on vegetation composition in the cleared areas were also assessed in order to detect any non-target and medium term effects of treatments. Contrary to expectation, none of the chemicals showed any significant effects on vegetation composition in the short and medium-term and no significant differences were found in plant species richness, diversity and seedling density between invaded and uninvaded plots at baseline, in October 2008 and in September 2009. In order to determine potential for unaided vegetation recovery in the riparian areas of the study site after lantana clearing, I conducted an investigation of soil seed banks and seed rain using 60 seed bank samples measuring 1800m³ collected from 30 invaded and uninvaded plots. Using the seedling emergence method, 1, 991 seedlings belonging to 66 species representing 27 families germinated from the seed bank. Sedges (Cyperaceae family) were the most abundant taxa in the seed banks from invaded areas, followed by Ageratum conyzoides, lantana, Triumfetta annua and Achyranthes aspera which also occurred in the uninvaded soil seed banks. The seed banks from uninvaded plots were dominated by the grass Oplismenus hirtellus. Overall, species richness, diversity and seedling density from seed banks in invaded areas did not differ significantly from seed bank in uninvaded areas and there was a low similarity in species composition when above ground vegetation was compared to seed banks from invaded and uninvaded areas. It would appear if natural regeneration occured from the current seed bank in disturbed areas, future vegetation would largely comprise of short lived, early successional species in the short term as the seed bank is dominated by non-native herbaceous weedy species. From the seed traps investigating seed rain, a total of 27 species numbering 623 individual seeds were found in the thirty 1m² seedtraps distributed in invaded and uninvaded areas at the five sites, over an intermittent period of three months. Lantana had the highest monthly arrival rate in the seed traps followed by Phoenix reclinata and Ricinus communis. The number of species with invasive potential found in the seed traps located in invaded areas was more than that found in seed traps under native vegetation cover by far. Considerable forest remnants still occur around the invaded sites, and these could serve as an important source for long-term natural re-establishment of native vegetation if seed availability by animals and wind dispersal continues, while the re-invasion of lantana is prevented by ongoing follow-ups and futher clearing of lantana invaded areas. It is concluded that while uprooting and other treatments are effective in the control of lantana, its successful control in the Victoria Falls World Heritage Site will require extensive clearing to keep it from reinvading infested areas after clearing as shown by the seed rain data. The high seedling density of lantana in the seed banks and in the cleared areas shows the need for ongoing follow-up in order to deplete soil stored seed banks. There is need for longer term research to establish what the exact follow-up requirements are in order to contain lantana re-infestation and create favourable micro-sites for native species to establish. It is predicted that ongoing lantana control in the cleared plots will most likely initiate long-term community recovery.
APA, Harvard, Vancouver, ISO, and other styles
41

Bickel, Ken (Kenneth E. ). "Assessment of Changes in Aquatic Macrophyte Occurrence Following Introduction of Triploid Grass Carp in a North Texas Reservoir." Thesis, University of North Texas, 1997. https://digital.library.unt.edu/ark:/67531/metadc332827/.

Full text
Abstract:
The objectives of this project were to measure changes in frequency of occurrence of submerged macrophytes over the first two growing seasons following stocking with triploid grass carp at two fish per acre and to measure differences in macrophyte biomass between areas excluded from herbivory and adjacent control sites after 16 months following establishment of exclosures. The project also seeks to measure concentrations of fluridone following the herbicide treatment, and to compare two methods of aquatic vegetation sampling.
APA, Harvard, Vancouver, ISO, and other styles
42

Mvandaba, Sisanda F. "The thermal physiology of Stenopelmus rufinasus and Neohydronomus affinis (Coleoptera: Curculionidae), biological control agents for the invasive alien aquatic weeds Azolla filiculoides and Pistia stratiotes respectively." Thesis, Rhodes University, 2018. http://hdl.handle.net/10962/62362.

Full text
Abstract:
Water lettuce, Pistia stratiotes L. (Araceae), and red water fern, Azolla filiculoides Lam. (Azollaceae), are floating aquatic macrophytes that have become problematic invaders in numerous South African waterbodies. Two weevils, Neohydronomus affinis Hustache 1926 (Coleoptera: Curculionidae) and Stenopelmus rufinasus Gyllenhal 1936 (Coleoptera: Curculionidae), are successful biological control agents of these two species, respectively, in South Africa. However, nothing is known about the thermal physiology of these two species Therefore, the aim of this study was to investigate the thermal physiologies of these two species to explain their establishment, distribution and impact in the field. Laboratory based thermal physiology trials showed that both weevils were widely tolerant of cold and warm temperatures. The CTmin of N. affinis was determined to be 5.5 ± 0.312°C and the CTmax was 44 ± 0.697°C, while the CTmin of S. rufinasus was 5.4 ± 0.333°C and the CTmax was 44.5 ± 0.168°C. In addition, the lower lethal temperatures were -9.8 ± 0.053°C and -7.2 ± 0.19°C, and the upper lethal temperatures were 42.8 ± 0.053°C and 41.9 ± 0.19°C respectively. These results suggest that both species should not be limited by cold winter temperatures, as previously thought. This is evident in the field, where S. rufinasus has established widely on A. filiculoides, despite local cold climates in some areas of the plant’s distribution. Even though N. affinis has a similar thermal range, and should therefore theoretically reflect a similar distribution to S. rufinasus throughout South Africa, its distribution is limited by the range of its host, which is restricted to the warmer regions of the country, as is its biocontrol agent. Using the reduced major axis regression method, the development for N. affinis was described using the formulay=12.976x+435.24, while the development of S. rufinasus was described by y=13.6x+222.45. These results showed that S. rufinasus develops much faster, in fact almost twice as quickly, than N. affinis. Using these formulae and temperature data obtained from the South African Weather Service, N. affinis was predicted to complete between 4 and 9 generations per year in South Africa, while S. rufinasus was predicted to complete between 5 and 14 generations per year around the country. This study showed that although the native range of these two species is warm temperate to tropical, they possess sufficient thermal plasticity to not only establish, but also damage their respective host plants in far cooler climates. Thus, in South Africa N. affinis and S. rufinasus are limited by the distribution of their target weeds and not climate.
APA, Harvard, Vancouver, ISO, and other styles
43

Robertson, Hamish Gibson. "The ecology of Cactoblastis cactorum (Berg) (Lepidoptera : phycitidae) in relation to its effectiveness as a biological control agent of prickly pear and jointed cactus in South Africa." Thesis, Rhodes University, 1985. http://hdl.handle.net/10962/d1005356.

Full text
Abstract:
The successful biological control of the shrub-like prickly pear Opuntia stricta Haworth in Australia by cactoblastis cactorum (Berg) was not repeated when C. cactorum, derived from the Australian population, was released in South Africa in the 1930's against the tree prickly pear Opuntia ficus-indica (L.) Miller. Resistance of the woody portions of o. ficus-indica to attack by C. cactorum was regarded as the main reason for the poor performance of C. cactorum in South Africa. C. cactorum also oviposits and feeds on Opuntia aurantiaca Lindley, which is currently South Africa's most important weed and which is also considered to be partly resistant to attack by C. cactorum. This study had three main objectives: (i) to compare the ecology and effectiveness of C. cactorum as a biological control agent on O. ficusindica and O. aurantiaca; (ii) to reassess why C. cactorum has not been as effective a biological control agent in South Africa as it has been in Australia; and (iii) to evaluate whether inundative release or the importation of new biotypes of C. cactorum from South America (where it is indigenous) might be feasible methods of improving its effectiveness as a biological control agent of O. aurantiaca in South Africa. All field work was undertaken at a site near Grahamstown in South Africa. The ecology and effectiveness of C. cactorum on O. ficus-indica and O. aurantiaca was assessed in terms of its oviposition behaviour, survival and feeding on these host plants. The proportion of C. cactorum eggs laid on O. ficus-indica and O. aurantiaca was similar and was influenced by the size, conspicuousness and condition of the host plant as well as by the proximity of the host plant to moth emergence sites. Factors affecting oviposition site selection on the plant are also considered. Life tables, compiled for a summer and a winter generation, showed that the survival of C. cactorum was greater on O. ficus-indica than on O. aurantiaca, mainly because higher egg predation by ants occurred on the latter host plant species. During the period of study, the population size of C. cactorum was reduced by a number of mortality factors, of which egg predation and the effects of low temperatures on fecundity were the most important. Although there was evidence of a partial, positive response by predatory ants to C. cactorum egg densities on plants, the extent of egg predation was also affected by other factors, particularly seasonal effects. C. cactorum destroyed a greater percentage of cladodes on O. ficu-indica than on O. aurantiaca, but even on O. ficus-indica it was unable to contain the growth of plants within the study area. C. cactorum larvae rarely killed the woody rooted cladodes of O. ficus-indica and O. aurantiaca and consequently whole plants were not often destroyed. The detrimental effects of host plant resistance, natural enemies and climate on the effectiveness of C. cactorum as a biological control agent all appear to be greater in South Africa than in most of the regions occupied by C. cactorum in Australia. A field experiment conducted at the study site showed that inundative release methods for improving the effectiveness of C. cactorum on O. aurantiaca are not feasible. The importation of biotypes of C. cactorum from South America that might be better suited for destroying O. aurantiaca infestations in South Africa, is also not a viable option. Results of a survey of a 218 ha area that is regarded as being heavily infested with O. aurantiaca, illustrate how this cactus species has been overrated as a weed problem. It is argued that the present strategy for O. aurantiaca control in South Africa is not based on sound economic or ecological criteria.
APA, Harvard, Vancouver, ISO, and other styles
44

Tourle, Robyn. "Effects of ant predation on the efficacy of biological control agents Hypena Laceratalis Walker (Lepidoptera : noctuirdae) ; Falconia intermedia Distant (Hemiptera : Miridae and Teleonemia scrupulosa Stål (Hemiptera: Tingidae) on Lantana Camara (Verbenaceae) in South Africa." Thesis, Rhodes University, 2010. http://hdl.handle.net/10962/d1005362.

Full text
Abstract:
Lantana camara L. (Verbenaceae) remains a highly invasive and ecologically damaging weed in South Africa, despite some 50 years of biological control efforts. Lack of success has been ascribed to varietal differences, climate and predation of agents but these have not been tested. In this study, the effects of ant predation were tested on populations of three biological control agents for L. camara. Colonies of two species, Crematogaster sp. 1 and 2 were investigated. Crematogaster sp. 1 colonies were offered no choice between immature stages of the agents Hypena laceratalis Walker (Lepidoptera: Noctuidae), Falconia intermedia Distant (Hemiptera: Miridae) or Teleonemia scrupulosa Stål (Hemiptera: Tingidae) on lantana shoots. Density-dependent predation on F. intermedia and T. scrupulosa nymphs on lantana shoots was tested using Crematogaster sp. 2 colonies. In choice experiments Crematogaster sp. 2 colonies were offered F. intermedia or T. scrupulosa nymphs on potted lantana plants. Preliminary food trials confirmed that colonies foraged for protein, thereby validating results of no-choice experiments. Crematogaster sp.1 foragers removed 50% of F. intermedia nymphs, followed by 45% of H. laceratalis larvae and only 9% of T. scrupulosa nymphs. Foragers recruited most actively to H. laceratalis larvae and significantly more H. laceratalis biomass was removed than either F. intermedia or T. scrupulosa. A trade-off existed in prey size selection because larger larvae provided considerably more biomass but required forager cooperation and a longer time to subdue than did smaller prey. This increases both forager energy expense and mortality risk by other predators. This study showed that all Crematogaster sp. 1 colonies removed small (≤10mm) H. laceratalis larvae more frequently than larvae larger than 10mm. Thus, of these biological control agents, predators probably prefer small H. laceratalis larvae. Significantly more F. intermedia than T. scrupulosa nymphs were removed by Crematogaster sp. 1, while Crematogaster sp. 2 colonies removed comparable numbers of both agent species. Falconia intermedia nymphs' fast movement triggered a predatory response by these ant species. In contrast, the relatively immobile behaviour of T. scrupulosa nymphs was identified as a highly effective predator avoidance strategy. Since T. scrupulosa nymphs are unable to escape predators by moving, they appear to depend on the presence of alternative prey attracting predator attention. At high agent and/or forager density, T. scrupulosa nymphs attempted escape, but foragers identified them as prey once they moved and caught them. Predation on F. intermedia was also density dependent in that at high nymph and/or forager densities, escape routes were congested and nymphs were more easily caught. Survival of F. intermedia and T. scrupulosa nymphs in particular was low on ant-accessed shrubs in choice experiments and high on ant-excluded shrubs. It is likely that ants significantly depress F. intermedia populations in the field since besides predation, ant foragers probably interrupt F. intermedia feeding and ovipositioning. The combination of parasitism and predation on early instar larvae may explain why H. laceratalis occurs across lantana's range in South Africa but populations remain low. It is unlikely that T. scrupulosa nymphs are habitually preyed on by ant species unless they attract attention by being mobile. Although biological control of L. camara is influenced by climate and physiological defence mechanisms, this study has shown that predation by two ant species severely impacts leaf-feeding agents for L. camara. Thus, it is recommended that future selection of additional agents to control lantana should exclude leaf-feeding .
APA, Harvard, Vancouver, ISO, and other styles
45

Baars, Jan-Robert. "Biological control initiatives against Lantana camara L. (Verbenaceae) in South Africa : an assessment of the present status of the programme, and an evaluation of Coelocephalapion camarae Kissinger (Coleoptera: Brentidae) and Falconia intermedia (Distant) (Heteroptera: Miridae), two new candidate natural enemies for release on the weed." Thesis, Rhodes University, 2003. http://hdl.handle.net/10962/d1005329.

Full text
Abstract:
Lantana camara (lantana), a thicket-forming shrub, a number of different varieties of which were introduced into South Africa as ornamental plants but which has become a serious invasive weed. Conventional control measures for lantana are expensive and ineffective and it has therefore been targeted for biological control since 1961. To date, eleven biological control agent species have become established on lantana in South Africa. However, most agents persist at low densities and only occasionally impact plant populations. Three species regularly cause significant damage, but only reach sufficiently high numbers by midsummer after populations crash during the winter. Overall, the impact of the biological control programme on the weed is negligible and this has been ascribed to the poor selection of agents for release, the accumulation of native parasitoids, differences in insect preference for different varieties of the weed and variable climatic conditions over the weed’s range. This study suggests that the importance of varietal preferences has been over-estimated. A predictive bioclimatic modelling technique showed that most of the agents established in South Africa have a wide climatic tolerance and that the redistribution and importation of new climatypes of these agents will not improve the level of control. Additional agents are required to improve the biocontrol in the temperate conditions, and also to increase damage in the sub-tropical areas where most of the agents are established and where the weed retains its leaves year round. New candidate agents that possess biological attributes that favour a high intrinsic rate of increase, a high impact per individual and that improve the synchrony between the weed and the agent in climatic conditions that promote the seasonal leaflessness of plants should receive prior consideration. A survey in Jamaica indicated that additional biological control agents are available in the region of origin but that care should be taken to prioritise the most effective agents. The various selection systems currently available in weed biocontrol produce contradictory results in the priority assigned to candidate agents and a new selection system is proposed. The biology and host range of two new candidate natural enemies, the leaf-galling weevil, Coelocephalapion camarae and the leaf-sucking mirid, Falconia intermedia were investigated for the biocontrol of lantana. The studies indicated that these have considerable biocontrol potential, in that the weevil has a wide climatic tolerance and has the potential to survive the host leaflessness typical of temperate conditions, while the mirid has a high intrinsic rate of increase, and the potential for several generations a year. Both agents caused a high level of damage to the leaves, with the weevil galling the vascular tissue in the leaf-petiole and the mirid causing chlorotic speckling of the leaves. During laboratory trials both agents accepted indigenous species in the genus Lippia. However, under multiple choice conditions these agents showed a significant and strong oviposition preference for lantana. A risk assessment and post release field trials indicated that F. intermedia is likely to attack some Lippia species in the presence of lantana, but the levels of damage are predicted to be relatively low. A possible low incidence of damage to indigenous species was considered a justifiable ‘trade-off’ for the potentially marked impact on L. camara. Preference and performance studies on the two candidate agents suggested that most of the South African lantana varieties are suitable host plants. The mirid preferred certain varieties in multiple choice experiments, but this is unlikely to affect its impact under field conditions. Permission for release was accordingly sought for both species. Finally, the challenges facing the biological control programme and the potential for improving the control of L. camara in South Africa are considered.
APA, Harvard, Vancouver, ISO, and other styles
46

Carruthers, Kerry. "Intercropping of corn with soybean, lupin and forages for weed control and improved silage yield and quality in eastern Canada." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=27294.

Full text
Abstract:
The intercropping of corn with legumes is an alternative cropping strategy to corn monocropping which may help reduce inputs into the production of silage for livestock feed. The reduction of inputs will decrease costs to producers and potential damage to the environment. Two experiments were carried out at each of two sites in 1993 and 1994. The first experiment investigated the effects on silage yield and weed control of seeding soybean or lupin alone or in combination with one of three forages (annual ryegrass, Lolium multiflorum Lam.; perennial ryegrass, Lolium perenne L.; and red clover, Trifolium pratense L.). The second experiment examined the effects on silage yield and weed control of seeding date (simultaneous with corn or three weeks later) and number of rows of large-seeded legumes (one or two) seeded between the corn rows. For both experiments intercropped plots received 90 kg ha$ sp{-1}$ less nitrogen fertilizer than monocropped plots (which received 180 kg ha$ sp{-1})$. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
47

Stoyer, Tracy Lynne. "Integration of the herbicide 2, 4-D with the rosette weevil Trichosirocalus horridus (Panzer) for control of Carduus thistles." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/76145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Marlin, Danica. "The role of the mite Orthogalumna terebrantis in the biological control programme for water hyacinth, Eichhornia crassipes, in South Africa." Thesis, Rhodes University, 2011. http://hdl.handle.net/10962/d1005450.

Full text
Abstract:
Water hyacinth (Eichhornia crassipes) is an aquatic macrophyte originating from the Amazon basin. Due to its beautiful appearance it has been introduced into numerous countries across the world as an ornamental pond plant. It was introduced into South Africa in the early 1900s and has since reached pest proportions in many of the country’s fresh water bodies, causing significant economic and ecological losses. It is now considered to be the worst aquatic weed in South Africa. Efforts to control the spread of the weed began in the early 1970s and there have been some successes. Biological control has been used widely as an alternative to mechanical and chemical controls because it is cost-effective, self-sustaining and environmentally friendly. To date, six biological control agents have been introduced onto water hyacinth in South Africa. However, due to factors such as cold winter temperatures and interference from chemical control, the agent populations are occasionally knocked-down and thus the impact of biological control on the weed population is variable. In addition, many South African water systems are highly eutrophic, and in these systems the plant growth may be accelerated to such an extent that the negative impact of the agents’ herbivory is mitigated. One of the agents established on the weed is the galumnid mite Orthogalumna terebrantis, which originates from Uruguay. In South Africa, the mite was initially discovered on two water hyacinth infestations in the Mpumalanga Province in 1989 and it is now established at 17 sites across the country. Many biological control researchers believe that the mite is a good biological control agent but, prior to this thesis, little quantitative data existed to confirm the belief. Thus, this thesis is a post-release evaluation of O. terebrantis in which various aspects of the mite-plant relationship were investigated to determine the efficacy of the mite and thus better understand the role of the mite in the biological control programme of water hyacinth in South Africa. From laboratory experiments, in which mite densities were lower than densities occurring in the field, it was found that water hyacinth growth is largely unaffected by mite herbivory, except possibly at very high mite densities. When grown in high nutrient conditions the growth of the plant is so great that any affect the mite has is nullified. Plant growth is thus more affected by nutrients than by mite herbivory. However, mite feeding was also influenced by water nutrient levels and mite herbivory was greatest on plants grown in high nutrient conditions. The presence of the mite had a positive effect on the performance of the mirid Eccritotarsus catarinensis, such that the interactions of the two agents together had a greater negative impact on the plant’s growth than the individual agents had alone. Furthermore, water hyacinth physiological parameters, such as the plant’s photosynthetic ability, were negatively impacted by the mite, even at the very low mite densities used in the study. Plant growth rate is dependent on photosynthetic ability i.e. the rate of photosynthesis, and thus a decrease in the plant’s photosynthetic ability will eventually be translated into decreased plant growth rates which would ultimately result in the overall reduction of water hyacinth populations. In addition, temperature tolerance studies showed that the mite was tolerant of low temperatures. The mite already occurs at some of the coldest sites in South Africa. Therefore, the mite should be able to establish at all of the water hyacinth infestations in the country, but because it is a poor disperser it is unlikely to establish at new sites without human intervention. It is suggested that the mite be used as an additional biological control agent at sites where it does not yet occur, specifically at cold sites where some of the other, less cold-tolerant, agents have failed to establish. Finally, conditions of where, how many and how often the mite should be distributed to water hyacinth infestation in South Africa are discussed.
APA, Harvard, Vancouver, ISO, and other styles
49

Short, Nicolyn. "Implications of green manure amendments on soil seed bank dynamics." University of Western Australia. School of Earth and Geographical Sciences, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0022.

Full text
Abstract:
[Truncated abstract] Weeds are a major limitation to agricultural and horticultural production and the main method of control is the use of herbicides. In addition to the resulting chemical pollution of the environment, the wide spread and continues use of herbicides have resulted in many weeds developing resistance to commonly used herbicides. This study investigated the potential of using green manures as a cultural method of control of weed invasion in agricultural fields. To understand the general mechanisms involved in the suppression of seed germination in green manure amended soils, seeds of crop species with little or no dormancy requirements were used in certain studies. Lettuce (Lactuca sativa) and cress (Lepidium sativum) seeds were sown to a sandy soil amended with green manures of lupin (Lupinus angustifolius), Brassica juncea, or oats (Avena sativa) to determine if the amendments affected seed germination and/or decay. It was hypothesised that the addition of plant material would increase the microbial activity of the soil thereby increasing seed decay, under laboratory and greenhouse conditions. Initial experiments used lettuce, cress and lupin seeds. Lettuce and cress are commonly used as standard test species for seed viability studies. Subsequent experiments used seeds of annual ryegrass (Lolium rigidum), silver grass (Vulpia bromoides), wild radish (Raphanus raphanistrum) and wild oat (Avena fatua) as these weed species are commonly found throughout agricultural regions in Western Australia. Amending the soil with lupin or Brassica green manure was established as treatments capable of developing environments suppressive to seed germination. Lupin residues as green manure showed the strongest inhibition of seed germination and seed decay. The decay of certain seeds was enhanced with changes to soil microbial activity, dissolved organic carbon and carbon and nitrogen amounts in lupin amended soil. Seeds of weed species were decayed in lupin amended soil, but showed varied degree of decay. Annual ryegrass and silver grass were severely decayed and wild oat and wild radish were less decayed, in lupin amended soil.
APA, Harvard, Vancouver, ISO, and other styles
50

May, Bronwen. "Investigations into insect-induced plant responses of water hyacinth (Eichhornia crassipes (Mart.) Solms-Laub.) (Pontederiaceae)." Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1018906.

Full text
Abstract:
The water hyacinth (Eichhornia crassipes (Mart.) Solms-Laub (Pontederiaceae)) biological control programme makes use of tight plant-insect interactions to control the weed, by reestablishing the interactions between the plant and its natural enemies. Since the beginning of the water hyacinth biological control initiative, the impact of biological control agent herbivory on water hyacinth’s population growth and fitness have been well documented; however, very few investigations have been conducted to determine whether herbivory elicits insect-induced responses by water hyacinth. Studies were conducted to determine the presence and function of water hyacinth insectinduced responses, using the plant activator, BION®, in attempt to determine the plant hormone-mediated pathways regulating the final expressions of insect-induced defences in response to herbivory by the phloem-feeder, Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae) and the leaf chewer, Neochetina bruchi Hustache (Coleoptera: Curculionidae). BION® (Syngenta, acibensolar-S-methyl (benzothiadiazole)) is a dissolvable, granular formulation that contains a chemical analogue of the plant hormone, salicylic acid (SA), which typically regulates defences against pathogens. The application of BION® results in the induction of the SA-mediated defence pathways in plants (activation of defences against pathogens), and consequently the inhibition of the jasmonic acid (JA)- mediated defence pathways (de-activation of defences against insect herbivores). To test for induced defence responses in water hyacinth, plants treated with BION® and then subjected to herbivory, were compared to un-treated plants that were also subjected to herbivory, BION®-only treated plants and control plants. The application of BION® did not confer resistance against the two insect herbivores, as herbivory, reductions in chlorophyll content and plant growth (leaf production and second petiole lengths) significantly increased in comparison to non-BION® treated plants. Furthermore, palatability indices significantly increased (>1.00) in BION® treated plants, reflecting increased weevil preferences for SAinduced water hyacinth plants. This concluded that SA-mediated defences are not effective against insect herbivory in water hyacinth plants, but are in fact palatable to insect herbivores, which reflects ecological and physiological costs of SA-mediated defences (pathogen defences) in water hyacinth. Biochemical analyses of leaves exhibited increases in nitrogen content in BION® treated plants. These elevated levels of nitrogenous compounds account for the increases in mirid and weevil preferences for BION® treated plants. The increases in nitrogenous compounds are probably structural proteins (e.g. peroxidises), because leaves treated with BION® increased in toughness, but only when exposed to herbivory. Regardless, insect herbivory was elevated on these leaves, probably because the nitrogenous compounds were nutritionally viable for the insects.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography