Academic literature on the topic 'Wet chemical etching'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wet chemical etching.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wet chemical etching"
Mileham, J. R., S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul, and S. P. Kilcoyne. "Wet chemical etching of AlN." Applied Physics Letters 67, no. 8 (August 21, 1995): 1119–21. http://dx.doi.org/10.1063/1.114980.
Full textRath, P., J. C. Chai, Y. C. Lam, V. M. Murukeshan, and H. Zheng. "A Total Concentration Fixed-Grid Method for Two-Dimensional Wet Chemical Etching." Journal of Heat Transfer 129, no. 4 (October 21, 2006): 509–16. http://dx.doi.org/10.1115/1.2709654.
Full textPhilipsen, Harold, Sander Teck, Nils Mouwen, Wouter Monnens, and Quoc Toan Le. "Wet-Chemical Etching of Ruthenium in Acidic Ce4+ Solution." Solid State Phenomena 282 (August 2018): 284–87. http://dx.doi.org/10.4028/www.scientific.net/ssp.282.284.
Full textLee, J. W., S. J. Pearton, C. R. Abernathy, W. S. Hobson, F. Ren, and C. S. Wu. "Wet Chemical Etching of Al0.5In0.5 P." Journal of The Electrochemical Society 142, no. 6 (June 1, 1995): L100—L102. http://dx.doi.org/10.1149/1.2044249.
Full textStocker, D. A., E. F. Schubert, and J. M. Redwing. "Crystallographic wet chemical etching of GaN." Applied Physics Letters 73, no. 18 (November 2, 1998): 2654–56. http://dx.doi.org/10.1063/1.122543.
Full textHirano, Tomoki, Kenya Nishio, Takashi Fukatani, Suguru Saito, Yoshiya Hagimoto, and Hayato Iwamoto. "Characterization of Wet Chemical Atomic Layer Etching of InGaAs." Solid State Phenomena 314 (February 2021): 95–98. http://dx.doi.org/10.4028/www.scientific.net/ssp.314.95.
Full textEdwards, Stephanie, Ryan Persons, Steve Feltham, Jeff Howerton, Geoffrey Lott, and Daniel Macko. "Laser Etching of Gold Conductors for RF Applications." International Symposium on Microelectronics 2019, no. 1 (October 1, 2019): 000373–80. http://dx.doi.org/10.4071/2380-4505-2019.1.000373.
Full textUeda, Dai, Yousuke Hanawa, Hiroaki Kitagawa, Naozumi Fujiwara, Masayuki Otsuji, Hiroaki Takahashi, and Kazuhiro Fukami. "Effect of Hydrophobicity and Surface Potential of Silicon on SiO2 Etching in Nanometer-Sized Narrow Spaces." Solid State Phenomena 314 (February 2021): 155–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.314.155.
Full textKo, C. H., Y. K. Su, S. J. Chang, W. H. Lan, Jim Webb, M. C. Tu, and Y. T. Cherng. "Photo-enhanced chemical wet etching of GaN." Materials Science and Engineering: B 96, no. 1 (October 2002): 43–47. http://dx.doi.org/10.1016/s0921-5107(02)00323-9.
Full textVartuli, C. B., S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, F. Ren, J. C. Zolper, and R. J. Shul. "Wet chemical etching survey of III-nitrides." Solid-State Electronics 41, no. 12 (December 1997): 1947–51. http://dx.doi.org/10.1016/s0038-1101(97)00173-1.
Full textDissertations / Theses on the topic "Wet chemical etching"
Chaudhury, Rabib. "Selective wet chemical etching of erosion resistant coatings from titanium alloy substrates: mechanism and optimization." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117073.
Full textTitanium aluminum nitride (TiAlN) est un type de revêtement céramique résistant à l'érosion qui est appliqué à des pièces métalliques soumises à des environnements à forte usure. L'ajout de ce revêtement permet de protéger le substrat de ces conditions défavorables. Parfois, la couche de revêtement doit être retiré et une nouvelle couche réappliqué. L'objectif principal de ce projet est de réussir à enlever le revêtement TiAlN à partir de substrats en alliage de titane par 'wet chemical etching'. Pour atteindre cet objectif, les objectifs suivants doivent être atteints: le processus doit être rapide, sélective (c'est à dire ne pas nuire au substrat titanium), de s'opérer dans une manière isotherme, et faire usage de produits chimiques qui sont respectueux de l'environnement. Une combinaison de hydrogen peroxide, potassium oxalate et de l'acide ethylenediaaminetetracetic (EDTA) a été trouvé pour atteindre les objectifs. Hydrogen peroxide et de potassium oxalate sont responsables de l'élimination du revêtement et produire des ions métalliques de titane en solution. Le rôle de l'EDTA est de former des complexes de coordination avec ces ions métalliques de manière à réduire leur réactivité avec le hydrogen peroxide en solution. Le processus a été optimisé pour la sélectivité. Un modèle cinétique a été construit en utilisant une méthode différentielle modifiée et des parcelles d'Arrhenius. Il a été déterminé que la sélectivité augmente avec la température et la concentration de potassium oxalate alors qu'il diminue quand la concentration de hydrogen peroxide augmente. L'analyse de sensibilité montre que la sélectivité est beaucoup plus enclin à changer avec la concentration de hydrogen peroxide. Modélisation de substitution (Surrogate Modeling) en utilisant un modèle Least Squares-Support Vector Machine confirme les tendances prédites par le modèle cinétique, sauf que la sélectivité semble culminer en variant la concentration d'oxalate de potassium.
Sudirham, Janivita Joto. "Space-time discontinuous Galerkin methods for convection-diffusion problems application to wet-chemical etching /." Enschede : University of Twente [Host], 2005. http://doc.utwente.nl/50890.
Full textZheng, Wen Ph D. Massachusetts Institute of Technology. "Fabrication of capacitors based on silicon nanowire arrays generated by metal-assisted wet chemical etching." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104114.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 170-177).
Capacitors with high capacitance density (capacitance per footprint area) have potential applications in autonomous microsystems that harvest energy from the environment, as they can store and release energy at high rates. Use of high surface-to-volume ratio structures has been demonstrated as an effective way to increase the electrode area, and therefore to improve the capacitance density, while still keeping the footprint area low. The goal of this thesis was to first develop an understanding of the mechanisms of metal assisted wet chemical etching for fabrication of arrays of silicon nanowires, and then use this understanding to build nanowire array on-chip capacitors in silicon substrates, in order to eliminate additional packaging and enable local and efficient energy delivery. Two types of capacitors were investigated: electrostatic metal-oxide-semiconductor (MOS) capacitors for power management, and supercapacitors for energy storage purposes. For both types of devices, enlarged surface area per footprint was achieved by utilizing the arrays of silicon nanowires. Fundamental studies of the roles of metals in metal-assisted chemical etching (MACE) of silicon were conducted. Lithography techniques were used to generate patterns in metal films which when subjected to MACE resulted in formation of ordered arrays of silicon nanowires. Investigation of various metal catalysts showed that Pt is a more active catalyst than Au, while Cu is not stable in the etchant. Tapered silicon nanowires can be generated by adding a layer of Cu between two Au layers, and etching occurs much faster than when a pure Au catalyst is used. While carrying out research on the mechanisms of MACE, we developed a new electrochemical method for formation of arrays of silicon nanowires, metal-assisted anodic etching (MAAE). In this process, the etchant consists of HF alone, and does not include an oxidant. In both processes, HF is used as an etchant. However, in MACE, electronic holes are supplied through reduction of an oxidant (e.g. H₂O₂), while in MAAE, electronic holes are supplied through an external circuit, with anodic contact to either the metal or the silicon. In both contact cases for MAAE, the metal catalyzes the etching process and leads to controlled formation of silicon nanowires, without the need for an oxidant. This discovery, and its analysis, provided new insights into the mechanisms of both MAAE and MACE, and also opened the possibility for use of metal catalyzed electrochemical etching of other materials that cannot survive the HF/oxidant mixture. Processes for fabrication of on-chip capacitors based on silicon nanowires were next developed. We first fabricated on-chip MOS capacitors with nanowire arrays etched using MACE with both single crystal silicon substrates and polycrystalline silicon films. For wires made in both cases, the capacitance density followed a same scaling trend related to their geometries. Epitaxial wafers were used with a post-etch doping process to reduce the series resistance in the devices in order to obtain a better frequency response, as desired for high frequency circuits. To achieve higher capacitance densities for energy storage purposes, we also designed a solid state supercapacitor device based on nanowires etched using MAAE with heavily doped n-type silicon substrates. The silicon nanowires were coated with RuO₂ using atomic layer deposition (ALD) to achieve a high capacitance. In this case, charge is stored through the formation of an electrical double layer and through reversible redox reactions. We showed that the capacitance density of these devices roughly scaled with the increased surface area of silicon nanowire arrays. The solid state supercapacitor achieved a capacitance density of 6.5mF/cm², which is comparable to the best results achieved with other types of on-chip supercapacitors. In contrast with other processes for forming on-chip supercapacitors, the supercapacitors we demonstrated were fabricated using a fully complementary metal-oxide-semiconductor (CMOS) technology compatible process. Moreover, the Si nanowire-based device achieved this high capacitance density without sacrificing power performance compared to the planar device.
by Wen Zheng.
Ph. D.
Jain, Rahul. "Formation of Aminosilane and Thiol Monolayers on Semiconductor Surfaces and Bulk Wet Etching of III--V Semiconductors." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/255196.
Full textFraser, Michael John. "Optical Fiber Microstructures for Self-Contained Whispering Gallery Mode Excitation." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73659.
Full textPh. D.
Patzig-Klein, Sebastian. "Untersuchungen zum Reaktionsverhalten kristalliner Siliziumoberflächen in HF-basierten Ätzlösungen." Doctoral thesis, TU Bergakademie Freiberg, 2009. https://tubaf.qucosa.de/id/qucosa%3A22706.
Full textPatzig-Klein, Sebastian. "Untersuchungen zum Reaktionsverhalten kristalliner Siliziumoberflächen in HF-basierten Ätzlösungen." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2010. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-27118.
Full textLippold, Marcus. "Beiträge zum Verständnis des sauren nasschemischen Ätzens von Silicium." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2014. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-145077.
Full textRöper, Stephanie. "Strukturuntersuchungen an biologischen Materialien mit Hilfe rasterkraftmikroskopiebasierender Nanotomographie." Doctoral thesis, Universitätsbibliothek Chemnitz, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-68803.
Full textLai, Yung-Yu, and 賴永裕. "The Study of Chemical Wet Etching on GaN Epi-layer." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/86721184869275920065.
Full text淡江大學
化學工程與材料工程學系碩士班
101
This study use the different etchants to do wet-etching process on the un-doped GaN epi-layer on sapphire substrate. We investigate in detail about the depth and morphology by different etching conditions. In this experiment, metal-organic chemical vapor deposition (MOCVD) was used to regrow un-doped GaN on sapphire substrate. And then, c-plane GaN epi-layer was used to the basic substrate for etching study. The different polarities face have respective phenomenon in etching process. Therefore, this study will discuss the different etching behaviors of GaN epi-layer. Finally, we found that molten KOH will etch the plane of (101 ¯2) and (101 ¯1 ¯ ) at 180°C. The etching will get more energy to do shrinkage, when we enhance the temperature to 260°C, and then the plane will change to (11 ¯00) and (101 ¯1 ¯ ). The H3PO4 will etch the plane of (11 ¯00) and (101 ¯1 ¯ ) at 180°C and 260°C. And then, the H3PO4+H2SO4 will etch the plane (101 ¯1 ¯ ) only at 180°C and 260°C.
Book chapters on the topic "Wet chemical etching"
Sarangan, Andrew. "Wet Chemical and Plasma Etching." In Nanofabrication, 209–40. Boca Raton : CRC Press, Taylor & Francis Group, 2017. | Series: Optical sciences and applications of light: CRC Press, 2016. http://dx.doi.org/10.1201/9781315370514-7.
Full textOmbaba, Mathew, Salman B. Inayat, and M. Saif Islam. "Wet Chemical and Electrochemical Etching Processes." In Encyclopedia of Nanotechnology, 1–9. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_431-2.
Full textOmbaba, Mathew, Salman B. Inayat, and M. Saif Islam. "Wet Chemical and Electrochemical Etching Processes." In Encyclopedia of Nanotechnology, 4373–80. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_431.
Full textHorn, A., and G. Wachutka. "Three-Dimensional Simulation of Orientation-Dependent Wet Chemical Etching." In Simulation of Semiconductor Processes and Devices 2004, 133–36. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0624-2_32.
Full textWard, Jonathan. "Asymptotic Analysis of a Multi-Component Wet Chemical Etching Model." In Mathematics in Industry, 327–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25100-9_38.
Full textDay, R. J., M. S. Waters, and J. Rasile. "Incorporation of Chromium in Sputtered Copper Films and Its Removal During Wet Chemical Etching." In Springer Series in Chemical Physics, 403–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82724-2_108.
Full textIls, P., M. Michel, A. Forchel, I. Gyuro, P. Speier, and E. Zielinski. "Fabrication of Ultrasmall InGaAs/InP Nanostructures by High Voltage Electron Beam Lithography and Wet Chemical Etching." In NANOLITHOGRAPHY: A Borderland between STM, EB, IB, and X-Ray Lithographies, 77–80. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8261-2_8.
Full textIshikawa, Eiichi, Susumu Fukatsu, Kentaro Onabe, Yasuhiro Shiraki, and Ryoichi Ito. "Ultrafine AlGaAs/GaAs Quantum-Well Wire Fabrication by Combining Electron Beam Lithography and Two-Step Wet Chemical Etching." In Science and Technology of Mesoscopic Structures, 373–78. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-66922-7_39.
Full text"Wet Chemical Etching and Wet Bulk Micromachining—Pools as Tools." In Manufacturing Techniques for Microfabrication and Nanotechnology, 229–332. CRC Press, 2011. http://dx.doi.org/10.1201/9781439895306-8.
Full text"Wet Chemical Etching and Wet Bulk Micromachining—Pools as Tools." In Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set, 875–978. CRC Press, 2018. http://dx.doi.org/10.1201/9781315274164-21.
Full textConference papers on the topic "Wet chemical etching"
Kaneko, Kimihisa, Tomoyoshi Noda, Masayoshi Sakata, and Tomomi Uchiyama. "Observation and Numerical Simulation for Wet Chemical Etching Process of Semiconductor." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45707.
Full textRath, P., J. C. Chai, H. Y. Zheng, Y. C. Lam, and V. M. Murukeshan. "A Total-Concentration Fixed-Grid Method for Two-Dimensional Diffusion-Controlled Wet Chemical Etching." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72186.
Full textAnsorge, E., S. Schimpf, S. Hirsch, B. Schmidt, J. Sauerwald, and H. Fritze. "Gas detecting langasite membranes by wet chemical etching." In 2005 IEEE Sensors. IEEE, 2005. http://dx.doi.org/10.1109/icsens.2005.1597679.
Full textKazanowska, Barbara A., Keshab R. Sapkota, Brendan P. Gunning, Kevin S. Jones, and George T. Wang. "Exploring AlGaN nanostructures fabricated via chemical wet etching." In Gallium Nitride Materials and Devices XVI, edited by Hadis Morkoç, Hiroshi Fujioka, and Ulrich T. Schwarz. SPIE, 2021. http://dx.doi.org/10.1117/12.2582551.
Full textPan, Yuzhai, Yongqiang Ning, Li Qin, Hui Suo, Yun Liu, and Lijun Wang. "Fabrication of InGaAs/InGaAsP microcylinder by wet chemical etching." In International Symposium on Optoelectonics and Microelectronics, edited by Norman C. Tien and Qing-An Huang. SPIE, 2001. http://dx.doi.org/10.1117/12.444735.
Full textMohr, Lena, Tobias Krick, Martin Zimmer, Andreas Fischer, and Anamaria Moldovan. "Numerical simulation of an ozone-based wet-chemical etching." In 15th International Conference on Concentrator Photovoltaic Systems (CPV-15). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5123856.
Full textNowak, Rainer, Simeon Metev, and Gerd Sepold. "Laser-assisted wet chemical etching of metals for microfabrication." In Europto High Power Lasers and Laser Applications V, edited by Eckhard Beyer, Maichi Cantello, Aldo V. La Rocca, Lucien D. Laude, Flemming O. Olsen, and Gerd Sepold. SPIE, 1994. http://dx.doi.org/10.1117/12.184772.
Full textFruehauf, Joachim, and Birgit Hannemann. "Micro-optical silicon elements fabricated by wet chemical etching." In Optical Systems Design and Production, edited by Roland Geyl and Jonathan Maxwell. SPIE, 1999. http://dx.doi.org/10.1117/12.360147.
Full textvan Suchtelen, J., K. Sato, E. van Veenendaal, A. J. Nijdam, J. G. E. Gardeniers, W. J. P. van Enckevort, and M. Elwenspoek. "Simulation of anisotropic wet-chemical etching using a physical model." In Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291). IEEE, 1999. http://dx.doi.org/10.1109/memsys.1999.746850.
Full textFeit, M. D., T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude. "Modeling wet chemical etching of surface flaws on fused silica." In Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers, edited by Gregory J. Exarhos, Vitaly E. Gruzdev, Detlev Ristau, M. J. Soileau, and Christopher J. Stolz. SPIE, 2009. http://dx.doi.org/10.1117/12.836912.
Full textReports on the topic "Wet chemical etching"
Hunt, C., and J. Trujillo. Silicon field emission points for vacuum IC's by wet chemical etching. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/7032264.
Full textSnyder, Paul G. Real Time Optical Monitoring of III-V Semiconductor Wet Chemical Etching. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada387435.
Full textHui, Wing C. Technique for protecting chip corners in wet chemical etching of silicon wafers. Office of Scientific and Technical Information (OSTI), February 1991. http://dx.doi.org/10.2172/10169930.
Full text