To see the other types of publications on this topic, follow the link: Weight matrix.

Books on the topic 'Weight matrix'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 books for your research on the topic 'Weight matrix.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

R, Dutton Kenneth, ed. The matrix principle: A revolutionary approach to muscle development. North Sydney, NSW Australia: Allen & Unwin., 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

R, Dutton Kenneth, and Weider Research Group, eds. The matrix principle: A revolutionary approach to muscle development. Boston: John Magee Inc., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

E, Myers David. Parametric weight comparison of advanced metallic, ceramic tile and ceramic blanket thermal protection systems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duffy, Stephen F. Design protocols and analytical strategies that incorporate structural reliability models: Final report; reporting period: January 19, 1996 - January 18, 1997; grant number: NASA cooperative agreement NCC 3-448. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tucci, S. A. Phytochemicals for the control of human appetite and body weight. Hauppauge, N.Y: Nova Science Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shtukina, L. V. Sakharosnizhai͡ushchie rastenii͡a i vkusnye bli͡uda: Dli͡a vsekh, kto khochet kontrolirovatʹ svoĭ ves, dli͡a predotvrashchenii͡a sakharnogo diabeta. Moskva: RIPOL klassik, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Naveed-i-Rahat. Male outmigration and matri-weighted households: A case study of a Punjabi village in Pakistan. Delhi: Hindustan Pub. Corp., 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

From protyle to proton: William Prout and the nature of matter, 1785-1985. Bristol: A. Hilger, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stribeck, Norbert. X-ray scattering of polymers. Berlin: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stribeck, Norbert. X-ray scattering of polymers. Berlin: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Author, Pincus Philip A., ed. Structured fluids: Polymers, colloids, surfactants : XD-US. Oxford [u.a.]: Oxford University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Center, Lewis Research, ed. Adjusting measured weight loss of aged graphite fabric/PMR-15 composites. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

T, Serafini Tito, DiCarlo James A, and Lewis Research Center, eds. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Morawetz, Klaus. Spectral Properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0008.

Full text
Abstract:
The spectral properties of the nonequilibrium Green’s functions are explored. Causality and sum rules are shown to be completed by the extended quasiparticle picture. The off-shell motion is seen to become visible in satellite structures of the spectral function. Different forms of ansatz to reduce the two-time Green’s function to a one-time reduced density matrix are discussed with respect to the consistency to other approximations. We have seen from the information contained in the correlation function that the statistical weight of excitations with which the distributions are populated are given by the spectral function. This momentum-resolved density of state can be found by the retarded and advance functions.
APA, Harvard, Vancouver, ISO, and other styles
15

Its, Alexander R. Random matrix theory and integrable systems. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.10.

Full text
Abstract:
This article discusses the interaction between random matrix theory (RMT) and integrable theory, leading to ordinary and partial differential equations (PDEs) for the eigenvalue distribution of random matrix models of size n and the transition probabilities of non-intersecting Brownian motion models, for finite n and for n → ∞. It first provides an overview of the connection between the theory of orthogonal polynomials and the KP-hierarchy in integrable systems before examining matrix models and the Virasoro constraints. It then considers multiple orthogonal polynomials, taking into account non-intersecting Brownian motions on ℝ (Dyson’s Brownian motions), a moment matrix for several weights, Virasoro constraints, and a PDE for non-intersecting Brownian motions. It also analyses critical diffusions, with particular emphasis on the Airy process, the Pearcey process, and Airy process with wanderers. Finally, it describes the Tacnode process, along with kernels and p-reduced KP-hierarchy.
APA, Harvard, Vancouver, ISO, and other styles
16

Lai, Kar Neng, and Sydney C. W. Tang. Immunoglobulin A nephropathy diagnosis. Edited by Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0067_update_001.

Full text
Abstract:
The defining histological hallmark of immunoglobulin A (IgA) nephropathy is the presence of IgA in the mesangium as the sole or dominant immunoreactant. Light microscopy appearances vary very widely. The most common appearance is mesangial cell proliferation and an increase in mesangial matrix. However, this is not diagnostic in the absence of immunohistology. Focal segmental proliferative or necrotizing glomerulonephritis may be seen in ‘vasculitic’ disease with or without the skin changes of Henoch–Schönlein purpura. Extracapillary proliferation and crescent formation may occur. Occasionally florid haematuria may cause renal failure through acute tubular injury. Most commonly the disease is slowly evolving and focal or global sclerosis and tubulointerstitial scarring develop. The Oxford classification scheme may give some prognostic weight to these changes. There are no reliable serological or urine tests for the disease. Although average levels of serum IgA are above the population average this is not diagnostically useful in individual patients. Promising biomarkers in urine and serum are under investigation.
APA, Harvard, Vancouver, ISO, and other styles
17

Allen, Michael P., and Dominic J. Tildesley. Monte Carlo methods. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0004.

Full text
Abstract:
The estimation of integrals by Monte Carlo sampling is introduced through a simple example. The chapter then explains importance sampling, and the use of the Metropolis and Barker forms of the transition matrix defined in terms of the underlying matrix of the Markov chain. The creation of an appropriately weighted set of states in the canonical ensemble is described in detail and the method is extended to the isothermal–isobaric, grand canonical and semi-grand ensembles. The Monte Carlo simulation of molecular fluids and fluids containing flexible molecules using a reptation algorithm is discussed. The parallel tempering or replica exchange method for more efficient exploration of the phase space is introduced, and recent advances including solute tempering and convective replica exchange algorithms are described.
APA, Harvard, Vancouver, ISO, and other styles
18

Newman, Mark. Mathematics of networks. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805090.003.0006.

Full text
Abstract:
An introduction to the mathematical tools used in the study of networks. Topics discussed include: the adjacency matrix; weighted, directed, acyclic, and bipartite networks; multilayer and dynamic networks; trees; planar networks. Some basic properties of networks are then discussed, including degrees, density and sparsity, paths on networks, component structure, and connectivity and cut sets. The final part of the chapter focuses on the graph Laplacian and its applications to network visualization, graph partitioning, the theory of random walks, and other problems.
APA, Harvard, Vancouver, ISO, and other styles
19

Skiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.

Full text
Abstract:
Bones are multifunctional passive organs of movement that supports soft tissue and directly attached muscles. They also protect internal organs and are a reserve of calcium, phosphorus and magnesium. Each bone is covered with periosteum, and the adjacent bone surfaces are covered by articular cartilage. Histologically, the bone is an organ composed of many different tissues. The main component is bone tissue (cortical and spongy) composed of a set of bone cells and intercellular substance (mineral and organic), it also contains fat, hematopoietic (bone marrow) and cartilaginous tissue. Bones are a tissue that even in adult life retains the ability to change shape and structure depending on changes in their mechanical and hormonal environment, as well as self-renewal and repair capabilities. This process is called bone turnover. The basic processes of bone turnover are: • bone modeling (incessantly changes in bone shape during individual growth) following resorption and tissue formation at various locations (e.g. bone marrow formation) to increase mass and skeletal morphology. This process occurs in the bones of growing individuals and stops after reaching puberty • bone remodeling (processes involve in maintaining bone tissue by resorbing and replacing old bone tissue with new tissue in the same place, e.g. repairing micro fractures). It is a process involving the removal and internal remodeling of existing bone and is responsible for maintaining tissue mass and architecture of mature bones. Bone turnover is regulated by two types of transformation: • osteoclastogenesis, i.e. formation of cells responsible for bone resorption • osteoblastogenesis, i.e. formation of cells responsible for bone formation (bone matrix synthesis and mineralization) Bone maturity can be defined as the completion of basic structural development and mineralization leading to maximum mass and optimal mechanical strength. The highest rate of increase in pig bone mass is observed in the first twelve weeks after birth. This period of growth is considered crucial for optimizing the growth of the skeleton of pigs, because the degree of bone mineralization in later life stages (adulthood) depends largely on the amount of bone minerals accumulated in the early stages of their growth. The development of the technique allows to determine the condition of the skeletal system (or individual bones) in living animals by methods used in human medicine, or after their slaughter. For in vivo determination of bone properties, Abstract 10 double energy X-ray absorptiometry or computed tomography scanning techniques are used. Both methods allow the quantification of mineral content and bone mineral density. The most important property from a practical point of view is the bone’s bending strength, which is directly determined by the maximum bending force. The most important factors affecting bone strength are: • age (growth period), • gender and the associated hormonal balance, • genotype and modification of genes responsible for bone growth • chemical composition of the body (protein and fat content, and the proportion between these components), • physical activity and related bone load, • nutritional factors: – protein intake influencing synthesis of organic matrix of bone, – content of minerals in the feed (CA, P, Zn, Ca/P, Mg, Mn, Na, Cl, K, Cu ratio) influencing synthesis of the inorganic matrix of bone, – mineral/protein ratio in the diet (Ca/protein, P/protein, Zn/protein) – feed energy concentration, – energy source (content of saturated fatty acids - SFA, content of polyun saturated fatty acids - PUFA, in particular ALA, EPA, DPA, DHA), – feed additives, in particular: enzymes (e.g. phytase releasing of minerals bounded in phytin complexes), probiotics and prebiotics (e.g. inulin improving the function of the digestive tract by increasing absorption of nutrients), – vitamin content that regulate metabolism and biochemical changes occurring in bone tissue (e.g. vitamin D3, B6, C and K). This study was based on the results of research experiments from available literature, and studies on growing pigs carried out at the Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences. The tests were performed in total on 300 pigs of Duroc, Pietrain, Puławska breeds, line 990 and hybrids (Great White × Duroc, Great White × Landrace), PIC pigs, slaughtered at different body weight during the growth period from 15 to 130 kg. Bones for biomechanical tests were collected after slaughter from each pig. Their length, mass and volume were determined. Based on these measurements, the specific weight (density, g/cm3) was calculated. Then each bone was cut in the middle of the shaft and the outer and inner diameters were measured both horizontally and vertically. Based on these measurements, the following indicators were calculated: • cortical thickness, • cortical surface, • cortical index. Abstract 11 Bone strength was tested by a three-point bending test. The obtained data enabled the determination of: • bending force (the magnitude of the maximum force at which disintegration and disruption of bone structure occurs), • strength (the amount of maximum force needed to break/crack of bone), • stiffness (quotient of the force acting on the bone and the amount of displacement occurring under the influence of this force). Investigation of changes in physical and biomechanical features of bones during growth was performed on pigs of the synthetic 990 line growing from 15 to 130 kg body weight. The animals were slaughtered successively at a body weight of 15, 30, 40, 50, 70, 90, 110 and 130 kg. After slaughter, the following bones were separated from the right half-carcass: humerus, 3rd and 4th metatarsal bone, femur, tibia and fibula as well as 3rd and 4th metatarsal bone. The features of bones were determined using methods described in the methodology. Describing bone growth with the Gompertz equation, it was found that the earliest slowdown of bone growth curve was observed for metacarpal and metatarsal bones. This means that these bones matured the most quickly. The established data also indicate that the rib is the slowest maturing bone. The femur, humerus, tibia and fibula were between the values of these features for the metatarsal, metacarpal and rib bones. The rate of increase in bone mass and length differed significantly between the examined bones, but in all cases it was lower (coefficient b <1) than the growth rate of the whole body of the animal. The fastest growth rate was estimated for the rib mass (coefficient b = 0.93). Among the long bones, the humerus (coefficient b = 0.81) was characterized by the fastest rate of weight gain, however femur the smallest (coefficient b = 0.71). The lowest rate of bone mass increase was observed in the foot bones, with the metacarpal bones having a slightly higher value of coefficient b than the metatarsal bones (0.67 vs 0.62). The third bone had a lower growth rate than the fourth bone, regardless of whether they were metatarsal or metacarpal. The value of the bending force increased as the animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. The rate of change in the value of this indicator increased at a similar rate as the body weight changes of the animals in the case of the fibula and the fourth metacarpal bone (b value = 0.98), and more slowly in the case of the metatarsal bone, the third metacarpal bone, and the tibia bone (values of the b ratio 0.81–0.85), and the slowest femur, humerus and rib (value of b = 0.60–0.66). Bone stiffness increased as animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. Abstract 12 The rate of change in the value of this indicator changed at a faster rate than the increase in weight of pigs in the case of metacarpal and metatarsal bones (coefficient b = 1.01–1.22), slightly slower in the case of fibula (coefficient b = 0.92), definitely slower in the case of the tibia (b = 0.73), ribs (b = 0.66), femur (b = 0.59) and humerus (b = 0.50). Bone strength increased as animals grew. Regardless of the growth point tested, bone strength was as follows femur > tibia > humerus > 4 metacarpal> 3 metacarpal> 3 metatarsal > 4 metatarsal > rib> fibula. The rate of increase in strength of all examined bones was greater than the rate of weight gain of pigs (value of the coefficient b = 2.04–3.26). As the animals grew, the bone density increased. However, the growth rate of this indicator for the majority of bones was slower than the rate of weight gain (the value of the coefficient b ranged from 0.37 – humerus to 0.84 – fibula). The exception was the rib, whose density increased at a similar pace increasing the body weight of animals (value of the coefficient b = 0.97). The study on the influence of the breed and the feeding intensity on bone characteristics (physical and biomechanical) was performed on pigs of the breeds Duroc, Pietrain, and synthetic 990 during a growth period of 15 to 70 kg body weight. Animals were fed ad libitum or dosed system. After slaughter at a body weight of 70 kg, three bones were taken from the right half-carcass: femur, three metatarsal, and three metacarpal and subjected to the determinations described in the methodology. The weight of bones of animals fed aa libitum was significantly lower than in pigs fed restrictively All bones of Duroc breed were significantly heavier and longer than Pietrain and 990 pig bones. The average values of bending force for the examined bones took the following order: III metatarsal bone (63.5 kg) <III metacarpal bone (77.9 kg) <femur (271.5 kg). The feeding system and breed of pigs had no significant effect on the value of this indicator. The average values of the bones strength took the following order: III metatarsal bone (92.6 kg) <III metacarpal (107.2 kg) <femur (353.1 kg). Feeding intensity and breed of animals had no significant effect on the value of this feature of the bones tested. The average bone density took the following order: femur (1.23 g/cm3) <III metatarsal bone (1.26 g/cm3) <III metacarpal bone (1.34 g / cm3). The density of bones of animals fed aa libitum was higher (P<0.01) than in animals fed with a dosing system. The density of examined bones within the breeds took the following order: Pietrain race> line 990> Duroc race. The differences between the “extreme” breeds were: 7.2% (III metatarsal bone), 8.3% (III metacarpal bone), 8.4% (femur). Abstract 13 The average bone stiffness took the following order: III metatarsal bone (35.1 kg/mm) <III metacarpus (41.5 kg/mm) <femur (60.5 kg/mm). This indicator did not differ between the groups of pigs fed at different intensity, except for the metacarpal bone, which was more stiffer in pigs fed aa libitum (P<0.05). The femur of animals fed ad libitum showed a tendency (P<0.09) to be more stiffer and a force of 4.5 kg required for its displacement by 1 mm. Breed differences in stiffness were found for the femur (P <0.05) and III metacarpal bone (P <0.05). For femur, the highest value of this indicator was found in Pietrain pigs (64.5 kg/mm), lower in pigs of 990 line (61.6 kg/mm) and the lowest in Duroc pigs (55.3 kg/mm). In turn, the 3rd metacarpal bone of Duroc and Pietrain pigs had similar stiffness (39.0 and 40.0 kg/mm respectively) and was smaller than that of line 990 pigs (45.4 kg/mm). The thickness of the cortical bone layer took the following order: III metatarsal bone (2.25 mm) <III metacarpal bone (2.41 mm) <femur (5.12 mm). The feeding system did not affect this indicator. Breed differences (P <0.05) for this trait were found only for the femur bone: Duroc (5.42 mm)> line 990 (5.13 mm)> Pietrain (4.81 mm). The cross sectional area of the examined bones was arranged in the following order: III metatarsal bone (84 mm2) <III metacarpal bone (90 mm2) <femur (286 mm2). The feeding system had no effect on the value of this bone trait, with the exception of the femur, which in animals fed the dosing system was 4.7% higher (P<0.05) than in pigs fed ad libitum. Breed differences (P<0.01) in the coross sectional area were found only in femur and III metatarsal bone. The value of this indicator was the highest in Duroc pigs, lower in 990 animals and the lowest in Pietrain pigs. The cortical index of individual bones was in the following order: III metatarsal bone (31.86) <III metacarpal bone (33.86) <femur (44.75). However, its value did not significantly depend on the intensity of feeding or the breed of pigs.
APA, Harvard, Vancouver, ISO, and other styles
20

Khoruzhenko, Boris, and Hans-Jurgen Sommers. Characteristic polynomials. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.19.

Full text
Abstract:
This article considers characteristic polynomials and reviews a few useful results obtained in simple Gaussian models of random Hermitian matrices in the presence of an external matrix source. It first considers the products and ratio of characteristic polynomials before discussing the duality theorems for two different characteristic polynomials of Gaussian weights with external sources. It then describes the m-point correlation functions of the eigenvalues in the Gaussian unitary ensemble and how they are deduced from their Fourier transforms U(s1, … , sm). It also analyses the relation of the correlation function of the characteristic polynomials to the standard n-point correlation function using the replica and supersymmetric methods. Finally, it shows how the topological invariants of Riemann surfaces, such as the intersection numbers of the moduli space of curves, may be derived from averaged characteristic polynomials.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography