To see the other types of publications on this topic, follow the link: WETTING SWCC.

Journal articles on the topic 'WETTING SWCC'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'WETTING SWCC.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Satyanaga, Alfrendo, Jong Kim, Sung-Woo Moon, and Martin Wijaya. "Exponential Functions for Modelling Hysteresis of Soil-Water Characteristic Curves." E3S Web of Conferences 195 (2020): 02002. http://dx.doi.org/10.1051/e3sconf/202019502002.

Full text
Abstract:
Soil – water characteristic curve (SWCC) is an important property of unsaturated soils that can be used to estimate various parameters to describe unsaturated soil behavior. SWCC is reported to be hysteretic because the water content at a given suction in the wetting process is less than that in the drying process. In order to simulate the hysteretic characteristics of SWCC, many models have been proposed by different researchers. However, majority of the existing models are complex and their parameters are not related to the physical significances of SWCC variables. In this study, the new equ
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Hong, Harianto Rahardjo, Eng-Choon Leong, and D. G. Fredlund. "Factors affecting drying and wetting soil-water characteristic curves of sandy soils." Canadian Geotechnical Journal 41, no. 5 (2004): 908–20. http://dx.doi.org/10.1139/t04-042.

Full text
Abstract:
Drying and wetting soil-water characteristic curves (SWCCs) for five sandy soils are investigated using a Tempe pressure cell and capillary rise open tube. The test data are fitted to two SWCC equations using a least-squares algorithm. The obtained fitting parameters and some hysteretic behaviour are discussed and correlated with grain-size distribution parameters. A concept of total hysteresis is proposed to quantify the hysteresis of SWCC. The measured SWCC for one soil is also compared with the SWCC estimated from its grain-size distribution. The SWCC was also obtained at a high dry density
APA, Harvard, Vancouver, ISO, and other styles
3

Zeng, Ling, Fan Li, Jie Liu, Qianfeng Gao, and Hanbing Bian. "Effect of initial gravimetric water content and cyclic wetting-drying on soil-water characteristic curves of disintegrated carbonaceous mudstone." Transportation Safety and Environment 1, no. 3 (2019): 230–40. http://dx.doi.org/10.1093/tse/tdz018.

Full text
Abstract:
Abstract The soil-water characteristic curve (SWCC) is often used to estimate unsaturated soil properties (e.g. strength, permeability, volume change, solute and thermal diffusivity). The SWCC of soil samples is significantly affected by cyclic wetting-drying. To examine how water content and cyclic wetting-drying affect the SWCC of disintegrated carbonaceous mudstone (DCM), SWCC tests were implemented using a pressure-plate apparatus. In addition, SWCC models for DCM considering the initial gravimetric water content and cyclic wetting-drying were developed. The test results showed that the vo
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yuwei, Zhanping Song, Xiaolin Weng, and Yongli Xie. "A New Soil-Water Characteristic Curve Model for Unsaturated Loess Based on Wetting-Induced Pore Deformation." Geofluids 2019 (April 15, 2019): 1–14. http://dx.doi.org/10.1155/2019/1672418.

Full text
Abstract:
The soil-water characteristic curve (SWCC) is the basis for describing seepage, strength, and constitutive model of unsaturated soil. The existing SWCC models do not work accurately for evaluating loess, because they do not consider the pore deformation that is induced by wetting. The present study develops a new SWCC model for unsaturated loess. The model considers the effect of wetting-induced pore deformation (WIPD) on the SWCC. The new model includes 6 parameters, which could be confirmed by laboratory tests. The pore volume function (PVF) was described by the WIPD. The shift factor ξ1i an
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Xuebo, Tianlun Shen, Ke Xiang, et al. "Effect of the Wetting Hydraulic Property of Soil on 1-D Water Infiltration." Sustainability 15, no. 3 (2023): 1822. http://dx.doi.org/10.3390/su15031822.

Full text
Abstract:
Rainwater infiltration is primarily governed by the soil-water characteristic curve (SWCC) and hydraulic conductivity function (HCF) of soil. Both the SWCC and the HCF are hysteretic during the drying and wetting processes. In a numerical simulation, different seepage results can be obtained by incorporating different hydraulic conductivity functions of soil. In practice, the wetting HCF is commonly estimated from the wetting SWCC using the statistical method, which is named HCFswcc,w in this note. However, there is no study that has verified the results from seepage analyses using HCFswcc,w.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, J. H., L. M. Zhang, and X. Li. "Soil-water characteristic curve and permeability function for unsaturated cracked soil." Canadian Geotechnical Journal 48, no. 7 (2011): 1010–31. http://dx.doi.org/10.1139/t11-027.

Full text
Abstract:
Cracks are widely present in natural and engineered soils. As water infiltration into a cracked soil often starts from unsaturated conditions, the soil-water characteristic curve (SWCC) and permeability function for the cracked soil are required when conducting seepage analysis. This paper presents a method to predict the SWCC and permeability function for cracked soil considering crack volume changes during drying–wetting processes. The cracked soil is viewed as an overlapping continuum of a crack network system and a soil matrix system. The pore-size distributions for the two pore systems at
APA, Harvard, Vancouver, ISO, and other styles
7

Fredlund, Delwyn G., Daichao Sheng, and Jidong Zhao. "Estimation of soil suction from the soil-water characteristic curve." Canadian Geotechnical Journal 48, no. 2 (2011): 186–98. http://dx.doi.org/10.1139/t10-060.

Full text
Abstract:
Soil-water characteristic curves (SWCCs) are routinely used for the estimation of unsaturated soil property functions (e.g., permeability functions, water storage functions, shear strength functions, and thermal property functions). This paper examines the possibility of using the SWCC for the estimation of in situ soil suction. The paper focuses on the limitations of estimating soil suctions from the SWCC and also suggests a context under which soil suction estimations should be used. The potential range of estimated suction values is known to be large because of hysteresis between drying and
APA, Harvard, Vancouver, ISO, and other styles
8

Al-Mahbashi, Ahmed M., Tamer Elkady, and Mosleh Al-Shamrani. "The Role of Stress States on the Hysteric Behavior of Expansive Soil under Multiple Drying-Wetting Cycles." Buildings 13, no. 7 (2023): 1619. http://dx.doi.org/10.3390/buildings13071619.

Full text
Abstract:
Expansive soils in the field are typically exposed to cyclic wetting and drying due to climatic fluctuations and subjected to a variety of stress conditions in nature or when used as compacted layers for the construction of hydraulic barriers or waste disposal facilities. The hysteric behavior of the soil-water characteristic curve (SWCC) is a key parameter for understanding, modeling, and interpreting the unsaturated behavior of these soils under such conditions. This study investigates the effect of stress states on the hysteresis behavior of soil-water characteristic curves (SWCCs) for comp
APA, Harvard, Vancouver, ISO, and other styles
9

Kong, Lingwei, Hossain Md Sayem, and Huihui Tian. "Influence of drying–wetting cycles on soil-water characteristic curve of undisturbed granite residual soils and microstructure mechanism by nuclear magnetic resonance (NMR) spin-spin relaxation time (T2) relaxometry." Canadian Geotechnical Journal 55, no. 2 (2018): 208–16. http://dx.doi.org/10.1139/cgj-2016-0614.

Full text
Abstract:
Due to the formational environment and climatic variability, granite residual soils with grain-size distribution ranging from gravel to clay undergo multiple drying–wetting cycles. The influences of multiple drying–wetting cycles on the soil-water characteristic curve (SWCC) and pore-size distribution (POSD) of undisturbed granite residual soils are investigated using the pressure plate test and nuclear magnetic resonance (NMR) spin-spin relaxation time (T2) distribution measurement, respectively. Results show that the water-retention capacity and air-entry value decrease and pores become more
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmed, Asif, Md Jobair Bin Alam, Pratibha Pandey, and MD Sahadat Hossain. "Estimation of unsaturated flow parameters and hysteresis curve from field instrumentation." MATEC Web of Conferences 337 (2021): 01008. http://dx.doi.org/10.1051/matecconf/202133701008.

Full text
Abstract:
Abstract: The negative pore water pressure or soil suction has significant effect on the performance of geotechnical infrastructures (e.g., slope, pavement, embankment etc.). The unsaturated behavior of soil is not static, rather offers variation in response to climatic loading. The objective of the study was to evaluate field-based techniques of SWCC construction in terms of capturing these variation as compared to laboratory methods and predictive models. The field assessment could allow the quantification of hysteresis effect on the SWCC. Instrumentation data from one Texas, USA highway was
APA, Harvard, Vancouver, ISO, and other styles
11

Syarifudin, Achmad, and Alfrendo Satyanaga. "Variability of Bimodal Soil-Water Characteristic Curves under Different Confining Pressures." Applied and Environmental Soil Science 2021 (June 5, 2021): 1–10. http://dx.doi.org/10.1155/2021/5569491.

Full text
Abstract:
Soils with two subcurves of Soil-Water Characteristic Curve (SWCC) (dual porosity soils) might be found within various residual soils. Soils located in different depths have different confining pressure. Residual soils are found in the unsaturated zones due to the deep groundwater table. There is a linear correlation between the hydraulic properties of the soil in the unsaturated area and that of its unsaturated properties. This study aims to examine the influence of the confining pressure towards the SWCC of dual porosity soil. The scope of this study involves measurements of the drying and w
APA, Harvard, Vancouver, ISO, and other styles
12

Xu, Xu-tang, Dao-qi Liu, Zhen-xing Xian, et al. "Influence of Drying–Wetting Cycles on the Water Retention and Microstructure of Residual Soil." Geofluids 2022 (August 30, 2022): 1–15. http://dx.doi.org/10.1155/2022/9948658.

Full text
Abstract:
Due to frequent changes in the humid and hot environment, the residual soil with a particle-size distribution (PSD) from gravel to clay experiences multiple drying–wetting cycles. The pressure plate test and nuclear magnetic resonance (NMR) spectroscopy were used to investigate the influence of drying–wetting cycles on the soil–water characteristic curve (SWCC) and pore-size distribution (POSD) of undisturbed residual soil. The results showed that the water-holding capacity of the residual soil decreased as the number of drying–wetting cycles increased and gradually stablilized, and then the v
APA, Harvard, Vancouver, ISO, and other styles
13

Peranić, Josip, Željko Arbanas, Sabatino Cuomo, and Matej Maček. "Soil-Water Characteristic Curve of Residual Soil from a Flysch Rock Mass." Geofluids 2018 (July 29, 2018): 1–15. http://dx.doi.org/10.1155/2018/6297819.

Full text
Abstract:
Depending on the nature of the material and suction range, laboratory measurements of the soil-water characteristic curve (SWCC) can be time-consuming and expensive, especially for residual soils, in which a wide range of particle sizes and soil structures typically results in SWCCs that cover a wide range of suction. Investigations of the SWCCs of residual soil from flysch rock masses are rare, and so far, no results were presented in the literature which were obtained by performing measurements on undisturbed specimens. In this paper, a detailed examination of water retention characteristics
APA, Harvard, Vancouver, ISO, and other styles
14

Abbaszadeh, Mohammad M., and Sandra L. Houston. "Influence of Soil Cracking on the Soil-Water Characteristic Curve of Clay Soil." Soils and Rocks 38, no. 1 (2015): 49–58. http://dx.doi.org/10.28927/sr.381049.

Full text
Abstract:
The hydraulic conductivity for unsaturated soil conditions is more difficult to estimate than for the saturated condition. In addition, as the soil transitions from intact to cracked, the difficulty in estimating the unsaturated hydraulic conductivity increases. One critical step in the determination of unsaturated flow hydraulic conductivity is the evaluation of the Soil-Water Characteristic Curve (SWCC). In this paper, a series of laboratory studies of direct measurements of cracked soil SWCCs is presented, including challenges associated with the control of very low suction levels associate
APA, Harvard, Vancouver, ISO, and other styles
15

Xie, Xiao, Ping Li, Xiaokun Hou, Tonglu Li, and Guowei Zhang. "Microstructure of Compacted Loess and Its Influence on the Soil-Water Characteristic Curve." Advances in Materials Science and Engineering 2020 (January 8, 2020): 1–12. http://dx.doi.org/10.1155/2020/3402607.

Full text
Abstract:
Soil-water characteristic curve (SWCC) is a key constitutive relationship for studying unsaturated soil, and as is known, microstructure of the soil has great influence on the mechanical behaviour of the soil. In this study, the wetting and drying soil-water characteristic curves (SWCCs) of loess compacted at three different water contents were measured using the filter paper method. And microproperties of compacted loess were obtained by the mercury intrusion method (MIP) and scanning electron microscope (SEM). Results show that the compaction water contents have significant influence on the
APA, Harvard, Vancouver, ISO, and other styles
16

Ng, Charles WW, and Y. W. Pang. "Experimental investigations of the soil-water characteristics of a volcanic soil." Canadian Geotechnical Journal 37, no. 6 (2000): 1252–64. http://dx.doi.org/10.1139/t00-056.

Full text
Abstract:
Rain-induced landslides are common around the world. To analyse transient seepage and to predict pore-water pressure distribution in unsaturated slopes subjected to rainfall infiltration, it is essential to study soil-water characteristics and water permeability functions. The soil-water characteristic curve (SWCC) is a relationship between suction and water content or degree of saturation. Conventionally, only the drying soil-water characteristic curve of soil specimens is determined in a pressure-plate extractor without the application of any external stress. In this paper, the influences of
APA, Harvard, Vancouver, ISO, and other styles
17

Veena, V., Sobha Cyrus, Benny Mathews Abraham, and Babu T. Jose. "Soil Water Characteristic Curves of Compacted Marine Clay." Journal of Solid Waste Technology and Management 47, no. 4 (2021): 717–25. http://dx.doi.org/10.5276/jswtm/2021.717.

Full text
Abstract:
The soil water characteristics play an important role in predicting the engineering behaviour of unsaturated soils. An experimental programme was performed using pressure plate apparatus to investigate the effect of moulding water content, compactive effort and cycles of wetting and drying on Soil Water Characteristic Curves (SWCC) of compacted marine clay. The specimens were prepared with moulding water contents (optimum, dry of optimum and wet of optimum) for both Standard Proctor and Modified Proctor compactive efforts. The results obtained were fitted to Brooks and Corey (BC) and Van Genuc
APA, Harvard, Vancouver, ISO, and other styles
18

Bashir, Rashid, Jitendra Sharma, and Halina Stefaniak. "Effect of hysteresis of soil-water characteristic curves on infiltration under different climatic conditions." Canadian Geotechnical Journal 53, no. 2 (2016): 273–84. http://dx.doi.org/10.1139/cgj-2015-0004.

Full text
Abstract:
This paper presents results of a numerical modelling exercise that investigates the effects of hysteresis of the soil-water characteristic curve (SWCC) on the infiltration characteristics of soils subjected to four different climatic conditions — from very dry to wet — within the Canadian province of Alberta. Multi-year climate datasets from four different natural regions and subregions of Alberta are compiled, classified, and applied as the soil–atmosphere boundary condition in one-dimensional finite element unsaturated flow models using Hydrus-1D software. Multi-year simulations are carried
APA, Harvard, Vancouver, ISO, and other styles
19

NASCIMENTO, ÍCARO VASCONCELOS DO, THIAGO LEITE DE ALENCAR, CARLOS LEVI ANASTÁCIO DOS SANTOS, RAIMUNDO NONATO DE ASSIS JÚNIOR, and JAEDSON CLÁUDIO ANUNCIATO MOTA. "EFFECT OF SAMPLE RE-SATURATION ON SOIL-WATER CHARACTERISTIC CURVE." Revista Caatinga 31, no. 2 (2018): 446–54. http://dx.doi.org/10.1590/1983-21252018v31n221rc.

Full text
Abstract:
ABSTRACT Soil-water characteristic curve (SWCC) is an important tool for water management in irrigated agriculture. However, factors such as texture and structure of soils influence SWCC behavior. According to the literature, wetting and drying cycles alter SWCC. A similar process of re-saturation and drying occurs during SWCC obtainment under laboratory conditions. Based on the hypothesis that re-saturation process alters SWCC due to clay loss in the sample, this study aimed to obtain the SWCC, S index, and pore size distribution from samples submitted to re-saturation cycles, as well as from
APA, Harvard, Vancouver, ISO, and other styles
20

Witteman, M. L., and P. H. Simms. "Unsaturated flow in hydrating porous media with application to cemented mine backfill." Canadian Geotechnical Journal 54, no. 6 (2017): 835–45. http://dx.doi.org/10.1139/cgj-2015-0314.

Full text
Abstract:
Unsaturated flow in hydrating porous media is pertinent to several engineering applications, including underground and surface use of cemented tailings. Proper description and modelling of flow is complicated by changes in material properties due to hydration as well as by the generation of suction by the net consumption of water volume by hydration, variously termed chemical shrinkage or self-desiccation. It is necessary to define changes in hydraulic properties with time; for instance, the soil-water characteristic curve (SWCC) is not unique in time in addition to being path (drying versus w
APA, Harvard, Vancouver, ISO, and other styles
21

Carnavale, Thiago de Souza, Ana Carolina de Campos Viana, Paula Morais Canedo de Magalhães, and Tácio Mauro Pereira de Campos. "Soil-water resistivity curve of a tropical soil." MATEC Web of Conferences 337 (2021): 01011. http://dx.doi.org/10.1051/matecconf/202133701011.

Full text
Abstract:
The evaluation of soil-water characteristic curve is one of the most important procedures in the matter of understanding the soil behaviour during wetting and drying processes. Even though it might be carried out by established methods, this practice is considered a time-consuming technique, and because of this it is still under-used in comparison with its potential applications. In this way, this paper aims to analyse the correlation of soil suction and soil resistivity to produce a time-reduced soil-water characteristic curve (SWCC), based on resistivity measured values. To perform this rese
APA, Harvard, Vancouver, ISO, and other styles
22

Chowdepalli, Bhargavi, and Kenji Watanabe. "Empirical Equations Expressing the Effects of Measured Suction on the Compaction Curve for Sandy Soils Varying Fines Content." Geotechnics 3, no. 3 (2023): 760–80. http://dx.doi.org/10.3390/geotechnics3030042.

Full text
Abstract:
To effectively apply various soil types for embankments, understanding their compaction characteristics is crucial. One crucial factor affecting compaction is suction, which plays a significant role as it is typically performed under unsaturated conditions. Suction varies with soil density, water content, and fines content. This study directly measures suction after soil compaction using the triaxial apparatus, unlike the Soil water characteristic curve (SWCC), assessing its impact on compaction characteristics. Immediate suction measurement after compaction provides apparent suction, resembli
APA, Harvard, Vancouver, ISO, and other styles
23

Ma, Shaokun, Xiao Huang, Zhibo Duan, Min Ma, and Yu Shao. "New Prediction Model for SWCC of Expansive Soil Considering Drying and Wetting Cycles." Journal of Mining Science 57, no. 3 (2021): 393–404. http://dx.doi.org/10.1134/s1062739121030054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shaokun, Ma, Huang Xiao, Duan Zhibo, Ma Min, and Shao Yu. "New Prediction Model for SWCC of Expansive Soil Considering Drying and Wetting Cycles." Физико-технические проблемы разработки полезных ископаемых, no. 3 (2021): 38–50. http://dx.doi.org/10.15372/ftprpi20210305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chen, Dong Xia, Ma Xiu Zhang, You Qiang Lin, and Jian Ni. "Measurement of SWCC of Xiamen Residual Soil by Filter Paper." Applied Mechanics and Materials 256-259 (December 2012): 1046–51. http://dx.doi.org/10.4028/www.scientific.net/amm.256-259.1046.

Full text
Abstract:
Soil suction is one of the most important parameters for unsaturated soils. An experimental program was carried out to measure the maric suction of soil specimens of a residual soil in Xiamen by filter paper method. Initial water content, soil structure, and stress state were taken into account to investigate the hysteresis loop of SWCC. The air-entry value of test soil is about 140kPa and residual saturation is about 18%. The soil specimen at wet of optimum has the largest hysteresis loop for a relatively uniform pore-size distribution. However, the soil specimen at dry of optimum has the sma
APA, Harvard, Vancouver, ISO, and other styles
26

Nie, Yongpeng, Wankui Ni, Xiangning Li, et al. "The Influence of Drying-Wetting Cycles on the Suction Stress of Compacted Loess and the Associated Microscopic Mechanism." Water 13, no. 13 (2021): 1809. http://dx.doi.org/10.3390/w13131809.

Full text
Abstract:
To better understand and analyze the unsaturated stability of loess filling body, it is necessary to study the changes in suction stress before and after the drying-wetting cycles. In this study, the SWCC of compacted loess before and after drying-wetting cycles was tested using the filter paper method. Then, the suction stress was calculated and the microstructure of the loess sample was determined by the SEM and NMR. The results showed that the drying-wetting cycles had an important influence on the SSCC and microstructure of compacted loess. The change in suction stress before and after the
APA, Harvard, Vancouver, ISO, and other styles
27

Meilani, Inge, Harianto Rahardjo, and Eng-Choon Leong. "Pore-water pressure and water volume change of an unsaturated soil under infiltration conditions." Canadian Geotechnical Journal 42, no. 6 (2005): 1509–31. http://dx.doi.org/10.1139/t05-066.

Full text
Abstract:
Triaxial shearing–infiltration tests were conducted to study the pore-water pressure and volume change of unsaturated soils subjected to infiltration conditions. A modified triaxial apparatus with three Nanyang Technological University (NTU) mini suction probes along the specimen height was used for the experimental program. Elastic moduli were obtained for the soil structure with respect to changes in net confining pressure (E) and matric suction (H). Water volumetric moduli associated with changes in net confining pressure (Ew) and matric suction (Hw) were also obtained from the shearing–inf
APA, Harvard, Vancouver, ISO, and other styles
28

Zamin, Bakht, Hassan Nasir, Muhammad Ali Sikandar, et al. "Comparative Study on the Field- and Lab-Based Soil-Water Characteristic Curves for Expansive Soils." Advances in Civil Engineering 2022 (May 2, 2022): 1–9. http://dx.doi.org/10.1155/2022/6390442.

Full text
Abstract:
Expansive soils are problematic and viewed as a potential hazard for buildings and structures due to swell and shrink phenomena. The damaging effect of these soils is strongly correlated with the soil-water characteristics of expansive soils present in the shallow depth. The seasonal wetting-drying cycle is vital in fluctuating moisture content in the surficial soils. As such, soils remain unsaturated most of the time due to high absorption capacity. Therefore, it is crucial to assess them as unsaturated soil, and the soil-water characteristic curve (SWCC) is an essential tool for measuring un
APA, Harvard, Vancouver, ISO, and other styles
29

Isidro, Miguel, Pablo Trejo, and Marko López. "Soil water characteristic curve parameters of collapsible sand in Lambayeque, Peru." MATEC Web of Conferences 337 (2021): 01005. http://dx.doi.org/10.1051/matecconf/202133701005.

Full text
Abstract:
Several structures are built on collapsible soils in the mining and petroleum industries and on civil sites. In order to analyze the stability of such structures, one must properly study the unsaturated soil behavior. Collapsible soils are frequent sand soil that are susceptible to a significant and sudden reduction in volume upon wetting. An important factor is matric suction, which es related to moisture content through the soil water Characteristic Curve (SWCC), the SWCC is obtained through a filter paper technique and provides a valuable relationship between suction and water content uniqu
APA, Harvard, Vancouver, ISO, and other styles
30

Shi, Zhen Hua, and Zhao Wan Gao. "A Model for the Soil-Water Characteristic Curve and its Application in Dam Engineering." Applied Mechanics and Materials 94-96 (September 2011): 1930–35. http://dx.doi.org/10.4028/www.scientific.net/amm.94-96.1930.

Full text
Abstract:
A mathematical model for the soil-water characteristic curve is proposed in the light of bounding surface plasticity. The main drying and wetting curves are taken as the asymptotes of the scanning curves, and only one additional parameter is introduced to simulate such scanning curves. To pave to the way for the application of the proposed model, the governing equation of unsaturated seepage problems and the finite element formulations are derived. A FEM program incorporating the SWCC model is then developed and used to study the hydraulic behaviour of an earth dam undergoes a repeated change
APA, Harvard, Vancouver, ISO, and other styles
31

Cao, Ling, Zhijian Wang, and Yong Chen. "Unsaturated Seepage Analysis of Cracked Soil including Development Process of Cracks." Advances in Materials Science and Engineering 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/2684297.

Full text
Abstract:
Cracks in soil provide preferential pathways for water flow and their morphological parameters significantly affect the hydraulic conductivity of the soil. To study the hydraulic properties of cracks, the dynamic development of cracks in the expansive soil during drying and wetting has been measured in the laboratory. The test results enable the development of the relationships between the cracks morphological parameters and the water content. In this study, the fractal model has been used to predict the soil-water characteristic curve (SWCC) of the cracked soil, including the developmental pr
APA, Harvard, Vancouver, ISO, and other styles
32

Zamin, Bakht, Hassan Nasir, Khalid Mehmood, and Qaiser Iqbal. "Field-Obtained Soil-Water Characteristic Curves of KPK Expansive Soil and Their Prediction Correlations." Advances in Civil Engineering 2020 (November 20, 2020): 1–13. http://dx.doi.org/10.1155/2020/4039134.

Full text
Abstract:
Expansive clays are found worldwide in arid and semiarid regions. Such soils are considered a natural hazard for civil engineering infrastructures especially when they are lightly loaded. Expansive soils are often unsaturated due to the high absorption capacity of moisture. The damaging effect of expansive soils is intimately related to the distinctive soil-water characteristic in the surficial soil layers subjected to wetting-drying cycles. The soil-water characteristic curve (SWCC) also known as the water-retention curve shows the fluctuation of suction with the moisture content. It is one o
APA, Harvard, Vancouver, ISO, and other styles
33

Yoka Khail, Bilal, Mathilde Morvan, and Pierre Breul. "Behavior of unsaturated pelitic soil in a railway context." E3S Web of Conferences 195 (2020): 01010. http://dx.doi.org/10.1051/e3sconf/202019501010.

Full text
Abstract:
As part of the rehabilitation work on the Gabonese railway line, the Trans-Gabon Railway, it was necessary to analyse the behaviour of the materials constituting the subgrade soil. These soils are pelitic soils whose behaviour under unsaturated conditions and cyclic loading has not been studied before and which present differential settlements and lack of bearing capacity. In this article, we focus on the characterization of the subgrade soil. The objective of this work is first to determine the in-situ characteristics of the pelitic soil and be able to link these characteristics with the beha
APA, Harvard, Vancouver, ISO, and other styles
34

Qian, Jing Song, and Hang Lu. "Effect of Compaction Degree on Soil-Water Characteristic Curve of Chongming Clay." Applied Mechanics and Materials 90-93 (September 2011): 701–6. http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.701.

Full text
Abstract:
The soil-water characteristic defines the relationship between the soil suction and gravimetric water content, w, or the volumetric water content, θ, or the degree of saturation, S. It is a convenient method to predict water content in the subgrade using the curve. But in the field tests of subgrades, the compaction degree of soil became lower with time than initially designed. With the purpose of finding out effect of compaction degree on soil-water characteristic curve, a study to the SWCC (soil-water characteristic curve) of Chongming low liquid limit clay using filter paper method was carr
APA, Harvard, Vancouver, ISO, and other styles
35

Liu, Ching-Yi, Yun-Da Hsieh, and Yung-Chia Chiu. "Simplified power law relationship in the estimation of hydraulic conductivity of unsaturated sands using electrical conductivity." Soil Research 59, no. 4 (2021): 406. http://dx.doi.org/10.1071/sr20190.

Full text
Abstract:
The unsaturated zone is a complex multiphase system, and modelling and prediction of flow and contaminant transport in this zone remain a challenge. In order to understand the mechanisms of fluid flow in unsaturated sands, an accurate and efficient approach to estimate unsaturated hydraulic conductivity (K) is essential. In this study, a power law relationship was derived from a combination of Archie’s law and van Genuchten’s model to relate bulk (apparent) electrical conductivity (ECa) with unsaturated K. The laboratory sandbox experiments were conducted first to delineate the soil water char
APA, Harvard, Vancouver, ISO, and other styles
36

Tao, Gaoliang, Ziyue Li, Lisheng Liu, Yangyang Chen, and Kai Gu. "Effects of Contact Angle on the Hysteresis Effect of Soil-Water Characteristic Curves during Dry-Wet Cycles." Advances in Civil Engineering 2021 (April 11, 2021): 1–11. http://dx.doi.org/10.1155/2021/6683859.

Full text
Abstract:
The hysteresis characteristics of soil-water characteristic curves (SWCCs) under dry-wet cycling conditions are very important for understanding unsaturated soil properties, so it is crucial to propose an accurate and efficient method for predicting the hysteretic behaviors of SWCCs. To this end, this paper investigates the hysteresis characteristics of SWCCs in the full suction range of seven kinds of Hunan red clay with different initial dry densities by combination of the pressure plate method, the paper filter method, and the saturated salt solution method. It is found that there are, resp
APA, Harvard, Vancouver, ISO, and other styles
37

Naik, Aparimita Priyadarshini, and Sreeja Pekkat. "Determination of wetting soil water characteristics curve from disk infiltrometer measurements." E3S Web of Conferences 382 (2023): 25006. http://dx.doi.org/10.1051/e3sconf/202338225006.

Full text
Abstract:
A wetting soil water characteristic curve (SWCCw) is necessary for understanding and interpreting the re-distribution of infiltrated rainwater, percolation rate, and contaminant transport. Direct determination of SWCCw is tedious and needs destructive sampling and invasive sensor installation. This study demonstrates an indirect method for determining SWCCw based on infiltration measurements using a mini disc infiltrometer (MDI). Under controlled initial conditions, infiltration tests were conducted, coupled with real-time soil moisture and matric potential measurements using sensors. Sensor d
APA, Harvard, Vancouver, ISO, and other styles
38

Jayanth, Sneha, Kannan Iyer, and D. N. Singh. "Influence of Drying and Wetting Cycles on SWCCs of Fine-Grained Soils." Journal of Testing and Evaluation 40, no. 3 (2012): 104184. http://dx.doi.org/10.1520/jte104184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Khaledialidusti, Rasoul, and Jon Kleppe. "Surface-Charge Alteration at the Carbonate/Brine Interface During Single-Well Chemical-Tracer Tests: Surface-Complexation Model." SPE Journal 23, no. 06 (2018): 2302–15. http://dx.doi.org/10.2118/191356-pa.

Full text
Abstract:
Summary Water chemistry has been shown to affect oil recovery by affecting surface charge and rock dissolution. The single-well chemical-tracer (SWCT) test is a field method to measure residual oil saturation (Sor), in which hydrolysis reaction of an ester has been known as a key process that could displace the equilibrium state of a reservoir by changing formation-water (FW) composition. Because oil mobilization during the SWCT tests causes an error in the measurement of Sor, changes in water chemistry might be a concern for the accuracy of Sor measurements. In our previous work, the extent t
APA, Harvard, Vancouver, ISO, and other styles
40

Jadar, Chidanand M., Sathiyamoorthy Rajesh, and Suman Roy. "The effect of stress-dependent SWRC on the load carrying capacity of the slope subjected to the drying-wetting path." E3S Web of Conferences 382 (2023): 12004. http://dx.doi.org/10.1051/e3sconf/202338212004.

Full text
Abstract:
The stability and load capacity of structures resting on compacted soil slopes is one of the major concerns in Geotechnical Engineering practice. The mechanically compacted earthen slopes are prone to the dynamic exchange of flux flow, resulting in varying saturation levels across their entire configuration. The soil water retention curve (SWRC) is a property which significantly controls the stability and load capacityof structures resting on these compacted soil slopes. The parameters of a typical SWRC are affected by net stress and climatic changes in field conditions, adding more complexity
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Tao, Junran Zhang, Tong Jiang, Xincui Wang, Hang Jia, and Lijin Wang. "SWCCs of Silt in Yudong Zone and its Prediction Under Different Drying–Wetting Cycle Conditions." Geotechnical and Geological Engineering 37, no. 3 (2018): 1977–86. http://dx.doi.org/10.1007/s10706-018-0738-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yan, W. M., and Guanghui Zhang. "Soil-water characteristics of compacted sandy and cemented soils with and without vegetation." Canadian Geotechnical Journal 52, no. 9 (2015): 1331–44. http://dx.doi.org/10.1139/cgj-2014-0334.

Full text
Abstract:
Experiments were undertaken to study the soil-water characteristics of compacted sandy soil (SS) and cemented soil (CS) in field and laboratory conditions. The influence of vegetation and material density on the development of negative pore-water pressure (PWP) and degree of saturation (Sr) in the studied materials was investigated. The field planting experiments demonstrated a promising survival rate of Schefflera heptaphylla in both types of material, while the (SS) promoted better growth of the seedlings than the cemented one. In the field study, PWP and Sr of the compacted SS responded not
APA, Harvard, Vancouver, ISO, and other styles
43

Bharat, Tadikonda Venkata, and Yagom Gapak. "SOIL WATER CHARCTERISTIC CURVES OF BENTONITES IN ISOCHORIC CONDITIONS DURING WETTING: MEASUREMENT AND PREDICTION." Canadian Geotechnical Journal, July 24, 2020. http://dx.doi.org/10.1139/cgj-2019-0818.

Full text
Abstract:
Determination of soil water characteristic curve (SWCC) of compacted bentonites in the isochoric condition is a prerequisite for unsaturated flow simulations in several geoenvironmental applications. The SWCC data are, however, not readily available for many compacted bentonites over a wide suction range due to difficulties associated with the testing. In this work, wetting SWCCs of four Indian bentonites of different plasticity were established experimentally at compaction dry densities of 1.4, 1.6, and 1.8 Mg/m3 in isochoric conditions using two independent laboratory techniques in different
APA, Harvard, Vancouver, ISO, and other styles
44

Al-Obaidi, Qasim A., and Tom Schanz. "Soil–water characteristic curve of unsaturated collapsible soils." Journal of the Mechanical Behavior of Materials 32, no. 1 (2023). http://dx.doi.org/10.1515/jmbm-2022-0210.

Full text
Abstract:
Abstract Collapsible soils are almost found in unsaturated states and involved significant engineering problems. Geotechnical challenges of such soils are represented by the hydro-mechanical behaviour during wetting–drying cycles due to the humidity and climate conditions. The main objective of this paper is to investigate the soil–water characteristic curve (SWCC) of unsaturated collapsible soils. In this study, three types of collapsible soils were investigated such as natural soils of sandy gypseous, silty loess, and artificial soil of gypsum–sand mixture. Determination of soil–water charac
APA, Harvard, Vancouver, ISO, and other styles
45

Chang, Ilhan, Gye-Chun Cho, and Thi Phuong An Tran. "Water retention properties of xanthan gum biopolymer-treated soils." Environmental Geotechnics, March 30, 2023, 1–11. http://dx.doi.org/10.1680/jenge.22.00098.

Full text
Abstract:
This study aims to estimate the effects of xanthan gum biopolymer on the wetting and drying processes of soils. Xanthan gum was used to treat jumunjin sand and sand/clay mixture with different content to the mass of dried soil. The wetting and drying soilwater characteristics of xanthan gum biopolymer-treated sand were investigated using capillary rise open tubes and Fredlund-type SWCC device, respectively. The results show that xanthan gum has a significant effect on controlling the movement of water in the soil. Xanthan gum biopolymer shapes the drying soil-water characteristic of the soils
APA, Harvard, Vancouver, ISO, and other styles
46

Ling, Jianming, Xiang Li, Sheng Lin, Yebo Cen, and Chenchen Li. "Laboratory Study on Entire Range Suction Measurement and Microstructure Change of Granite Residual Soil." Transportation Research Record: Journal of the Transportation Research Board, April 11, 2023, 036119812311605. http://dx.doi.org/10.1177/03611981231160546.

Full text
Abstract:
The shear strength of unsaturated granite residual soil (GRS) will decline rapidly when moisture content increases, because of loss of matric suction in the soil. This can lead to slope instability and embankment collapse during rainfall. Determining the matric suction of GRS accurately at different conditions can improve the accuracy of stability analysis. Generally, matric suction can be characterized as the soil–water characteristic curve (SWCC), and it is closely related to soil microstructure. In this study, the entire range of matric suction was measured using a combination of pressure p
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Haiman, Wankui Ni, Kangze Yuan, Yongpeng Nie, and Lan Li. "Study on SWCC and PSD evolution of compacted loess before and after drying-wetting cycles." Bulletin of Engineering Geology and the Environment 82, no. 5 (2023). http://dx.doi.org/10.1007/s10064-023-03218-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hoang, Nguyen Van, Hoang Viet Hung, and Pham Van Dung. "Moisture Transfer Finite Element Modeling with Soil-Water Characteristic Curve-Based Parameters and its Application to Nhan Co Red Mud Basin Slope." VNU Journal of Science: Earth and Environmental Sciences 37, no. 1 (2021). http://dx.doi.org/10.25073/2588-1094/vnuees.4655.

Full text
Abstract:
Since the year of 2017 landslides at the red mud basins in Nhan Co alumina factory, Dak Nong province have been occurring during the rainy seasons. The change of the soil physical and mechanical parameters due to rainwater infiltration has been considered as the main factor of the slope instability. The soil cohesion and angle of internal friction depend very much on the soil moisture: soil with a lower moisture content has a higher shearing strength than that with higher moisture content. The finite element modeling of moisture transfer in unsaturated soils through the relationship between so
APA, Harvard, Vancouver, ISO, and other styles
49

Kholghifard, Mehrdad. "Effective Stress and Compressibility of Unsaturated Clayey Soil under Drying and Wetting Cycles." Periodica Polytechnica Civil Engineering, July 27, 2020. http://dx.doi.org/10.3311/ppci.16166.

Full text
Abstract:
Naturally, soil moisture reduces during dry seasons when the soil is in drying state; while it increases during wet seasons when the soil is in wetting state. Previous studies have shown that for an unsaturated soil sample, soil-water characteristic curves (SWCCs) do not match in wetting and drying paths. The differences between wetting and drying paths are called the hydraulic hysteresis. The hydraulic hysteresis plays an important role in mechanical properties of soil such as shear strength, volume change, and settlement. The objective of this research is to study the effects of drying and w
APA, Harvard, Vancouver, ISO, and other styles
50

Gu, Chuan, Xuan He, Miaomiao Ge, and Yuanyuan Liu. "Microstructure evolution of a compacted lateritic silt upon drying-wetting and loading." Canadian Geotechnical Journal, April 5, 2023. http://dx.doi.org/10.1139/cgj-2022-0352.

Full text
Abstract:
In this study, the microstructure properties of a lateritic silt under drying-wetting and one-dimensional compression were investigated using MIP and SEM. Test results show that large-sized aggregates are formed in the compacted lateritic silt with 10% of hematite. These aggregates induce a bi-modal PSD including micropore and macropore peaks. The different macropore distributions under various dry densities lead to scattered SWCCs in a suction range less than 20 MPa. Changes in volume and pore structure mainly occur in the suction path within the "transition zone". Drying causes an increase i
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!