Academic literature on the topic 'Welding numerical simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Welding numerical simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Welding numerical simulation"
TAKAHASHI, Ayumi, Satoshi YAMANE, Nobuyori YOSHIOKA, Akihiko KOHANAWA, and Hideki YAMAMOTO. "Numerical Simulation in high efficiency spot welding." QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY 35, no. 2 (2017): 177s—180s. http://dx.doi.org/10.2207/qjjws.35.177s.
Full textDupuy, Thomas, and Chainarong Srikunwong. "Resistance Welding Numerical Simulation." Revue Européenne des Éléments Finis 13, no. 3-4 (January 2004): 313–41. http://dx.doi.org/10.3166/reef.13.313-341.
Full textMijajlovic, Miroslav, Dragan Milcic, and Miodrag Milcic. "Numerical simulation of friction stir welding." Thermal Science 18, no. 3 (2014): 967–78. http://dx.doi.org/10.2298/tsci1403967m.
Full textSlováček, Marek, Josef Tejc, and Mojmír Vaněk. "Using of Welding Virtual Numerical Simulation as the Technical Support for Industry." Advanced Materials Research 1138 (July 2016): 49–55. http://dx.doi.org/10.4028/www.scientific.net/amr.1138.49.
Full textKik, Tomasz, Marek Slovacek, Jaromir Moravec, and Mojmir Vanek. "Numerical Simulations of Heat Treatment Processes." Applied Mechanics and Materials 809-810 (November 2015): 799–804. http://dx.doi.org/10.4028/www.scientific.net/amm.809-810.799.
Full textJoo, Sung Min, Hee Seon Bang, and Han Sur Bang. "Numerical Simulation of Al-SPCC Weldment." Key Engineering Materials 321-323 (October 2006): 1738–44. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.1738.
Full textSun, Wei, Xiao Jie Li, and Kazuyuki Hokamoto. "Numerical Simulation of Underwater Explosive Welding Process." Materials Science Forum 767 (July 2013): 120–25. http://dx.doi.org/10.4028/www.scientific.net/msf.767.120.
Full textMIYASAKA, Fumikazu, and Hisashi SERIZAWA. "Numerical Simulation for Friction Stir Welding." JOURNAL OF THE JAPAN WELDING SOCIETY 84, no. 1 (2015): 35–38. http://dx.doi.org/10.2207/jjws.84.35.
Full textLawrjaniec, D., A. Abisror, C. Decker, Mustafa Koçak, and J. Dos Santos. "Numerical Simulation of Friction Stir Welding." Materials Science Forum 426-432 (August 2003): 2993–98. http://dx.doi.org/10.4028/www.scientific.net/msf.426-432.2993.
Full textLacki, Piotr, and Konrad Adamus. "Numerical Simulation of Welding Thin Titanium Sheets." Key Engineering Materials 549 (April 2013): 407–14. http://dx.doi.org/10.4028/www.scientific.net/kem.549.407.
Full textDissertations / Theses on the topic "Welding numerical simulation"
Cho, Min Hyun. "Numerical simulation of arc welding process and its application." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1155741113.
Full textNekouie, Esfahani Mohammadreza. "Laser welding of dissimilar carbon steel to stainless steel 316L." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19760.
Full textEvdokimov, Anton [Verfasser]. "Numerical laser welding simulation of dissimilar Steel-Aluminum overlap joints / Anton Evdokimov." Düren : Shaker, 2020. http://d-nb.info/122416816X/34.
Full textWu, Tong Combescure Alain. "Experiment and numerical simulation of welding induced damage stainless steel 15-5PH /." Villeurbanne : Doc'INSA, 2008. http://docinsa.insa-lyon.fr/these/pont.php?id=wu.
Full textWu, Tong. "Experiment and numerical simulation of welding induced damage : stainless steel 15-5PH." Lyon, INSA, 2007. http://theses.insa-lyon.fr/publication/2007ISAL0091/these.pdf.
Full textL’objectif de cette étude est la prédiction du dommage et des contraintes résiduelles induites par des procédés haute température conduisant à une transformation de phase martensitique. On s’est intéressé plus premièrement à la modélisation du dommage induit par une histoire thermomécanique complexe, comme peuvent en produire les Zones Affectées Thermiquement de soudage. Nous proposons dans ce travail un modèle à deux échelles développé dans le cadre de la thermodynamique des processus irréversibles. Les équations de ce modèle couplent plasticité, endommagement, transformation de phase et plasticité de transformation. Nous avons réalisé de nombreux essais sur le 15-5PH en vue de l’identification des transformations de phase et des lois de comportement thermomécaniques. Les essais sur les éprouvettes entaillées ont été conçus pour valider les modèles d’endommagement ainsi que la localisation des déformations en utilisant la stéréo corrélation d’images. Les simulations numériques ont été effectuées avec le code CAST3M du CEA dans lequel nous avons implanté le méso modèle. Nous avons calculé l’état de contraintes résiduelles dans un disque de 15-5PH induites par un chauffage laser. En sus des contraintes, on peut suivre au cours du calcul les variables internes telles que l’endommagement ou les déformations anélastiques. Les simulations montrent que la plasticité de transformation modifie le niveau des contraintes résiduelles et peut ne pas être négligeable. Quand à l’endommagement, celui-ci fait décroître les valeurs maximales de contrainte résiduelles jusqu’à huit pourcent dans les zones les plus sollicitées
Kiranmayi, Abburi Venkata. "Characterising high energy beam welding in structural steels with numerical simulation and validation." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.683553.
Full textLindgren, Lars-Erik. "Deformations and stresses in butt-welding of plates : numerical simulation and experimental verification." Doctoral thesis, Luleå tekniska universitet, Material- och solidmekanik, 1985. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26528.
Full textGodkänd; 1985; 20070424 (ysko)
Zhang, Kaiwen. "IN-SITU MEASUREMENT AND NUMERICAL SIMULATION OF LINEAR FRICTION WELDING OF Ti-6Al-4V." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1578051567375844.
Full textRobe, Hugo. "Apports à la compréhension du soudage FSW hétérogène d’alliages d’aluminium par une approche expérimentale et numérique." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEE005/document.
Full textThe lightweight structures optimisation is one of the main topics in transportation industry. It can be achieved by optimisation of materials as well as induced assembly process. As a solid-state process, Friction Stir Welding (FSW) allows to produce dissimilar materials joining while avoiding fusion defects. This work focused on the dissimilar welding of aluminium alloys from 2xxx (Al-Cu-Mg-Ag) and 7xxx (Al-Zn-Mg) series in an industrial context. Joints characterizations were conducted at multiple scales to understand parameters impact on material flow, joint morphology, and performances. They have shown large heterogeneities in the microstructure as well as the global and local mechanical behaviour. Whatever the welding parameters used, good mechanical performance has been reached. A specific softened zone has been detected in the 7xxx alloy’s HAZ which caused fracture during transverse tensile test. Significant metallurgical evolution induced by thermal cycles mainly explains these phenomena.On the other hand, simulation works were also conducted to simulate the welding process in similar material configuration. The finite elements model integrates, for the first time, the real and complex tool design (thread, flats…). Complex geometry can be used by coupling with a specific moving mesh technique. This numerical development completely overcomes the consequent mesh distortion often encountered in FSW simulation. The current model presents good sensitivity and robustness for several welding conditions and materials. It also demonstrates an excellent correlation between experimental and numerical thermal fields while revealing the predictive aspect of the model
Ehlen, Georg [Verfasser]. "Transient Numerical Simulation of Complex Convection Effects during Solidification in Casting and Welding / Georg Ehlen." Aachen : Shaker, 2004. http://d-nb.info/1170537685/34.
Full textBooks on the topic "Welding numerical simulation"
Ehlen, Georg. Transient numerical simulation of complex convection effects during solidification in casting and welding. Aachen: Shaker Verlag, 2004.
Find full textBook chapters on the topic "Welding numerical simulation"
Wang, Xuewu, Yong Min, Xin Zhou, and Xingsheng Gu. "Numerical Simulation of Robot Base Welding Process." In Transactions on Intelligent Welding Manufacturing, 127–39. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-8192-8_6.
Full textPavlyk, Vitali, and Ulrich Dilthey. "Numerical Simulation of Solidification Structures during Fusion Welding." In Continuum Scale Simulation of Engineering Materials, 745–61. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603786.ch40.
Full textRen, Shuwen, Shizhong Chen, Zijin Liu, Zhongxian Xia, Yonghua Wang, and Songhua Li. "Numerical Simulation of Welding Quality of Reinforcement Framework Under Different Welding Sequence." In Advances in Intelligent Systems and Computing, 103–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4575-1_11.
Full textWang, Xin, Bin Yang, Jianwu Chen, Pei Wang, and Miao Zhang. "Numerical Simulation on Diffusion Law of Welding Fume in a Welding Workshop." In Lecture Notes in Electrical Engineering, 474–80. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5963-8_66.
Full textMa, Guohong, Xu Shen, Xiaofei Peng, Peng Chen, and Xiaoling Zhu. "Numerical Simulation of Droplet Transfer of AZ31B Magnesium Alloy Based on FLUENT." In Transactions on Intelligent Welding Manufacturing, 151–58. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5355-9_14.
Full textFeulvarch, Eric, and Jean Michel Bergheau. "Modeling and Numerical Simulation of Resistance Spot Welding Process." In Encyclopedia of Thermal Stresses, 3112–23. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_455.
Full textGong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. "Model of Quasi-Steady Weld Pool Dynamics and Numerical Simulation." In Weld Pool Dynamics in Deep Penetration Laser Welding, 19–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2_2.
Full textBai, Qinghua, Yuejin Ma, and Weilian Sun. "Numerical Simulation Research of Weld Stress Field after Welding Trailing." In Advances in Intelligent and Soft Computing, 467–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30223-7_73.
Full textKim, Ji Hoon, Don Gun Kim, and Kwan Soo Chung. "Numerical Simulation of Friction Stir Welding of AA6111-T4 Sheets." In The Mechanical Behavior of Materials X, 1433–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-440-5.1433.
Full textDong, Ping, and Rui Wen Li. "Numerical Simulation on Stress Fields of Lasers Braze Fusion Welding." In Advanced Materials Research, 963–68. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-463-4.963.
Full textConference papers on the topic "Welding numerical simulation"
Takahashi, Nobuyuki, Sadao Fujii, and Kozo Yasuda. "Development of numerical simulation technique for laser welding." In LAMP 2002: International Congress on Laser Advanced Materials Processing, edited by Isamu Miyamoto, Kojiro F. Kobayashi, Koji Sugioka, Reinhart Poprawe, and Henry Helvajian. SPIE, 2003. http://dx.doi.org/10.1117/12.497910.
Full textBalasubramanian, V., Y. Li, T. Stotler, J. Crompton, N. Katsube, and W. O. Soboyejo. "Numerical Simulation of Inertia Welding of Inconel 718." In Superalloys. TMS, 1997. http://dx.doi.org/10.7449/1997/superalloys_1997_719_719.
Full textFratini, L., and D. La Spisa. "Numerical simulation of linear fiction welding (LFW) processes." In THE 14TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2011. AIP, 2011. http://dx.doi.org/10.1063/1.3589693.
Full textMahrle, A., Juergen Schmidt, and Dietmar Weib. "NUMERICAL SIMULATION OF HEAT TRANSFER IN WELDING PROCESSES." In International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.3700.
Full textGao, Xu, Xiaohong Chen, and Keqiang Yu. "Numerical Simulation of Spot Welding Nugget Formation Process." In 2016 International Forum on Energy, Environment and Sustainable Development. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/ifeesd-16.2016.76.
Full textLeggatt, N. A., R. J. Dennis, M. C. Smith, and P. J. Bouchard. "Numerical Methods for Welding Simulation: The Next Technical Step." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61498.
Full textMuci-Küchler, K. H., S. S. T. Kakarla, W. J. Arbegast, and C. D. Allen. "Numerical Simulation of the Friction Stir Spot Welding Process." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-1260.
Full text"NUMERICAL SIMULATION OF FRICTION STIR WELDING OF ALUMINIUM PLATE." In Engineering Mechanics 2019. Institute of Thermomechanics of the Czech Academy of Sciences, Prague, 2019. http://dx.doi.org/10.21495/71-0-161.
Full textChau, T. T. "A Metallurgical Concept for Numerical Simulation of Arc Welding." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71654.
Full textFeng, Zhengkun, and Henri Champliaud. "Numerical Simulation of Mecano-Welding Process for Cylinder Manufacturing." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78071.
Full text