Journal articles on the topic 'Weld penetration depth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Weld penetration depth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yang, J., T. Sanderson, G. Graham, and C. Ume. "Laser Phased Array Measurement of Simulated Solidified Weld Penetration Depth." Journal of Manufacturing Science and Engineering 118, no. 2 (1996): 266–71. http://dx.doi.org/10.1115/1.2831020.
Full textTu, Jay F., Kishore N. Lankalapalli, Mark Gartner, and Keng H. Leong. "On-Line Estimation of Laser Weld Penetration." Journal of Dynamic Systems, Measurement, and Control 119, no. 4 (1997): 791–801. http://dx.doi.org/10.1115/1.2802392.
Full textLankalapalli, K. N., J. F. Tu, K. H. Leong, and M. Gartner. "Laser Weld Penetration Estimation Using Temperature Measurements." Journal of Manufacturing Science and Engineering 121, no. 2 (1999): 179–88. http://dx.doi.org/10.1115/1.2831202.
Full textZhang, Y. M., R. Kovacevic, and L. Wu. "Sensitivity of Front-Face Weld Geometry in Representing the Full Penetration." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 206, no. 3 (1992): 191–97. http://dx.doi.org/10.1243/pime_proc_1992_206_073_02.
Full textLi, Peizhi, Yu Fan, Chonghao Zhang, Zhiyuan Zhu, Wenteng Tian, and Anmin Liu. "Research on Heat Source Model and Weld Profile for Fiber Laser Welding of A304 Stainless Steel Thin Sheet." Advances in Materials Science and Engineering 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/5895027.
Full textMi, Bao, and Charles Ume. "Real-Time Weld Penetration Depth Monitoring With Laser Ultrasonic Sensing System." Journal of Manufacturing Science and Engineering 128, no. 1 (2005): 280–86. http://dx.doi.org/10.1115/1.2137747.
Full textZhang, Lu, Gorkem Okudan, Alexandra-Del-Carmen Basantes-Defaz, et al. "Characterization of GMAW (Gas Metal Arc Welding) Penetration Using Ultrasonics." Materials 13, no. 10 (2020): 2307. http://dx.doi.org/10.3390/ma13102307.
Full textFu, Qiang. "Development and Application of Activating Fluxes in TIG Welding." Applied Mechanics and Materials 157-158 (February 2012): 21–26. http://dx.doi.org/10.4028/www.scientific.net/amm.157-158.21.
Full textSahoo, Ajitav, and Sasmeeta Tripathy. "Improvement in Depth of Weld Penetration During TIG, Activated-TIG, and Pulsed TIG Welding." International Journal of Manufacturing, Materials, and Mechanical Engineering 11, no. 2 (2021): 68–86. http://dx.doi.org/10.4018/ijmmme.2021040105.
Full textTreutler, K., S. Brechelt, H. Wiche, and V. Wesling. "Beneficial use of hyperbaric process conditions for welding of aluminium and copper alloys." Welding in the World 65, no. 8 (2021): 1623–31. http://dx.doi.org/10.1007/s40194-021-01088-1.
Full textNARIKIYO, Toru, Hiroshi MIURA, Shigeki FUJINAGA, Hiroo TAKENAKA, Akira OHMORI, and Katsunori INOUE. "Increase in Weld Penetration Depth by Two Nd:YAG Laser Beams Combined." QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY 17, no. 3 (1999): 364–74. http://dx.doi.org/10.2207/qjjws.17.364.
Full textMansour, Rami, Jinchao Zhu, Martin Edgren, and Zuheir Barsoum. "A probabilistic model of weld penetration depth based on process parameters." International Journal of Advanced Manufacturing Technology 105, no. 1-4 (2019): 499–514. http://dx.doi.org/10.1007/s00170-019-04110-5.
Full textZou, Shuangyang, Zhijiang Wang, Shengsun Hu, Wandong Wang, and Yue Cao. "Control of weld penetration depth using relative fluctuation coefficient as feedback." Journal of Intelligent Manufacturing 31, no. 5 (2019): 1203–13. http://dx.doi.org/10.1007/s10845-019-01506-8.
Full textCao, Z. N., Y. M. Zhang, and R. Kovacevic. "Numerical Dynamic Analysis of Moving GTA Weld Pool." Journal of Manufacturing Science and Engineering 120, no. 1 (1998): 173–78. http://dx.doi.org/10.1115/1.2830096.
Full textMuhammad Naqiuddin Mat Salleh, Mahadzir Ishak, Kazuhiko Yamasaki, Moinuddin Mohammed Quazi, and Aiman Mohd Halil. "Pulsed Nd: YAG Laser Parameters Effect on Welding Uncoated Advance High Strength Steel (AHSS) for Automotive." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 84, no. 1 (2021): 91–100. http://dx.doi.org/10.37934/arfmts.84.1.91100.
Full textManikya Kanti, K., Srinivasa Rao Pedapati, Ginka Ranga Janardhana, and A. M. A. Rani. "Mathematical Modeling for the Prediction of Depth of Penetration in Double Pulse GMA Welding Using Fractional Factorial Method." Applied Mechanics and Materials 660 (October 2014): 347–51. http://dx.doi.org/10.4028/www.scientific.net/amm.660.347.
Full textZhang Jian, 张健, and 杨锐 Yang Rui. "Weld Penetration Depth Prediction of Pulsed Laser Welding Titanium Alloy Thin Plate." Chinese Journal of Lasers 39, no. 3 (2012): 0303001. http://dx.doi.org/10.3788/cjl201239.0303001.
Full textNarikiyo, T., H. Miura, S. Fujinaga, H. Takenaka, A. Ohmori, and K. Inoue. "Increase in weld penetration depth by two Nd: YAG laser beams combined." Welding International 14, no. 3 (2000): 191–202. http://dx.doi.org/10.1080/09507110009549164.
Full textLiu, Li Ming, Chao Song, Qiu Ping Song, and Gang Song. "Effects of Phase Matching Pattern on Pulse Laser-Arc Hybrid Welding Process." Applied Mechanics and Materials 633-634 (September 2014): 634–37. http://dx.doi.org/10.4028/www.scientific.net/amm.633-634.634.
Full textSánchez-Amaya, J. M., Z. Boukha, L. González-Rovira, M. R. Amaya-Vázquez, and Francisco Javier Botana. "Application of Laser Texturization to Increase the Depth of AA5083 Welds." Advanced Materials Research 498 (April 2012): 37–42. http://dx.doi.org/10.4028/www.scientific.net/amr.498.37.
Full textGraham, G. M., I. Charles Ume, and S. N. Hopko. "Laser Array/EMAT Ultrasonic Measurement of the Penetration Depth in a Liquid Weld Pool." Journal of Manufacturing Science and Engineering 122, no. 1 (1998): 70–75. http://dx.doi.org/10.1115/1.538910.
Full textKumar, Kamlesh, Pankaj Ahirwar, and Manoj Masanta. "Effect of Varying Root Gap on Butt Welding of 6 mm Thick AISI 1020 Plate by Autogenous TIG Welding Process." Materials Science Forum 880 (November 2016): 21–24. http://dx.doi.org/10.4028/www.scientific.net/msf.880.21.
Full textHe, Kuan Fang, Ji Gang Wu, Xue Jun Li, and H. Long. "Prediction Model of Twin-Arc High Speed Submerged Arc Weld Shape Based on Improved BP Neural Network." Advanced Materials Research 216 (March 2011): 194–99. http://dx.doi.org/10.4028/www.scientific.net/amr.216.194.
Full textBabu, A. V. Santhana, P. K. Giridharan, P. Ramesh Narayanan, S. V. S. Narayana Murty, and V. M. J. Sharma. "Experimental Investigations on Tensile Strength of Flux Bounded TIG Welds of AA2219-T87 Aluminum Alloy." Journal of Advanced Manufacturing Systems 13, no. 02 (2014): 103–12. http://dx.doi.org/10.1142/s0219686714500073.
Full textSridhar, S. P., S. Arun Kumar, and P. Sathiya. "A Study on the Effect of Different Activating Flux on A-TIG Welding Process of Incoloy 800H." Advances in Materials Science 16, no. 3 (2016): 26–37. http://dx.doi.org/10.1515/adms-2016-0014.
Full textJiang, Wen Hong, Ran Dong Yu, and Sheng Lu. "Effect of Compound Fluxes on A-TIG Welding Joint Depth of Cu-Cr-Zr Alloy." Materials Science Forum 749 (March 2013): 133–40. http://dx.doi.org/10.4028/www.scientific.net/msf.749.133.
Full textJIANG, M., T. DEBROY, M. JIANG, Y. B. CHEN, X. CHEN, and W. TAO. "Enhanced Penetration Depth during Reduced Pressure Keyhole-Mode Laser Welding." Welding Journal 99, no. 4 (2020): 110s—123s. http://dx.doi.org/10.29391/2020.99.011.
Full textLisiecki, A. "Effect of Heat Input During Disk Laser Bead-On-Plate Welding of Thermomechanically Rolled Steel on Penetration Characteristics and Porosity Formation in the Weld Metal." Archives of Metallurgy and Materials 61, no. 1 (2016): 93–102. http://dx.doi.org/10.1515/amm-2016-0019.
Full textZhao, Yong, Gang Yang, Keng Yan, and Wei Liu. "Effect on Formation of 5083 Aluminum Alloy of Activating Flux in FBTIG Welding." Advanced Materials Research 311-313 (August 2011): 2385–88. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.2385.
Full textSugitani, Y., Y. Kanjo, and Y. Kanjo. "Simultaneous control of penetration depth and bead height by controlling multiple weld parameters." Welding International 4, no. 3 (1990): 194–99. http://dx.doi.org/10.1080/09507119009447705.
Full textGo, Bum-su, Hyeonjeong You, Hee-seon Bang, and Cheolhee Kim. "Penetration Depth Modeling and Process Parameter Maps for Laser Welds Using Machine Learning." Journal of Welding and Joining 39, no. 4 (2021): 392–401. http://dx.doi.org/10.5781/jwj.2021.39.4.7.
Full textLin, Hsuan Liang, Hung Wei Juang, and Jia Ching Yan. "Effect of Activating Flux and Welding Parameters on Performance of Aluminum Alloy Weldment in GTA Welding Process." Applied Mechanics and Materials 117-119 (October 2011): 1900–1904. http://dx.doi.org/10.4028/www.scientific.net/amm.117-119.1900.
Full textLiu, Jun, Jun Hui Dong, and K. Shinozaki. "Microstructures and Properties of Fiber Laser Welded ACM522 Magnesium Alloy Joint." Materials Science Forum 610-613 (January 2009): 911–14. http://dx.doi.org/10.4028/www.scientific.net/msf.610-613.911.
Full textVasantharaja, P., and M. Vasudevan. "Optimization of A-TIG welding process parameters for RAFM steel using response surface methodology." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 232, no. 2 (2015): 121–36. http://dx.doi.org/10.1177/1464420715619192.
Full textKhuenkaew, Teerawut, and Kannachai Kanlayasiri. "Selection of electrode tips for the resistance spot welding of dissimilar stainless steels." MATEC Web of Conferences 192 (2018): 01007. http://dx.doi.org/10.1051/matecconf/201819201007.
Full textChmelíčková, Hana, Helena Hiklová, Lukáš Václavek, Jan Tomáštík, and Radim Čtvrtlík. "CHARACTERIZATION OF TITANIUM LASER WELDS." Acta Polytechnica CTU Proceedings 27 (June 11, 2020): 145–48. http://dx.doi.org/10.14311/app.2020.27.0145.
Full textBates, B. E., and D. E. Hardt. "A Real-Time Calibrated Thermal Model for Closed-Loop Weld Bead Geometry Control." Journal of Dynamic Systems, Measurement, and Control 107, no. 1 (1985): 25–33. http://dx.doi.org/10.1115/1.3140703.
Full textTam, A. S., and D. E. Hardt. "Weld Pool Impedance for Pool Geometry Measurement: Stationary and Nonstationary Pools." Journal of Dynamic Systems, Measurement, and Control 111, no. 4 (1989): 545–53. http://dx.doi.org/10.1115/1.3153090.
Full textŠimeková, Beáta, Ingrid Kovaříková, and Koloman Ulrich. "Microstructure and Properties of Plasma Arc Welding with Depth Penetration Keyhole SAF 2205 Duplex Stainless Steel." Advanced Materials Research 664 (February 2013): 578–83. http://dx.doi.org/10.4028/www.scientific.net/amr.664.578.
Full textChokkalingham, S., M. Vasudevan, S. Sudarsan, and N. Chandrasekhar. "Predicting weld bead width and depth of penetration from infrared thermal image of weld pool using artificial neural network." Insight - Non-Destructive Testing and Condition Monitoring 54, no. 5 (2012): 272–77. http://dx.doi.org/10.1784/insi.2012.54.5.272.
Full textLoureiro, Altino, and A. Rodrigues. "A-TIG Welding of a Stainless Steel." Materials Science Forum 587-588 (June 2008): 370–74. http://dx.doi.org/10.4028/www.scientific.net/msf.587-588.370.
Full textXu Sai, 许赛, 杨立军 Yang Lijun, 徐书峰 Xu Shufeng, 黄一鸣 Huang Yiming, 赵圣斌 Zhao Shengbin, and 李珊珊 Li Shanshan. "Relation between Plasma Electrical Signal Oscillation and Weld Depth in Laser Deep Penetration Welding." Chinese Journal of Lasers 47, no. 1 (2020): 0102006. http://dx.doi.org/10.3788/cjl202047.0102006.
Full textGu, Xiaoyan, Yuchen Liu, Wenhang Li, Yujun Han, and Kai Zheng. "Physical Characteristics of Coupled Plasma and Its Influence on Weld Formation in Hybrid Laser-Double-Arc Welding." Materials 12, no. 24 (2019): 4207. http://dx.doi.org/10.3390/ma12244207.
Full textReza Ghazvinloo, Hamid, Abbas Honarbakhsh-Raouf, and Nasim Shadfar. "Effects of robotic CO2 arc welding variables on penetration and microstructure of weld in C-80 grade steel." Material Science Research India 7, no. 1 (2010): 67–75. http://dx.doi.org/10.13005/msri/070107.
Full textGopalakrishna Pillai, M., P. S. Sreejith, R. K. Gupta, Bhanu Pant, P. C. Harikumar, and N. Venugopal. "Effect of EBW Parameters on Weldment Quality of Ti6Al4V Alloy." Materials Science Forum 830-831 (September 2015): 249–52. http://dx.doi.org/10.4028/www.scientific.net/msf.830-831.249.
Full textBanerjee, P., S. Govardhan, H. C. Wikle, J. Y. Liu, and B. A. Chin. "Infrared Sensing for On-Line Weld Geometry Monitoring and Control." Journal of Engineering for Industry 117, no. 3 (1995): 323–30. http://dx.doi.org/10.1115/1.2804337.
Full textGhanty, P., M. Vasudevan, D. P. Mukherjee, et al. "Artificial neural network approach for estimating weld bead width and depth of penetration from infrared thermal image of weld pool." Science and Technology of Welding and Joining 13, no. 4 (2008): 395–401. http://dx.doi.org/10.1179/174329308x300118.
Full textChandrasekhar, N., M. Vasudevan, A. K. Bhaduri, and T. Jayakumar. "Intelligent modeling for estimating weld bead width and depth of penetration from infra-red thermal images of the weld pool." Journal of Intelligent Manufacturing 26, no. 1 (2013): 59–71. http://dx.doi.org/10.1007/s10845-013-0762-x.
Full textKatayama, Seiji, Yasuaki Naito, Satoru Uchiumi, and Masami Mizutani. "Laser-Arc Hybrid Welding." Solid State Phenomena 127 (September 2007): 295–300. http://dx.doi.org/10.4028/www.scientific.net/ssp.127.295.
Full textFrench, Richard, Hector Merin-Reyes, and Will Yeadon. "A Feasibility Study Comparing Two Commercial TIG Welding Machines for Deep Penetration." MATEC Web of Conferences 269 (2019): 01004. http://dx.doi.org/10.1051/matecconf/201926901004.
Full text